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Abstract

In this paper we present a novel, fast and accurate sys-

tem for detecting the presence of cars in parking lots. The

system is based on fast integral channel features and ma-

chine learning. The methods are well suited for running

embedded on low performance platforms. The methods are

tested on a database of nearly 700,000 images of parking

spaces, where 48.5% are occupied and the rest are free.

The experimental evaluation shows improved robustness in

comparison to the baseline methods for the dataset.

1. Introduction

Computer vision for traffic applications is an emerging

field of research, with significant improvements in the last

couple of years, thanks to cheaper computational power

and improved algorithms. Intelligent transport systems, like

those reviewed in [14], try to solve multiple complex prob-

lems including tracking, detection and recognition of ve-

hicles, as well as higher-level problems like understanding

vehicle behaviors and detecting anomalies.

This paper tackles the problem of classifying car pres-

ence. This differs from vehicle detection, such as Chen et

al. [3] and Li et al. [11], by not attempting to find vehicles

or candidate positions in images. Instead, given a region

in an image, the classification problem is to decide if the

region contains a vehicle or not. In that sense, it is more

similar to the problem of image classification, such as Xu et

al. [17] and Luo et al. [12]. The difference is that this prob-

lem limits the number of objects to classify in the images to

two: vehicle or non-vehicle.

A good algorithm for car presence classification could be

useful for example in guiding cars to unoccupied parking

spaces, if a camera has a view over a parking lot. In this

case, the positions where one wants to know if there is a

car or not are known in advance, allowing a classification

algorithm to be used directly. In more complicated traffic

applications, classification algorithms can also be combined

with object proposal algorithms, such as Alexe et al. [1],

or be used directly on multiple hand-picked regions of the

image feed.

This paper introduces a method for classifying cars, by

training a classifier on photos of parking spaces, some oc-

cupied by cars and some empty. The method is designed

with performance in mind, allowing it to run in scenar-

ios with limited computational power, while still providing

good accuracy and robustness. The method combines In-

tegral Channel Features [8] with Logistic Regression [13]

and Support Vector Machine [10, 4]. There are interest-

ing works that attempt to solve the same problem, such as

Tschentscher et al. [15] and Ichihashi et al. [9]. However,

our method was trained and tested on a bigger dataset called

PKLot [5], which is to our knowledge the biggest dataset

of its kind.

2. The PKLot dataset

The PKLot dataset [5] contains images of parking lots,

where the rotated rectangles containing legal parking spaces

have been manually extracted, see Figure 1. Each extracted

image has been manually classified as either being empty or

having a legally parked car. The images are taken in varying

weather and light conditions during daytime with a low-cost

high-definition camera.

The rotated rectangles of legal parking spaces in the im-

ages are extracted and rotated, and can be accessed either

as the whole images from the camera, along with an .xml

file which contains information on the location, size and ro-

tation of the rectangle extracts, or as already cut-out and

rotated images, with each extracted image only containing

a single parking space. The images are rotated in such a way

that the image is always taller than wide. The latter is used

in this paper. There are a total of 695,899 such extracted

images, each with a ground truth of either being empty or

occupied.

The data is divided into three partitions, one for each dif-
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Figure 1: Example images from the PKLot dataset, where

rotated rectangle extracts are visualized by red outlines.

One image from the UFPR04 set (top), one from the

UFPR05 set (middle) and one from the PUCPR set (bot-

tom). Note that parking spaces not considered to be fully

visible have not been extracted.

ferent camera the photos were taken by. The first two parti-

tions, here denoted UFPR04 and UFPR05, are two different

views of a single parking lot af the Federal University of

Parana (UFPR). These views overlap, but the images of the

two sets were taken at different times. The last partition,

called PUCPR, is from the Catholic University of Parana.

There are 105,845 images in the UFPR04 set, 165,785 im-

ages in the UFPR05 set and 424,269 images in the PUCPR

set. Of all images, 48.5% are occupied while the rest are

empty.

3. Analysis of the aspect ratios of parking space

extracts

The sizes of all images in the PKLot dataset were an-

alyzed, because the calculation of features (see Section 5)

relies on the aspect ratio of the images, see Figure 2. The

average aspect ratio, calculated as image width divided by

height, was 0.6787 which is close to 2:3.

Figure 2: Histogram over different aspect ratios. It can be

observed that the aspect ratios close to the average of 0.6787

are not uncommonly occurring. The histogram divides the

aspect ratios into 20 bins.

4. Feature channels

From each extracted image, a number of feature chan-

nels are computed, from which feature vectors can later be

obtained. A feature channel is a translationally invariant

registered map of the image to another image with the same

layout, such that any region of the channel can be computed

from the corresponding region of the original image [7, 8].

For a color image, the three color channels are examples

of feature channels, but they can also be more complex, in-

cluding non-linear functions on the pixel values. Because

feature channels are translationally invariant, they can be

efficiently computed for multiple regions of an image by

first computing the feature channel of the whole image, and

then extracting the desired regions.

Feature channels were calculated using Piotr’s Matlab

Toolbox [6, 7, 8]. Using the default settings, ten fea-

ture channels are extracted: color channels in LUV color

space (three channels), gradient magnitude (one channel)

and quantized gradient channels (six channels), see Fig-

ures 3 and 4.
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Figure 3: An example of an extracted image where the park-

ing space is occupied by a car (left) and its calculated fea-

ture channels (right). The first three channels are the LUV

color space (top row, three images), followed by gradient

magnitude (second row, one image) and finally six quan-

tized gradient channels (last two rows, six images). The

channels have been normalized for visualization, using the

same normalization per channel as Figure 4.

Figure 4: An example of an extracted image where the

parking space is not occupied by a car (left) and its cal-

culated feature channels (right). The first three channels

are the LUV color space (top row, three images), followed

by gradient magnitude (second row, one image) and finally

six quantized gradient channels (last two rows, six images).

The channels have been normalized for visualization, using

the same normalization per channel as Figure 3.

5. Calculating features

From the ten feature channels for each extracted image,

feature vectors were calculated. These are first-order fea-

tures which means that each feature is calculated from a

sum of pixel values over a rectangular section of a feature

channel [8]. In this case, the average pixel value was used

instead of the sum to compensate for the fact that images

have varying resolutions. The averages can be calculated

efficiently by computing an integral image of each feature

channel similar to Viola and Jones [16].

The rectangular regions were chosen by creating a 2× 3
grid across the image. Then an approach, similar to the all

rectangle approach in Benenson et al. [2], was performed by

creating every possible rectangle which has corners on in-

tersections of the grid. Corner points of the rectangles were

rounded to the closest integer position, to include whole

pixels. This resulted in 18 rectangles, see Figure 5. Since

there are ten feature channels to sum over, the total num-

ber of features per extracted image is 180. The choice of

a 2 × 3 grid was made to closely match the average aspect

ratio of the images, meaning that the grid is made of rectan-

gles that are approximately square. The choice is somewhat

arbitrary, although it can be presumed that very tall or wide

rectangles would poorly represent the structure of the im-

ages.

Figure 5: A visualization of the rectangles used for calcu-

lating features. The black lines form a 2×3 grid across the

image. Then, every possible rectangle which has corners

on the intersection points of the grid is created. The red

sections show the rectangles used.

6. Classification

Two classifiers were trained, evaluated and compared to

each other: a Support Vector Machine [4, 10] and a Logistic

Regression with Elastic Net Regularization [13]. For the

Support Vector Machine an outlier ratio of 1.5% was used.

The outlier ratio was found using a grid search. The elastic

net regularization for the Logistic Regression used λ1 =
λ2 = 10−4.

As a part of the training procedure, each feature was lin-

early normalized to lie in the interval [−1, 1]. The same

normalization parameters were used for evaluation dataset’s

features.

7. Experiments

The PKLot dataset was divided into two sections: one

used for training classifiers and one for evaluating their per-
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formance. The division was done by the same rules as in de

Almeida et al. [5], to make results comparable. The rules

state that each pair of parking space and day is randomly

chosen as belonging to either the training or evaluation set

with equal probability. This prevents multiple images from

the same parking space during the same day, which are

likely to be similar as some cars park for many hours, to

be used both in training and evaluation. The classifiers de-

scribed in Section 6 were trained on each training dataset

separately, and each was evaluated against every evaluation

dataset, resulting in nine tests.

The area under curve (AUC) for the nine tests can be seen

in Table 1. Logistic Regression using our features outper-

forms the best of the baseline methods for the PKLot dataset

in every case where training and evaluation sets come from

different cameras, which shows the improved robustness of

the method. Logistic Regression outperformed the Support

Vector Machine in the majority of cases. The ROC curves

can be seen in Figures 6, 7 and 8.

The execution speeds were promising: training each Lo-

gistic Regression classifier took under two minutes while

Support Vector Machines took less than ten minutes to train.

For execution times, see Table 2. These numbers were ob-

tained when running on a computer with an Intel Core2Duo

E8400 processor and 4 GB of RAM. The difference in speed

between Support Vector Machine and Logistic Regression

may not necessarily be comparable as they are implemented

differently, but the short execution times in general show the

computational efficiency of the method. Furthermore, be-

cause the classification times are significantly shorter than

the time it takes to calculate feature channels and features,

the choice of classifier has little impact on the performance

of a complete system.

Training Evaluation LR SVM PKLOT

UFPR04 UFPR04 0.9994 0.9996 0.9999

UFPR04 UFPR05 0.9928 0.9772 0.9595

UFPR04 PUCPR 0.9881 0.9569 0.9713

UFPR05 UFPR04 0.9963 0.9943 0.9533

UFPR05 UFPR05 0.9987 0.9988 0.9995

UFPR05 PUCPR 0.9779 0.9405 0.9761

PUCPR UFPR04 0.9829 0.9843 0.9589

PUCPR UFPR05 0.9457 0.9401 0.9152

PUCPR PUCPR 0.9994 0.9994 0.9999

Mean 0.9868 0.9768 0.9704

Table 1: Comparison of area under curve (AUC) for Logis-

tic Regression (LR), Support Vector Machine (SVM) and

the best in de Almeida et al. [5] (PKLOT) for each combi-

nation of training and evaluation sets. Bold numbers indi-

cate the highest score for that pair of training and evaluation

sets.

Feature channels 725.1530 µs

Features 630.5300 µs

LR 1.3583 µs

SVM 32.6689 µs

Table 2: Average execution time for calculating feature

channels, calculating features from the channels and clas-

sification, both for Logistic Regression (LR) and Support

Vector Machine (SVM), of one extracted image of a parking

space. Calculating the feature channels, features and one of

the classifications takes less than 1.4 ms, meaning over 700

extracted images per second can be processed. Note that the

time of loading the images (from disk or some other source)

are not taken into account.

8. Discussion

The results show that using features from LUV color

space, gradient magnitude and quantized gradients, calcu-

lated from the average pixel values of rectangle regions, to

train classifiers is a valid approach for detecting if parking

spaces are occupied or not. The baseline classifiers sug-

gested in de Almeida et al. [5] perform marginally better

when training and evaluation are done with images from

the same camera, so for a parking lot surveillance appli-

cation where training can be afforded to be redone for

each camera, the classifiers presented here could perhaps

be improved, either by including some features used in de

Almeida et al. [5] or by using a more dense grid when

choosing rectangles for feature calculations, to better cap-

ture smaller details in the images.

However, the robustness shown by the high performance

when training on images from one camera and evaluating on

images from another makes this method a good candidate

for applications where the classifiers cannot be retrained

for every camera. Furthermore, these classifiers could be

a good starting point for more complex traffic application

than parking lot surveillance.

For example, in an intersection, certain places can be in-

terpreted as a ”parking space”, and the classifier can be used

to decide if for any given frame in a video if there is a car

there or not. Doing this repeatedly for multiple spaces (such

as the entrance and exit positions of an intersection), gives

a measurement of where cars are at any given time, which

could be used for counting cars. Alternatively, the classifier

can be combined with a more sophisticated algorithm for

finding candidate rotated rectangles which may obtain cars.

Such an algorithm could be allowed to have a relatively high

false-positive rate, as the classifier should be able to accu-

rately decide if the object was a car or not, simplifying the

algorithm’s implementation.
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One benefit of the Logistic Regression over Support Vec-

tor Machines is that it produces calibrated probabilities

from predictions. When used in more complex scenarios,

such as for monitoring moving cars in a video, this could be

useful for creating more robust classifications; for a video

sequence where a car drives through an extracted rotated

rectangle region, it is expected that the probability of the

extracted image containing a car should increase as the car

drives in, reach a maximum when the car is fully inside

the extracted image and then decrease once the car leaves.

Looking directly for this pattern should be more robust than

simply measuring a sequence of binary outputs as provided

by a Support Vector Machine, thus simplifying further anal-

ysis.

Figure 6: ROC curves for Logistic Regression (LR) and

Support Vector Machine (SVM) when running using the

training set from PUCPR, for each testing set. The area

under curves are written in the legend. Note that the curves

overlap closely in some places, in which case only the LR

curve is visible.
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Figure 7: ROC curves for Logistic Regression (LR) and

Support Vector Machine (SVM) when running using the

training set from UFPR04, for each testing set. The area

under curves are written in the legend. Note that the curves

overlap closely in some places, in which case only the LR

curve is visible.

Figure 8: ROC curves for Logistic Regression (LR) and

Support Vector Machine (SVM) when running using the

training set from UFPR05, for each testing set. The area

under curves are written in the legend. Note that the curves

overlap closely in some places, in which case only the LR

curve is visible.
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