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Abstract

Two-dimensional Principal Component Analysis (2DP-

CA) has been widely used for face image representation and

recognition. However, 2DPCA, which is based on F-norm

square, is sensitive to the presence of outliers. To enhance

the robustness of 2DPCA model, we proposed a novel Ro-

bust 2DPCA objective function, called R-2DPCA. The cri-

terion of R-2DPCA is maximizing the covariance of data in

the projected subspace, while minimizing the reconstruction

error of data. In addition, we use the efficient non-greedy

optimization algorithms solving our objective function. Ex-

tensive experiments are done on the AR, CMU-PIE, Extend-

ed Yale B face image databases, and results illustrate that

our method is more effective and robust than other robust

2DPCA algorithms, such as L1-2DPCA, L1-2DPCA-S, and

N-2DPCA.

1. Introduction

In image recognition, especially face recognition, sub-

space learning, which is also called dimensionality reduc-

tion, has been widely used to extract features for image

representation. Principal component analysis (PCA) [20],

linear discriminant analysis (LDA) [1], locality preserving

projection (LPP) [16] and neighborhood preserving embed-

ding (NPE) [6] are four of the most representative method-

s, where PCA is used to extract the most expressive fea-

tures, LDA is considered to be capable of extracting the

most discriminating features. Different from PCA and L-

DA, which characterize the global geometric structure, LPP

and NPE, which are respectively the linear approximation

of Laplacian embedding (LE) [2] and locally linear embed-

ding (LLE) [18] respectively, well characterize the local ge-

ometric structure.

However appling PCA into image representation and

recognition, we need transform each image, which is usu-

ally represented as a matrix, into 1D image vector by con-

catenating all rows/columns. So, these methods cannot well

exploit the spatial structure information that is embedded in

pixels and their neighbors of image and important for im-

age representation and recognition. To handle this problem,

many two-dimensional subspace learning methods or ten-

sor methods have been developed. The representative two-

dimensional methods include two-dimensional PCA (2D-

PCA) [25], multi-linear PCA [11], two-dimensional LDA

(2DLDA) [26]. Although the motivations of the aforemen-

tioned methods are different, they can be unified within the

graph embedding framework [24] and measure the simi-

larity between images using Euclidean distance square. It

is commonly known that Euclidean distance square tech-

niques are not robust in the sense the outlying measure-

ments can arbitrarily skew the solution from the desired so-

lution. Thus, these methods are not robust in the presence

of outliers.

Recently, ℓ1-norm based subspace learning technique

has become an active topic in dimensionality reduction to

improve the robustness to outliers. For example, Ke and

Kanade [7] proposed L1-PCA which uses ℓ1-norm to mea-

sure the reconstruction error in the objective function. K-

wak [8] used ℓ1-norm to measure the covariance and pro-

posed PCA-L1 with greedy algorithm. Motivated by ℓ1-

norm based PCA, some ℓ1-norm based subspace learning

algorithms have been developed, such as LDA-L1, which

replaces Euclidean distance square with ℓ1-norm in the ob-

jective function of LDA [28]. Inspired by these works, re-

searchers brought ℓ1-norm based theory to two-dimensional

methods, such as 2DPCA-L1 with greedy algorithm [10],

L1-2DLDA [9]. and ℓ1-norm based tensor subspace learn-

ing [17]. To achieve a better performance of ℓ1-norm

based method, Wang et al. [21] proposed 2DPCA-L1 with

sparsity(2DPCAL1-S). It is a sparse variant of 2DPCA-L1

for unsupervised learning. However, the aforementioned

methods utilize greedy optimization algorithm to solve ℓ1-

norm problems, which is computationally expensive. It

consumes more time than 2DPCA due to that each principal

vector is obtained via iteration operation. non-greedy algo-

rithm was proposed to increase efficiency of optimization

algorithm. For example, Nie et al. [15] proposed a non-

greedy iterative to solve PCA-L1. Wang et al. [22] pro-
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posed 2DPCA-L1 with non-greedy algorithm. Although,

all those methods are more robust to outliers compared with

Euclidean distance square based methods, on the condition

of ℓ1-norm, minimizing the reconstruction error is not equal

to maximizing the covariance under the projected subspace,

which means these methods do not consider the relationship

between reconstruction error and low dimensional represen-

tation. Hence their performance is not improved a lot.

Moreover, ℓ1-norm is not invariant to rotations [3],

which is a fundamental property of Euclidean space with

ℓ2-norm. It has been emphasized in the context of learning

algorithms [13]. Based on this content, Ding et al. [3] pro-

posed the rotationally invariant ℓ1-norm for feature extrac-

tion and developed R1-PCA, which measures the similarity

among nearby data by ℓ2,1-norm. Inspired by this, many

joint ℓ2,1-norm regularization methods were proposed for

robust feature selection in image processing, image annota-

tion and machine learning community. For example, Nie et

al. [14] proposed Joint ℓ2,1-norms robust feature selection.

Wong et al. [23] proposed ℓ2,1-norm based tensor feature s-

election for image analysis. Gui et al. [5] enjoyed joint fea-

ture extraction and selection by exploiting ℓ2,1-norm on the

projection matrix to subspace learning. These methods all

use ℓ2,1-norm as a regularization rather than distance met-

ric learning in the objective function and cannot guarantee

the robustness of the objective function to outliers. Further-

more, they all need to transform 2D image into a vector by

concatenating all rows of image. So, these methods cannot

well exploit the spatial structure information of data that is

important for image recognition [25, 27].

In this paper, to handle the aforementioned problems,we

first propose a new Robust 2DPCA criterion, which explic-

itly considers the relationship between reconstruction error

and covariance of data in the projected subspace, and we

use the efficient non-greedy optimization algorithms solv-

ing our objective function. The main contributions of our

approach are summarized as follows:

First, our proposed algorithm not only is robust to out-

liers but also has rotational invariance, which has been em-

phasized in the context of learning algorithms.

Second, our proposed non-greedy algorithm has a local

optimal solution and can best maximize the objective func-

tion value.

Third, we explicitly consider the reconstruction error in

our objective function, which is real goal of 2DPCA. Ex-

perimental results on real databases show that our method

always performs more robust than other robust 2DPCA al-

gorithms.

The remainder of this paper is organized as follows. Sec-

tion 2 reviews 2DPCA and L1-2DPCA. Objective function

and algorithm of our Robust 2DPCA are introduced in Sec-

tion 3. Section 4 reports experimental results. Finally, the

conclusions are drawn in Section 5.

2. 2DPCA and L1-2DPCA

Given a set of N sample images {A1,A2, · · · ,AN},
where Ai ∈ R

m×n(i = 1, 2, ..., N) denote the i th training

images. Without loss of generality, we assume the data set

are centralized, i.e.,
∑N

i=1 Ai = 0. 2DPCA [25] aims to

seek the projection matrix V = [v1, v2, ..., vd] ∈ R
n×d

which can minimize the reconstruction error, i.e.,

V = argmin
VTV=Id

N
∑

i=1

∥

∥Ai −AiVV
T
∥

∥

2

F
(1)

where ∥·∥
2
F denotes the square Frobenius norm of matrix

and is the sum of square ℓ2-norm of row/column vectors of

matrix. It is easy to see that, the objective function (1) is

totally equivalent to the following objective function, due

to the fact
∑N

i=1

∥

∥Ai −AiVV
T
∥

∥

2

F
+

∑N

i=1 ∥AiV∥
2
F =

∑N

i=1 ∥Ai∥
2
F

V = argmax
VTV=Id

N
∑

i=1

∥AiV∥
2
F (2)

where tr(·) is the trace operator of a matrix. As
∑N

i=1 ∥AiV∥
2
F = tr

(

∑N

i=1 V
T
A

T
i AiV

)

, we let St =
∑N

i=1 A
T
i Ai denotes the covariance matrix. The solution

of function (1) and (2) can be obtained by finding orthog-

onal eigenvectors of St corresponding to the first d largest

eigenvalues.

Because 2DPCA characterizes the geometric structure of

data by F-norm distance square, which is sensitive to noise

and outliers. Thus the optimal projection matrix of the ob-

jective function (1) and (2) is not robust in the sense that

outlying measurements can skew the solution from the de-

sired solution. To address this problem, ℓ1-norm based 2D-

PCA was proposed. It aims to find projection matrix by

solving the following objective function [10, 22].

V = argmax
VTV=Id

N
∑

i=1

∥AiV∥L1
(3)

where ∥·∥L1
denotes the ℓ1-norm of a matrix, which is

defined as ∥D∥L1
=

∑m

i=1

∑n

j=1 |D(i, j)|. D(i, j) de-

notes the element of the i-th row j-th column of matrix D.

Ai (j, :) denotes the j-th row of Ai.

ℓ1-norm based 2DPCA is more robust to outliers than

2DPCA [10, 22]. However, ℓ1-norm is not invariant to rota-

tions, which is an important property of learning algorithms

[3], i.e., given an arbitrary rotation matrix Γ (ΓΓT = I),

we have ∥ΓAi(j, :)V∥1 ̸= ∥Ai(j, :)V∥1. Moreover, the

objective function (3) does not explicitly consider the re-

construction error. ℓ1-norm based 2DPCA method is max-

imizing the covariance of data in the projected subspace,
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in terms of ℓ1-norm, minimizing the reconstruction er-

ror is not equivalent to maximizing the covariance of data

in the projected subspace, i.e.
∑N

i=1

∥

∥Ai −AiVV
T
∥

∥

L1

+
∑N

i=1 ∥AiV∥L1
̸=

∑N

i=1 ∥Ai∥L1
.Thus, their robust per-

formance is not improved a lot. To handle these problems,

we propose a novel Robust 2DPCA model in section 3.

3. Robust 2DPCA

In this paper, different from existing robust 2DPCA

methods, we propose a new objective function as below:

V
∗ = argmax

VTV=Id

N
∑

i=1

tr
V

T
Ai

T
AiV

∥Ai −AiVVT ∥
2
F

(4)

The objective function (4) is called Robust 2DPCA(R-

2DPCA). We add reconstruction error as restraint in

objective function, so it can further weaken the effect

of outliers. Compared with L1-2DPCA, our method has

rotational invariance due to ∥ΓAiV∥
2
F = ∥AiV∥

2
F .

However, directly solving this problem is difficult,

thus we use non-greedy iterative to solve the objective

function. Now we consider how to solve the opti-

mal projection matrix V of the objective function (4).

Algorithm 1: R-2DPCA

Input: Ai ∈ R
m×n( i = 1, · · · , N ), d , where A is

centralized, γ = 0.001.

Initialize V
(t) ∈ R

n×d which satisfies VT
V = I, t = 1.

while not converge do

1.For all training samples, calculate d
(t). According to Eq.

(6), the i-th element di
(t) =

1

∥Ai −AiVVT ∥
2
F + γ

.

2.Calculate H
(t) according to Eq. (5):

H
(t) =

N
∑

i=1

Ai
T

di
(t)
AiV .

3.Calculate the singular value decomposition (SVD) of

matrix H
(t) by H = U

∑

Z
T

4.Solve V
(t+1) = argmax

VTV=Id

tr((V(t+1))TH(t)) by Eq.

(11). i.e. V(t+1) = U (In×d)Z
T .

5.Update t← t+ 1.

end while

Output:V(t+1) ∈ R
n×d

We simplify the function (4) as follows

N
∑

i=1

tr
V

T
Ai

T
AiV

∥Ai −AiVVT ∥
2
F

=
N
∑

i=1

tr(VT
Ai

T 1

∥Ai −AiVVT ∥
2
F

AiV)

= tr(VT
N
∑

i=1

(Ai
T

diAi)V)

= tr(VT
H)

(5)

where di =
1

∥Ai −AiVVT ∥
2
F

, and H =

N
∑

i=1

(Ai
T

diAi)V. in order to avoid infinite large, i.e.,

∞, di is defined as

di =
1

∥Ai −AiVVT ∥
2
F + γ

(6)

So the objective function (4) can be converted to solve

the following objective function.

V
∗ = argmax

VTV=Id

tr (VT
H) (7)

Then, we consider how to solve the new objective func-

tion (7). Denote the singular value decomposition (SVD) of

matrix H by

svd (H) = U

∑

Z
T (8)

where U and Z are full rank and orthogonal matrices, i.e.,

UU
T = U

T
U = In, ZZT = Z

T
Z = Id.

∑

is a diagonal

matrix whose elements on diagonal are singular values λj

of matrix H .

Substituting Eq. (8) into Eq. (7), we have

tr
(

V
T
H
)

= tr
(

V
T
U

∑

Z
T
)

= tr
(
∑

Z
T
V

T
U
)

= tr (
∑

M)

=
d
∑

j=1

λjM(j, j)

(9)

where M = Z
T
V

T
U, M(j, j) denotes the element of the

jth row jth column of M.

Substituting Eq. (9) into Eq. (7), the objective function

(7) finally becomes

V
∗ = argmax

VTV=Id

d
∑

j=1

λjM(j, j) (10)

In Equation (10), M is a row orthogonal matrix due to

the fact MM
T = Z

T
V

T
UU

T
VZ = I. So, M(j, j) ≤ 1.

It means that
∑d

j=1 λjM(j, j) ≤
∑d

j=1 λj , and the e-

quality holds when M(j, j) = 1 . That is to say, when

M = I ∈ R
d×n , the objective function (10) attain-

s the maximum value. According to M = Z
T
V

T
U and

M = I ∈ R
d×n , the optimal projection matrix V can be

calculated by

V
∗ = U (In×d)Z

T (11)

Note that both U and Z are related with H, which de-

pends on Z and is also an unknown vector. So, we can-

not obtain closed-form solution for the objection function

(7). We herein propose an iterative algorithm, which is de-

scribed in Algorithm 1, to solve the optimal projection ma-

trix V of the objective function (7), i.e., Robust 2DPCA.
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To be specific, we first initialize matrix V, which satisfies

V
T
V = I, and calculate H by current V and di. After that,

matrix V is updated with the updated H.

4. Experimental results

In this section, we validate our method in three face

databases (Extended Yale B, CMU PIE and AR) and com-

pare it with 2DPCA [25], L1-2DPCA [10], 2DPCAL1-

S [21] and N-2DPCA [27]. In our experiments, we use 1-

nearest neighbor (1NN) for classification. We set the num-

ber of projection vectors as 25 in Extended Yale B and CMU

PIE databases, 30 in AR database.

Figure 1: Some samples of one person in the Extended Yale

B database. The second row is noised samples.

The Extended Yale B database [4] consists of 2144

frontal-face pictures of 38 individuals with different illumi-

nations. There are 64 pictures for each person except 60 for

11th and 13th, 59 for 12th, 62 for 15th and 63 for 14th, 16th

and 17th. In the experiments, each image was normalized

to 32 × 32. 14 images of each individual were randomly

selected and noised by black and white dotes with random

distribution. The location of noise is random and ratio of

the pixels of noise to number of image pixels is intervenient

0.05 to 0.15. Figure 1 shows some samples of one person

in the Extend Yale B database. We randomly select 32 im-

ages, which include 7 noisy images, per person for training,

and the remaining images for testing. 2DPCA, L1-2DPCA,

2DPCAL1-S, N-2DPCA and our method are used to extract

features, respectively. We repeat this process 10 times.

Figure 2: Some samples of one person in the CMU PIE

database. The second row is noised samples.

The CMU PIE database [19] consists of 2856 frontal-

face images of 68 individuals with different illuminations.

In the experiments, each image was normalized to 32 × 32
pixels, we randomly selected 10 images and added the same

noise as that in the CMU PIE database. Figures 2 shows

some images of one person in the CMU PIE database. We

randomly select 21 images, which include 16 images with-

out noise, per person for training and the remaining im-

ages for testing. 2DPCA, L1-2DPCA , 2DPCAL1-S and

N-2DPCA and our method are used to extract features, re-

spectively. We repeat this process 10 times.

Figure 3: Some samples of one person in the AR database.

The AR database [12] contains over 4000 color face im-

age of 126 people, including frontal views of faces with dif-

ferent facial expressions, lighting conditions and occlusions

such as glasses and scarf. The pictures of 120 individuals

were taken in two sessions. Each section contains 13 color

images, which include 6 images with occlusions and 7 full

facial images with different facial expressions and lighting

conditions. We manually cropped the face portion of the

image and then normalized it to 50 × 40 pixels. Figure 3

shows sample images of one person in the AR database. In

the experiments, all of the pictures with occlusions are con-

sidered as noisy samples. For each person, we randomly

select 13 images per person for training and the remaining

images for testing, and then repeat this process 10 times.

Table 1: The optimal average classification accuracy (%)

and the corresponding standard deviation of each method

on three databases.

Experiments

Methods Extended AR CMU PIE

Yale B

2DPCA 59.92±0.42 80.40±0.88 85.39±0.73

L1-2DPCA 60.33±0.38 80.39±0.88 85.71±0.77

2DPCAL1-S 60.37±0.54 80.38±0.85 85.91±0.69

N-2DPCA 59.99±0.57 80.37±0.91 85.39±0.73

Ours 62.85±0.75 89.17±0.73 90.03±0.95

Table 1 lists the average recognition accuracy of each

method and standard deviation (Std) on the Extended Yale

B, AR, and CMU PIE databases. Table 2 lists the aver-

age running time of each method and standard deviation

(Std) on the Extended Yale B, AR, and CMU PIE databas-

es. Figures 4-6 show the top classification accuracy of each

method under 10 experiments on three databases. Figures

7-9 plot the classification accuracy curve versus the number
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projection vectors on three databases, respectively. Figure

10 presents the convergence curve of our method on three

databases.
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Figure 4: Average classification accuracy of five approaches

under ten experiments on the Extended Yale B database.
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Figure 5: Average classification accuracy of five approaches

under ten experiments on the CMU PIE database.
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Figure 6: Average classification accuracy of five approaches

under ten experiments on the AR database.

Dimension
0 5 10 15 20 25

R
e
c
o
g
n
it
io

n
 R

a
te

 (
%

)

30

35

40

45

50

55

60

65

2DPCA

L1-2DPCA

Ours

N-2DPCA

L1-2DPCA-S

Figure 7: Average classification accuracy versus the number

of projection vectors on the Extended Yale B database.
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Figure 8: Average classification accuracy versus the number

of projection vectors on the CMU PIE database.
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Figure 9: Average classification accuracy versus the number

of projection vectors on the AR database.

Comparing the aforementioned experimental results, we

have several interesting observations as follows: (1)2DPCA
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is inferior to the other three approaches. This is probably

because that 2DPCA is sensitive to the small variation due

to the illumination, pose and occlusion. It results in unstable

representation for images. While L1-2DPCA, 2DPCAL1-

S, N-2DPCA and our method are robust to these variations

in solving the optimal projection matrix. (2)Our method is

superior to the other three approaches when using Euclidean

distance metrics in classification phase. This is probably

because that our approach consider the relationship between

reconstruction error and covariance. Another reason may be

that ℓ1-norm based 2DPCA uses greedy strategy to solve the

projection matrix, which cannot best optimize the objective

function. (3)Table 3 and Figure 10 shows that our proposed

algorithm is fast and convergent.

Table 2: The average running time and the corresponding

standard deviation of each method on three databases.

Experiments

Methods Extended AR CMU PIE

Yale B

2DPCA 0.01±0.00 0.04±0.00 0.01±0.00

L1-2DPCA 7.07±0.73 11.30±1.37 9.20±1.227

2DPCAL1-S 6.66±0.48 11.73±0.79 8.33±0.71

N-2DPCA 12.69±1.38 24.36±5.16 15.41±3.15

Ours 2.72±0.39 5.81±1.43 2.63±0.42
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Figure 10: Convergence curve of our method on three

databases.

5. Conclusions

This paper presents a robust dimensionality reduction

and feature extraction method in image domain, namely R-

2DPCA. Our proposed model is robust to outliers because

it explicitly considers the relationship between reconstruc-

tion error and covariance, and weakens the effect of large

distance. Moreover it has rotational invariance. We provide

a fast and convergent algorithm to solve our method. Ex-

perimental results on the several face image databases show

the effectiveness and advantages of the proposed method.
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