
Euclidean and Hamming Embedding for Image Patch Description with

Convolutional Networks

Zishun Liu Zhenxi Li Juyong Zhang Ligang Liu

University of Science and Technology of China

Abstract

Local feature descriptors represent image patches as

floating-point or binary arrays for computer vision tasks.

In this paper, we propose to train Euclidean and Hamming

embedding for image patch description with triplet convolu-

tional networks. Thanks to the learning ability of deep Con-

vNets, the trained local feature generation method, which

is called Deeply Learned Feature Transform (DELFT), has

good distinctiveness and robustness. Evaluated on the

UBC benchmark, we get the state-of-the-art results using

floating-point and binary features. Also, the learned fea-

tures can cooperate with existing nearest neighbor search

algorithms in Euclidean and Hamming space. In addition,

a new benchmark is constructed to facilitate future related

research, which contains 40 million image patches, corre-

sponding to 6.7 million 3D points, being 25 times larger

than existing dataset. The distinctiveness and robustness of

the proposed method are demonstrated in the experimental

results.

1. Introduction

Image local features, which describe image patches as

floating-point or binary arrays, have been widely used in

many computer vision tasks, from low-level to high-level

ones. Local features are required to be distinctive to dif-

ferent physical points while robust to scale, orientation,

viewpoint, illumination and other variations. Thus it is

nontrivial to extract good local features and a lot of re-

search has been done on this problem, including hand-

crafted [14, 2, 24, 20, 4, 28] approaches and data-driven

[3, 23, 25, 26] ones in the last two decades. Nowadays, lo-

cal feature still plays an irreplaceable role in many problems

such as image matching (including structure-from-motion,

image-based localization, image stitching, etc.) and object

instance recognition [9], although Convolutional Networks

based methods have been dominant on semantic-level prob-

lems, such as object classification [11] and detection [19].

In this paper, we propose to train Euclidean and Ham-

ming embedding for local patch description with deep Con-

vNets (Convolutional Networks). Utilizing the learning

ability of deep ConvNets, the trained local feature genera-

tion method has good distinctiveness and robustness. This is

done by minimizing contrastive loss or triplet loss with mas-

sive training data. The trained floating-point or binary fea-

tures are extracted directly from raw pixel data, in an end-

to-end learning manner, without relying on human experi-

ence. Our learned feature embedding is named as Deeply

Learned Feature Transform (DELFT).

ConvNets have achieved the state-of-the-art results on

many computer vision tasks and recently have been used

for patch level feature learning. In Han et al. [8], a sys-

tem named MatchNet is proposed, in which a metric net-

work is used to compute the similarity between two features

extracted from different patches. Methods proposed by

Zagoruyko and Komodakis [33] have similar network struc-

tures while get better results with several techniques such

as taking multi-scale input. One of the drawbacks is that

a metric network is needed in both works to compute the

similarity, for which we have to use linear search method to

find the nearest neighbor for some query patch. In this pa-

per, Euclidean and Hamming metric is directly used which

make the learned features cooperating with existing nearest

neighbor search algorithms, such as those with k-d trees,

k-nearest neighbor graph or multi-index hashing[18]. In

Simo-Serra et al. [22], contrastive loss is used to learn such

an embedding. In this work a novel triplet loss is used and

get the state-of-the-art result compared with existing works

on the same feature length. Moreover, binary features are

learned in our work.

In addition, we constructed a local patch correspondence

dataset to facilitate future related research. This dataset

contains 40 million color image patches, corresponding to

6.7 million 3D points, being 25 times larger than existing

dataset.

The main contributions of our approach are summarized

in the following.

• A new local patch feature embedding method is pro-

posed which cooperates with fast nearest neighbors

72

search, getting a better speed-accuracy tradeoff.

• This is the first work that learns compact binary fea-

ture with ConvNets and got the state-of-the-art result

on standard benchmark.

• A new local image patch correspondence dataset is

constructed which is 25 times larger than existing

benchmark, in which color information is also in-

cluded.

The remainder of this paper is structured as follows. Sec-

tion 2 briefly reviews several related works. In Section 3 our

network structure, loss function and optimization method is

specified. The experimental results and comparisons with

related works are demonstrated in Section 4. Finally, Sec-

tion 5 presents our conclusions and directions of future

work to improve our method.

2. Related Work

Local features should be partially invariant to illumina-

tion, 3D projective transforms, and common object varia-

tions, while be sufficiently distinctive to identify specific

objects among many alternatives. Many works have been

done to design such local features, aiming for a better

tradeoff between distinctiveness and robustness, including

SIFT [14], SURF [2], DAISY [24], ORB [20], BRIEF [4],

MIOP [28], etc. These floating-point or binary features

are based on histogram of gradient, intensity comparison or

some other image operations. Designing such hand-crafted

feature rely on human experience heavily.

Some other approachess have been proposed with data-

driven methods. In Brown et al. [3], a set of building blocks

is described for constructing descriptors which can be com-

bined together and jointly optimized so as to minimize the

error of a nearest-neighbor classifier for local image de-

scriptor learning. In Trzcinski et al. [26], boosting is ap-

plied to learn complex non-linear local visual feature repre-

sentation. Trzcinski et al. [25] propose a novel framework

to learn an extremely compact binary descriptor, each bit

of which is computed with a boosted binary hash function,

which is efficient to optimize the different hash functions so

that they complement each other. In Simonyan et al. [23]

learning the pooling regions for the descriptor and descrip-

tor dimensionality reduction are formulated as convex opti-

mization problems.

Recently, several works have been done on image patch

feature learning using ConvNets. In Han et al. [8], a sys-

tem named MatchNet is proposed, which contains two fea-

ture networks with tied parameters and a metric network.

The metric network is used to compute the similarity be-

tween two features extracted from different patches by the

feature networks. Methods proposed by Zagoruyko and Ko-

modakis [33] have similar network structures while get bet-

ter results with several techniques such as taking multi-scale

input. In Simo-Serra et al. [22], contrastive loss is used to

learn such an embedding. As a novel triplet loss is used

in our work, the results are significantly better than that

of [22]. In Han et al. [8], a lossy quantization method is

used to represent the features as binary codes compactly.

The compressed features should be decoded in the similar-

ity computation stage, thus cannot be treated as binary fea-

tures. In contrast, similarity between our binary features can

be measured by Hamming distance directly, so that exact

sub-linear k-NN search is permitted. In addition, Zbontar

and LeCun in [34] proposed a ConvNet-based approach to

compare patches for computing cost in small baseline stereo

problem and shown the best performance in KITTI dataset.

However, the focus of that work was on narrow baseline

stereo, which is different from our work.

The metric learning problem [12] is concerned with

learning a distance function tuned to a particular task, and

has been shown to be useful when used in conjunction with

nearest-neighbor methods and other techniques that rely on

distances or similarities. LMNN (Large Margin Nearest

Neighbor [29]) is one of the representative work in metric

learning field, where a triplet loss is used. A similar triplet

loss is used in [21] to learn a unified feature embedding for

face recognition and clustering. There are also some works

attempt to map high-dimensional data to binary codes that

preserve semantic similarity. In [17], the difficulty of dis-

continuous optimization of the discrete mappings is over-

come by minimizing a piecewise-smooth upper bound on

empirical loss. In [13], a divide-and-encode module is used

to learn binary mapping with preserved similarity, by mini-

mizing a triplet ranking loss, in which a piece-wise thresh-

old function is used to encourage binary output.

3. Euclidean and Hamming Embedding

Networks to learn the Euclidean and Hamming embed-

ding are based on the Siamese Network [7]. Basic block

of the network is a feature tower which transforms a given

image patch into a floating-point or binary array. Each net-

work contains 2 or 3 such feature towers with tied parame-

ters. Given pairs or triplets of training patches, each patch

is fed into the feature tower and the loss layer computes the

cost value based on their output features. Then, back prop-

agation is used to train these feature towers simultaneously.

Overview of the system is illustrated in Figure 1. Architec-

ture of the feature tower is listed in Table 1.

In [22], the contrastive loss [7] is used to learn the fea-

ture transform for image patch matching. The embedding

is represented by f(x) ∈ R
d or {0, 1}d. It embeds an im-

age patch x into a d-dimensional Euclidean or Hamming

space. By minimizing the following loss function, we want

to make ∥f(x1)− f(x2)∥2 small when x1 and x2 represent

the same 3D point and make it large if they are extracted

73

Contractive Loss Triplet Loss

Figure 1. System overview. Basic block of the network is a feature

tower fW which transform a given image patch x into a floating-

point or binary array fW (x). Left: network contains 2 such feature

towers with tied parameters. If the input pair correspond to the

same 3D point, the network is trained to make the outputs f(x1)
and f(x2) to be as close as possible. If not, it is trained to make

them far from each other. Right: network contains 3 such feature

towers with tied parameters, which is trained to make f(xa) and

f(xp) get close to each other while f(xa) and f(xn) get far from

each other.

Ind Type Filter Size Num Stride Pad

1 Conv 7 48 1 3

2 ReLU - - - -

3 Max Pool 3 - 2 0

4 Conv 5 64 1 2

5 ReLU - - - -

6 Max Pool 3 - 2 0

7 Conv 3 128 1 1

8 ReLU - - - -

9 Conv 3 256 1 1

10 ReLU - - - -

11 Conv 3 512 1 1

12 ReLU - - - -

13 Max Pool 3 - 2 0

14 FC - 1024 - -

15 ReLU - - - -

16 FC - 1024 - -

17 ReLU - - - -

18 FC - dim(f) - -

Table 1: Architecture of the feature tower. FC is for fully-

connected layer. It is essential to add a normalization layer

on the top of the tower when triplet loss is used. To learn

Hamming embedding, a piece-wise threshold layer should

be added on the top.

from different 3D points.

N
∑

i=1

[

Yidi + (1− Yi)max (α− di, 0)
]

, (1)

in which

di = ∥f(xi1)− f(xi2)∥
2
2,

N is the batch size. Yi = 1 when xi1 and xi2 represent the

same 3D point and 0 otherwise.

3.1. Triplet Loss

Compared with the contrastive loss, triplet Loss is a bet-

ter choice as previous works [21, 29] suggested. We want

to ensure that an image patch xa
i (anchor) of a specific 3D

point is closer to all other patches x
p
i (positive) of the same

3D point than it is to any patches xn
i (negative) of any other

3D points. The loss that is being minimized is then

N
∑

i=1

[

∥f(xa
i)− f(xp

i)∥
2
2 − ∥f(xa

i)− f(xn
i)∥

2
2 + β

]

+

where β is a margin that is enforced between positive and

negative pairs. The normalization layer, which normalizes

the L2 norm of output layer to be 1, is essential to prevent

the norms of output arrays from exploding when triplet loss

is used.

To learn the Hamming embedding, the following piece-

wise threshold function [13] is used on the top of the feature

tower to encourage binary outputs.

gϵ(x) =

−1, x < −ϵ

x, −ϵ ≤ x ≤ ϵ

1, x > ϵ

In the training stage, ϵ is initiated to be 0.5 and decreased

by 0.1 after some iterations. During the test stage, 0 is used

as the threshold to map floating-point arrays into binary fea-

tures.

3.2. Training

Mini-batch gradient descent is used to minimize the loss

functions. Existing works suggest to initialize network pa-

rameters using gaussian random numbers with small vari-

ation for classification problems. In our task, it will lead

to small di and will make the gradient of contrastive loss

in Eqn. (1) vanished. The learning procedure will be slow

even with a large learning rate. As a consequence, we tuned

the standard variation of the gaussian distributions to make

the norms of feature layer’s outputs near 1 (i.e. the margin

α we used for the contrastive loss). Once we obtain the

model with the contrastive loss, the trained model could be

used as the initialization to further improve the performance

with the triplet loss. Also, this initialization helps to prevent

the network from producing degenerated result, i.e. the col-

lapsed feature transform f(x) = 0.

We use greedy strategy to select pairs or triplets for train-

ing. Similar with that of [21], pairs or triplet that can pro-

duce loss are selected while those make the loss functions

74

output 0, which would lead to slow learning, are dropped.

Also, online data augmentation on patch brightness and

contrast is used to improve the generalization ability. We

used margin α = 1 for contrastive loss and margin β = 0.2
for triplet loss. Some other parameters are batch size 64,

weight decay 5.0× 10−5 and initial learning rate 0.02. The

learning rate is dropped by a factor after some iterations.

The implementation is based on the open source deep learn-

ing framework Caffe [10].

4. Experiments

4.1. Local Patch Correspondence Benchmark

The UBC benchmark [30] consists of 64× 64 grayscale

image patches sampled form 3D reconstructions of 3

scenes: the Statue of Liberty, Notre Dame and Half Dome

in Yosemite. Each of them contains more than 450,000 im-

age patches detected using the Difference of Gaussians de-

tectors. The patches are scale and orientation normalized.

Each of the subsets was generated using actual 3D cor-

respondences obtained via multi-view stereo depth maps.

These maps were used to produce 500,000 ground-truth fea-

ture pairs for each dataset, with equal number of positive

(correct) and negative (incorrect) matches.

A larger benchmark is constructed to further improve

performance of the feature embedding. The new bench-

mark is based on the MSR-Object3D-300 dataset [9], which

contains 300 objects (mainly toys) and each object is rep-

resented by more than 200 images captured from differ-

ent viewpoints. Patch correspondences are extracted from

them, using VisualSFM [31], a structure from motion sys-

tem which implements multicore bundle adjustment [32].

At last, 40 million color image patches are extracted, corre-

sponding to 6.7 million 3D points. These patches are nor-

malized as that of the UBC benchmark. Sampled images

and patch correspondences are shown in Figure 2. As MSR-

Object3D-300 is captured under controlled laboratory con-

ditions, data augmentation especially brightness and con-

trast transformations are essential in the training stage.

We trained the networks on the UBC dataset and our

newly constructed dataset. and listed the test error on the

UBC benchmark in Table 2. For evaluating our models,

we use the evaluation protocol of [3] and test on the subset

containing 10,000 patch pairs which is sampled by the au-

thors of [30]. We report the false positive rate at 95% recall

(FPR95) on each of the six combinations of training and test

sets. From this table, we can see that 128d DELFT trained

with triple loss achieves the state-of-the-art result. 128 bits

binary DELFT is even superior to 256 bits BinBoost. Root-

SIFT, which is proposed in [1], is used here as the baseline.

It is a simple transformation of SIFT descriptor, whose Eu-

clidean distance is equivalent to the Hellinger distance be-

tween SIFT descriptors, which works better than measuring

SIFT with Euclidean distance directly. We use the imple-

mentation of SIFT in VLFeat [27] for this evaluation.

In Figure 3, we show top-ranking false and true matches

predicted by 128 bits binary DELFT. We observe that false

matches could be easily mistaken even by human. Some of

the false pairs may be mislabeled in the dataset. Also, false

positives demonstrate that DELFT is robust against patch

rotation to some degree.

Using the configuration of Simo-Serra et al. [22], we

evaluate DELFT and list the areas under precision-recall

curves (PR AUC) in Table 3. On average, we have an im-

provement of about 10% relatively compared with [22].

Train Test Simo-Serra et al. DELFT (triple)

LY+YO ND 0.667 0.705

LY+ND YO 0.545 0.639

YO+ND LY 0.608 0.653

Table 3: PR AUC of Simo-Serra et al. [22] and our ap-

proach. Both of them are 128 dimensional floating-point

descriptors.

4.2. Robustness Evaluation on the Mikolajczyk
Dataset

In Mikolajczyk et al. [16], a series of images and ground

truth homographies are provided to evaluate the descriptors’

robustness against image transformations, including rota-

tion, scale change, viewpoint change, image blur, JPEG

compression and illumination. We follow the evaluation

protocol of [16] and use Harris-Affine detector [15]. Results

of Binary DELFT (128 bits), BinBoost (128 bits) and SIFT

(128d) are demonstrated in Figure 4. The trained model of

BinBoost is provided by the authors of [25]. We can see

that binary DELFT is superior to BinBoost with the same

length. Also, binary DELFT is at least comparable with

SIFT, while the memory cost of SIFT is 8 times larger than

that of binary DELFT. In addition, although our model is

trained on patches detected by DoG, it also works well on

Harris-Affine regions.

4.3. Extraction and Matching Time

Finally, we provide the computational cost in Table 4.

The CPU descriptors run on a Intel(R) Core(TM) i5-4570

CPU @ 3.20 GHz multi-threaded. Our GPU variant runs

on a NVIDIA GeForce GTX 760 GPU. SIFT rely on

VLFeat [27]. DELFT extraction could be speeded up us-

ing [6] by about 2 times. In the scenario of object in-

stance recognition [9], given a dataset of target model fea-

ture descriptors of size n and a query image with m fea-

ture descriptors, the matching complexity of [8] and [33] is

O(mn), where it is necessary to use brute force method.

However, only O(m log n) operations are required if the

75

Figure 2. Sampled images MSR-Object3D-300 and patches detected using the Difference of Gaussians operator from it. The patches

are scale and orientation normalized. These samples demonstrates viewpoint and original scale (from large body-parts to local textures)

variations in the newly constructed benchmark for image patch descriptor learning.

Training Notredame Yosemite Liberty Yosemite Liberty Notredame

Test Dim Liberty Notredame Yosemite

RootSIFT [1] 128d 28.76 20.96 26.37

L-BGM [26] 64d 18.05 21.03 14.15 13.73 19.63 15.86

Brown et al. [3] w/ PCA 29d 16.85 18.27 – 11.98 – 13.55

Simonyan et al. [23] discrim. proj. <80d 12.42 14.58 7.22 6.17 11.18 10.08

Simonyan et al. [23] discrim. proj. <64d 12.88 14.82 7.52 7.11 11.63 10.54

MatchNet [8] (F=1024, B=64) 64d 9.82 14.27 5.02 9.15 14.15 13.20

MatchNet [8] (F=512, B=128) 128d 9.48 15.40 5.18 8.27 14.40 12.17

MatchNet [8] (F=512, B=512) 512d 8.84 13.02 4.75 7.70 13.58 11.00

Siamese Network in [33] 256d 8.77 13.48 4.33 5.75 14.89 13.23

DELFT (pair) 128d 8.50 12.57 5.02 6.54 12.25 11.06

DELFT (triple) 128d 7.26 11.83 4.29 5.37 10.67 9.82

DELFT (pair, on new benchmark) 128d 7.54 4.86 10.22

BGM [26] 64 bits 31.90 33.54 29.60 26.80 38.13 30.58

BinBoost [25] 64 bits 20.49 21.67 16.90 14.54 22.88 18.97

BinBoost [25] 256 bits 21.62 22.18 15.99 14.69 21.11 18.42

Binary DELFT (pair) 64 bits 19.11 20.43 13.59 12.34 19.25 17.36

Binary DELFT (triple) 128 bits 16.27 18.32 9.31 10.56 15.77 13.94

Table 2: FPR95 (false positive rate at 95% recall) on the UBC benchmark.

DELFT (GPU) DELFT (CPU) SIFT

Time (ms) 0.89 5.66 0.14

Table 4: Extraction time (in batch).

floating-point features are index in a k-d tree for matching.

The complexity is similar when multi-index hashing is used

for binary features. Also, the data structure only need to be

constructed once.

5. Conclusion and Future Works

In this paper, we propose to train Euclidean and Ham-

ming embedding for image patch description with convo-

lutional networks. Thanks to the learning ability of deep

ConvNets, the trained local feature generation method has

good distinctiveness and robustness, which is called Deeply

Learned Feature Transform (DELFT). Evaluated on the

76

True Positive False Positive True Negative False Negative

Figure 3. Top-ranking false and true matches predict on

Notredame, using the 128 bits binary DELFT trained on Liberty

with triplet loss.

UBC benchmark, we get the state-of-the-art results using

floating-point and binary features that have the same length

with existing works. Also, the learned features can co-

operate with existing nearest neighbor search algorithms

in Euclidean and Hamming space. In addition, based on

the MSR-Object3D-300 dataset, a new benchmark is con-

structed to facilitate future related research, which contains

40 million color image patches, corresponding to 6.7 mil-

lion 3D points, being 25 times larger than existing dataset.

The distinctiveness and robustness of the proposed method

are demonstrated in the experimental results.

On the other hand, our method can still be improved

in several directions. First, as truecolor image patch cor-

respondence dataset is available, we can take use of them

to train more distinctive feature transforms for color patch

description. Secondly, those techniques proposed by [33],

such as the 2-stream multi-scale method, should be consid-

ered to improve the performance of DELFT. Thirdly, we

consider to compress the trained models so that they could

be used on mobile devices for related computer vision tasks

such as SLAM. For example, HashedNets proposed by [5]

could be used to shrink the storage requirements of DELFT

substantially while mostly preserving generalization perfor-

mance. Also, related works such as [6] will help to speed

up the feature extraction.

References

[1] R. Arandjelović and A. Zisserman. Three things every-

one should know to improve object retrieval. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 2911–2918, 2012. 4, 5

[2] H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded

up robust features. In Computer vision–ECCV 2006, pages

404–417. 2006. 1, 2

[3] M. Brown, G. Hua, and S. Winder. Discriminative learning

of local image descriptors. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 33(1):43–57, 2011. 1, 2,

4, 5

[4] M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski,

C. Strecha, and P. Fua. Brief: Computing a local binary

descriptor very fast. Pattern Analysis and Machine Intelli-

gence, IEEE Transactions on, 34(7):1281–1298, 2012. 1, 2

[5] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and

Y. Chen. Compressing neural networks with the hashing

trick. International Conference on Machine Learning, 2015.

6

[6] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fer-

gus. Exploiting linear structure within convolutional net-

works for efficient evaluation. In Advances in Neural In-

formation Processing Systems, pages 1269–1277, 2014. 4,

6

[7] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduc-

tion by learning an invariant mapping. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

volume 2, pages 1735–1742, 2006. 2

[8] X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg.

MatchNet: Unifying feature and metric learning for patch-

based matching. In The IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), 2015. 1, 2, 4, 5

[9] Q. Hao, R. Cai, Z. Li, L. Zhang, Y. Pang, F. Wu, and Y. Rui.

Efficient 2d-to-3d correspondence filtering for scalable 3d

object recognition. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2013. 1, 4

[10] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional

architecture for fast feature embedding. In Proceedings of

the ACM International Conference on Multimedia, MM ’14,

2014. 4

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in Neural Information Processing Systems, pages

1097–1105, 2012. 1

[12] B. Kulis. Metric learning: A survey. Foundations and Trends

in Machine Learning, 5(4):287–364, 2012. 2

[13] H. Lai, Y. Pan, Y. Liu, and S. Yan. Simultaneous feature

learning and hash coding with deep neural networks. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2015. 2, 3

[14] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. International Journal of Computer Vision,

60(2):91–110, 2004. 1, 2

[15] K. Mikolajczyk and C. Schmid. Scale & affine invariant in-

terest point detectors. International Journal of Computer Vi-

sion, 60(1):63–86, 2004. 4

[16] K. Mikolajczyk and C. Schmid. A performance evaluation of

local descriptors. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 27(10):1615–1630, 2005. 4

[17] M. Norouzi, D. M. Blei, and R. R. Salakhutdinov. Hamming

distance metric learning. In Advances in Neural Information

Processing Systems, pages 1061–1069, 2012. 2

[18] M. Norouzi, A. Punjani, and D. J. Fleet. Fast search in ham-

ming space with multi-index hashing. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

pages 3108–3115, 2012. 1

77

1 - precision

0 0.2 0.4 0.6

re
c
a
ll

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SIFT
BinBoost
DELFT

1 - precision

0 0.2 0.4 0.6 0.8 1

re
c
a
ll

0

0.05

0.1

0.15

0.2

1 - precision
0 0.2 0.4 0.6

re
c
a
ll

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 - precision

0 0.2 0.4 0.6 0.8

re
c
a
ll

0

0.1

0.2

0.3

0.4

0.5

0.6

1 - precision

0 0.2 0.4 0.6 0.8 1

re
c
a
ll

0

0.1

0.2

0.3

0.4

0.5

0.6

bikes (Blur) trees (Blur) graf (Viewpoint) wall (Viewpoint)

bark (Zoom+rotation) boat (Zoom+rotation) leuven (Light) ubc (JPEG compression)

1 - precision

0 0.2 0.4 0.6 0.8

re
c
a
ll

0

0.1

0.2

0.3

0.4

0.5

0.6

1 - precision

0 0.2 0.4 0.6

re
c
a
ll

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 - precision

0 0.1 0.2 0.3

re
c
a
ll

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4. Evaluation of robustness on the Mikolajczyk dataset. We can see that binary DELFT (128 bits) is superior to BinBoost (128 bits)

with the same length. Also, binary DELFT is at least comparable with SIFT (128 bytes).

[19] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: To-

wards real-time object detection with region proposal net-

works. arXiv preprint arXiv:1506.01497, 2015. 1

[20] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB:

an efficient alternative to sift or surf. In Computer Vi-

sion (ICCV), 2011 IEEE International Conference on, pages

2564–2571. IEEE, 2011. 1, 2

[21] F. Schroff, D. Kalenichenko, and J. Philbin. FaceNet: A uni-

fied embedding for face recognition and clustering. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2015. 2, 3

[22] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and

F. Moreno-Noguer. Discriminative learning of deep convolu-

tional feature point descriptors. In Computer Vision (ICCV),

2015 IEEE International Conference on, 2015. 1, 2, 4

[23] K. Simonyan, A. Vedaldi, and A. Zisserman. Learning lo-

cal feature descriptors using convex optimisation. Pattern

Analysis and Machine Intelligence, IEEE Transactions on,

36(8):1573–1585, 2014. 1, 2, 5

[24] E. Tola, V. Lepetit, and P. Fua. A fast local descriptor for

dense matching. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 1–8. IEEE,

2008. 1, 2

[25] T. Trzcinski, M. Christoudias, P. Fua, and V. Lepetit. Boost-

ing binary keypoint descriptors. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

2874–2881, 2013. 1, 2, 4, 5

[26] T. Trzcinski, M. Christoudias, V. Lepetit, and P. Fua. Learn-

ing image descriptors with the boosting-trick. In Advances

in Neural Information Processing Systems, pages 269–277,

2012. 1, 2, 5

[27] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable

library of computer vision algorithms. http://www.

vlfeat.org/, 2008. 4

[28] Z. Wang, B. Fan, G. Wang, and F. Wu. Exploring local and

overall ordinal information for robust feature description.

Pattern Analysis and Machine Intelligence, IEEE Transac-

tions on, 2016. 1, 2

[29] K. Q. Weinberger, J. Blitzer, and L. K. Saul. Distance metric

learning for large margin nearest neighbor classification. In

Advances in Neural Information Processing Systems, pages

1473–1480, 2005. 2, 3

[30] S. Winder, G. Hua, and M. Brown. Picking the best daisy.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2009. 4

[31] C. Wu. VisualSFM: A visual structure from motion system.

http://ccwu.me/vsfm/, 2011. 4

[32] C. Wu, S. Agarwal, B. Curless, and S. M. Seitz. Multicore

bundle adjustment. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 3057–3064,

2011. 4

[33] S. Zagoruyko and N. Komodakis. Learning to compare im-

age patches via convolutional neural networks. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2015. 1, 2, 4, 5, 6

[34] J. Zbontar and Y. LeCun. Computing the stereo match-

ing cost with a convolutional neural network. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2015. 2

78

http://www.vlfeat.org/
http://www.vlfeat.org/
http://ccwu.me/vsfm/

