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Abstract

Two-dimensional Principal Component Analysis (2DP-
CA) has been widely used for face image representation and
recognition. However, 2DPCA, which is based on F-norm
square, is sensitive to the presence of outliers. To enhance
the robustness of 2DPCA model, we proposed a novel Ro-
bust 2DPCA objective function, called R-2DPCA. The cri-
terion of R-2DPCA is maximizing the covariance of data in
the projected subspace, while minimizing the reconstruction
error of data. In addition, we use the efficient non-greedy
optimization algorithms solving our objective function. Ex-
tensive experiments are done on the AR, CMU-PIE, Extend-
ed Yale B face image databases, and results illustrate that
our method is more effective and robust than other robust
2DPCA algorithms, such as L1-2DPCA, L1-2DPCA-S, and
N-2DPCA.

1. Introduction

In image recognition, especially face recognition, sub-
space learning, which is also called dimensionality reduc-
tion, has been widely used to extract features for image
representation. Principal component analysis (PCA) [20],
linear discriminant analysis (LDA) [1], locality preserving
projection (LPP) [16] and neighborhood preserving embed-
ding (NPE) [6] are four of the most representative method-
s, where PCA is used to extract the most expressive fea-
tures, LDA is considered to be capable of extracting the
most discriminating features. Different from PCA and L-
DA, which characterize the global geometric structure, LPP
and NPE, which are respectively the linear approximation
of Laplacian embedding (LE) [2] and locally linear embed-
ding (LLE) [18] respectively, well characterize the local ge-
ometric structure.

However appling PCA into image representation and
recognition, we need transform each image, which is usu-
ally represented as a matrix, into 1D image vector by con-
catenating all rows/columns. So, these methods cannot well
exploit the spatial structure information that is embedded in
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pixels and their neighbors of image and important for im-
age representation and recognition. To handle this problem,
many two-dimensional subspace learning methods or ten-
sor methods have been developed. The representative two-
dimensional methods include two-dimensional PCA (2D-
PCA) [25], multi-linear PCA [11], two-dimensional LDA
(2DLDA) [26]. Although the motivations of the aforemen-
tioned methods are different, they can be unified within the
graph embedding framework [24] and measure the simi-
larity between images using Euclidean distance square. It
is commonly known that Euclidean distance square tech-
niques are not robust in the sense the outlying measure-
ments can arbitrarily skew the solution from the desired so-
lution. Thus, these methods are not robust in the presence
of outliers.

Recently, ¢1-norm based subspace learning technique
has become an active topic in dimensionality reduction to
improve the robustness to outliers. For example, Ke and
Kanade [7] proposed L1-PCA which uses ¢1-norm to mea-
sure the reconstruction error in the objective function. K-
wak [8] used ¢1-norm to measure the covariance and pro-
posed PCA-L1 with greedy algorithm. Motivated by /1-
norm based PCA, some ¢1-norm based subspace learning
algorithms have been developed, such as LDA-L1, which
replaces Euclidean distance square with £1-norm in the ob-
jective function of LDA [28]. Inspired by these works, re-
searchers brought ¢1-norm based theory to two-dimensional
methods, such as 2DPCA-L1 with greedy algorithm [10],
L1-2DLDA [9]. and /1-norm based tensor subspace learn-
ing [17]. To achieve a better performance of ¢1-norm
based method, Wang et al. [21] proposed 2DPCA-L1 with
sparsity(2DPCALI-S). It is a sparse variant of 2DPCA-L1
for unsupervised learning. However, the aforementioned
methods utilize greedy optimization algorithm to solve ¢1-
norm problems, which is computationally expensive. It
consumes more time than 2DPCA due to that each principal
vector is obtained via iteration operation. non-greedy algo-
rithm was proposed to increase efficiency of optimization
algorithm. For example, Nie et al. [15] proposed a non-
greedy iterative to solve PCA-L1. Wang et al. [22] pro-
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posed 2DPCA-L1 with non-greedy algorithm. Although,
all those methods are more robust to outliers compared with
Euclidean distance square based methods, on the condition
of /1-norm, minimizing the reconstruction error is not equal
to maximizing the covariance under the projected subspace,
which means these methods do not consider the relationship
between reconstruction error and low dimensional represen-
tation. Hence their performance is not improved a lot.

Moreover, ¢1-norm is not invariant to rotations [3],
which is a fundamental property of Euclidean space with
£2-norm. It has been emphasized in the context of learning
algorithms [13]. Based on this content, Ding et al. [3] pro-
posed the rotationally invariant ¢1-norm for feature extrac-
tion and developed R1-PCA, which measures the similarity
among nearby data by ¢2,1-norm. Inspired by this, many
joint £2,1-norm regularization methods were proposed for
robust feature selection in image processing, image annota-
tion and machine learning community. For example, Nie et
al. [14] proposed Joint £2,1-norms robust feature selection.
Wong et al. [23] proposed ¢2,1-norm based tensor feature s-
election for image analysis. Gui et al. [5] enjoyed joint fea-
ture extraction and selection by exploiting £2,1-norm on the
projection matrix to subspace learning. These methods all
use ¢£2,1-norm as a regularization rather than distance met-
ric learning in the objective function and cannot guarantee
the robustness of the objective function to outliers. Further-
more, they all need to transform 2D image into a vector by
concatenating all rows of image. So, these methods cannot
well exploit the spatial structure information of data that is
important for image recognition [25, 27].

In this paper, to handle the aforementioned problems,we
first propose a new Robust 2DPCA criterion, which explic-
itly considers the relationship between reconstruction error
and covariance of data in the projected subspace, and we
use the efficient non-greedy optimization algorithms solv-
ing our objective function. The main contributions of our
approach are summarized as follows:

First, our proposed algorithm not only is robust to out-
liers but also has rotational invariance, which has been em-
phasized in the context of learning algorithms.

Second, our proposed non-greedy algorithm has a local
optimal solution and can best maximize the objective func-
tion value.

Third, we explicitly consider the reconstruction error in
our objective function, which is real goal of 2DPCA. Ex-
perimental results on real databases show that our method
always performs more robust than other robust 2DPCA al-
gorithms.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews 2DPCA and L1-2DPCA. Objective function
and algorithm of our Robust 2DPCA are introduced in Sec-
tion 3. Section 4 reports experimental results. Finally, the
conclusions are drawn in Section 5.

2.2DPCA and L1-2DPCA

Given a set of N sample images {A1, Ay, -+ ,An},
where A; € R™*"(i = 1,2, ..., N) denote the ¢ th training
images. Without loss of generality, we assume the data set
are centralized, i.e., Zf\;1 A, = 0. 2DPCA [25] aims to
seek the projection matrix V. = [vy,Va,...,vq] € R"*¢
which can minimize the reconstruction error, i.€.,

N
V= i A, —AVVT|? |
%QQVHZHII;;H i~ ANVVI[L M

where H||% denotes the square Frobenius norm of matrix
and is the sum of square £2-norm of row/column vectors of
matrix. It is easy to see that, the objective function (1) is
totally equivalent to the following objective function, due

2
to the fact 217 | [|A; — A, VVT||L + S0 A V][5 =
N 2
> iz 1A%

N
V = arg max A,V 2 2)
rgmax AV}

where tr(-) is the trace operator of a matrix.  As
SN JAVE =t (ZLVTA?AN) ,we let S, =

Zfil ATA; denotes the covariance matrix. The solution
of function (1) and (2) can be obtained by finding orthog-
onal eigenvectors of S; corresponding to the first d largest
eigenvalues.

Because 2DPCA characterizes the geometric structure of
data by F-norm distance square, which is sensitive to noise
and outliers. Thus the optimal projection matrix of the ob-
jective function (1) and (2) is not robust in the sense that
outlying measurements can skew the solution from the de-
sired solution. To address this problem, ¢1-norm based 2D-
PCA was proposed. It aims to find projection matrix by
solving the following objective function [10, 22].

N
V = argmax AV 3)
g ma ; AV,

where |[-[|~denotes the £1-norm of a matrix, which is
defined as D]}, = 1, S0, [D(i.4)]. D(i.j) de-
notes the element of the i-th row j-th column of matrix D.
A, (j,:) denotes the j-th row of A,;.

£1-norm based 2DPCA is more robust to outliers than
2DPCA [10, 22]. However, £1-norm is not invariant to rota-
tions, which is an important property of learning algorithms
[3], i.e., given an arbitrary rotation matrix I' ('T7 = 1),
we have |[T'A;(j,:) V|, # ||Ai(j,:)V];. Moreover, the
objective function (3) does not explicitly consider the re-
construction error. £1-norm based 2DPCA method is max-
imizing the covariance of data in the projected subspace,
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in terms of ¢1-norm, minimizing the reconstruction er-
ror is not equivalent to maximizing the covariance of data
in the projected subspace, i.e.zf\il ||Ai — AiVVTHL1 +
Zf\il AV, # Zf\il [|Aill, - Thus, their robust per-
formance is not improved a lot. To handle these problems,
we propose a novel Robust 2DPCA model in section 3.

3. Robust 2DPCA

In this paper, different from existing robust 2DPCA
methods, we propose a new objective function as below:

N

VTA,TAV
V* = arg max g tr 5
vVTv=Il, i—1 ||A7 — AZVVT”F

“4)

The objective function (4) is called Robust 2DPCA(R-
2DPCA). We add reconstruction error as restraint in
objective function, so it can further weaken the effect
of outliers. Compared with L1-2DPCA, our method has
rotational invariance due to ||1"AiV||2F = HAZ-V||%.
However, directly solving this problem is difficult,
thus we use non-greedy iterative to solve the objective
function. Now we consider how to solve the opti-
mal projection matrix V of the objective function (4).

Algorithm 1: R-2DPCA

Imput: A; € R™*"(i = 1,---,N), d, where A is
centralized, v = 0.001.
Initialize V() € R"*? which satisfies VIV =Lt = 1.
while not converge do
1.For all training samples, calculate d ®, According to Eq.

(6), the i-th element ;) =

A — AVVT|[T 4
2.Calculate H®) according to Eq. (5):

H® = ﬁvj ATd; VA,V .
i=1
3.Calculate the singular value decomposition (SVD) of
matrix HY by H = U Y 27
4.Solve V1 = argmax tr((VEH)TH®) by Eq.
vIv=l,
(). ie. VD = U (I,,44) Z7.
5.Update t <— ¢t + 1.
end while

Output: V1) ¢ Rnxd

We simplify the function (4) as follows

N VIATAWV
dotr

=1 A - A VVT|
= JZV; tr(VTA," ! A V)
=1 |A; — A, VVT|?, o)
=tr(VT % (A;Td;A)V)
— r(VTH)

1
2
[A; — A;VVT|

where d; = ,,and H =

N
S (ATd;A)V.
i=1
00, d; is defined as

in order to avoid infinite large, i.e.,

1
A - AVVTR 4y

i (6)
So the objective function (4) can be converted to solve
the following objective function.

V* = argmax tr (VI H) @)
vVTvV=l,

Then, we consider how to solve the new objective func-
tion (7). Denote the singular value decomposition (SVD) of
matrix H by

svd (H) = UZZT (®)

where U and Z are full rank and orthogonal matrices, i.e.,
Uu? =U0TU =1,, 22" = ZTZ =1,. Y _ is a diagonal
matrix whose elements on diagonal are singular values \;
of matrix H .

Substituting Eq. (8) into Eq. (7), we have

tr (VIH) =tr (VIU Y 27)
=tr (3 Z"VTU)
= r(2M) ©)

= ; AM(F, 5)

where M = ZTVTU, M(4, j) denotes the element of the
jth row jth column of M.

Substituting Eq. (9) into Eq. (7), the objective function
(7) finally becomes

d

V* =argmax » \;M(j, )
VTV:Id; !

(10)

In Equation (10), M is a row orthogonal matrix due to
the fact MM” = ZTVTUUTVZ = 1. So, M(j,j) < 1.
It means that Z?zl AM(4,7) < Z?zl Aj, and the e-
quality holds when M(j,j) = 1 . That is to say, when
M = I € R¥™"” | the objective function (10) attain-
s the maximum value. According to M = ZTVTU and
M = I € R%™" | the optimal projection matrix V can be
calculated by

V* = U (Lixa) 2" (11)

Note that both U and Z are related with H, which de-
pends on Z and is also an unknown vector. So, we can-
not obtain closed-form solution for the objection function
(7). We herein propose an iterative algorithm, which is de-
scribed in Algorithm 1, to solve the optimal projection ma-
trix 'V of the objective function (7), i.e., Robust 2DPCA.
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To be specific, we first initialize matrix V, which satisfies
VTV =1, and calculate H by current V and d;. After that,
matrix V is updated with the updated H.

4. Experimental results

In this section, we validate our method in three face
databases (Extended Yale B, CMU PIE and AR) and com-
pare it with 2DPCA [25], L1-2DPCA [10], 2DPCALI1-
S [21] and N-2DPCA [27]. In our experiments, we use 1-
nearest neighbor (1NN) for classification. We set the num-
ber of projection vectors as 25 in Extended Yale B and CMU
PIE databases, 30 in AR database.

Figure 1: Some samples of one person in the Extended Yale
B database. The second row is noised samples.

The Extended Yale B database [4] consists of 2144
frontal-face pictures of 38 individuals with different illumi-
nations. There are 64 pictures for each person except 60 for
11th and 13th, 59 for 12th, 62 for 15th and 63 for 14th, 16th
and 17th. In the experiments, each image was normalized
to 32 x 32. 14 images of each individual were randomly
selected and noised by black and white dotes with random
distribution. The location of noise is random and ratio of
the pixels of noise to number of image pixels is intervenient
0.05 to 0.15. Figure 1 shows some samples of one person
in the Extend Yale B database. We randomly select 32 im-
ages, which include 7 noisy images, per person for training,
and the remaining images for testing. 2DPCA, L1-2DPCA,
2DPCALI1-S, N-2DPCA and our method are used to extract
features, respectively. We repeat this process 10 times.

Figure 2: Some samples of one person in the CMU PIE
database. The second row is noised samples.

The CMU PIE database [19] consists of 2856 frontal-
face images of 68 individuals with different illuminations.
In the experiments, each image was normalized to 32 x 32
pixels, we randomly selected 10 images and added the same
noise as that in the CMU PIE database. Figures 2 shows

some images of one person in the CMU PIE database. We
randomly select 21 images, which include 16 images with-
out noise, per person for training and the remaining im-
ages for testing. 2DPCA, L1-2DPCA , 2DPCALI-S and
N-2DPCA and our method are used to extract features, re-
spectively. We repeat this process 10 times.

Figure 3: Some samples of one person in the AR database.

The AR database [12] contains over 4000 color face im-
age of 126 people, including frontal views of faces with dif-
ferent facial expressions, lighting conditions and occlusions
such as glasses and scarf. The pictures of 120 individuals
were taken in two sessions. Each section contains 13 color
images, which include 6 images with occlusions and 7 full
facial images with different facial expressions and lighting
conditions. We manually cropped the face portion of the
image and then normalized it to 50 x 40 pixels. Figure 3
shows sample images of one person in the AR database. In
the experiments, all of the pictures with occlusions are con-
sidered as noisy samples. For each person, we randomly
select 13 images per person for training and the remaining
images for testing, and then repeat this process 10 times.

Table 1: The optimal average classification accuracy (%)
and the corresponding standard deviation of each method
on three databases.

Experiments
Methods Extended AR CMU PIE
Yale B

2DPCA 59.92+0.42  80.40+0.88  85.39+0.73
L1-2DPCA  60.33+0.38  80.394+0.88  85.71£0.77
2DPCAL1-S 60.37£0.54 80.38+£0.85 85.91+0.69
N-2DPCA 59.99+0.57 80.37+£091  85.394+0.73
Ours 62.85+0.75 89.17+0.73  90.03+0.95

Table 1 lists the average recognition accuracy of each
method and standard deviation (Std) on the Extended Yale
B, AR, and CMU PIE databases. Table 2 lists the aver-
age running time of each method and standard deviation
(Std) on the Extended Yale B, AR, and CMU PIE databas-
es. Figures 4-6 show the top classification accuracy of each
method under 10 experiments on three databases. Figures
7-9 plot the classification accuracy curve versus the number
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projection vectors on three databases, respectively. Figure ° ' ' ' '
10 presents the convergence curve of our method on three

databases.
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: Comparing the aforementioned experimental results, we
under ten experiments on the AR database.

have several interesting observations as follows: (1)2DPCA
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is inferior to the other three approaches. This is probably
because that 2DPCA is sensitive to the small variation due
to the illumination, pose and occlusion. It results in unstable
representation for images. While L1-2DPCA, 2DPCAL1-
S, N-2DPCA and our method are robust to these variations
in solving the optimal projection matrix. (2)Our method is
superior to the other three approaches when using Euclidean
distance metrics in classification phase. This is probably
because that our approach consider the relationship between
reconstruction error and covariance. Another reason may be
that £1-norm based 2DPCA uses greedy strategy to solve the
projection matrix, which cannot best optimize the objective
function. (3)Table 3 and Figure 10 shows that our proposed
algorithm is fast and convergent.

Table 2: The average running time and the corresponding
standard deviation of each method on three databases.

Experiments
Methods Extended AR CMU PIE
Yale B
2DPCA 0.014+0.00 0.0440.00 0.014+0.00
L1-2DPCA 7.07+0.73 11.304+1.37  9.20+1.227
2DPCALI1-S  6.66+0.48 11.734£0.79 8.334+0.71
N-2DPCA 12.69+1.38  24.36+£5.16 15.4143.15
Ours 2.721+0.39 5.81+1.43 2.631+0.42
15000 [
- —6—PIE
§ 10000 A
§ 5000 [
7
% 5 10 15 20 25 0 35 40 45 50
No.of Iteration

Figure 10: Convergence curve of our method on three
databases.

5. Conclusions

This paper presents a robust dimensionality reduction
and feature extraction method in image domain, namely R-
2DPCA. Our proposed model is robust to outliers because
it explicitly considers the relationship between reconstruc-
tion error and covariance, and weakens the effect of large
distance. Moreover it has rotational invariance. We provide
a fast and convergent algorithm to solve our method. Ex-

perimental results on the several face image databases show
the effectiveness and advantages of the proposed method.
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