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Abstract

This paper proposes the use of multiple low-cost visual

sensors to obtain a surround view of the ego-vehicle for

semantic understanding. A multi-perspective view will as-

sist the analysis of naturalistic driving studies (NDS), by

automating the task of data reduction of the observed se-

quences into events. A user-centric vision-based framework

is presented using a vehicle detector and tracker in each

separate perspective. Multi-perspective trajectories are es-

timated and analyzed to extract 14 different events, includ-

ing potential dangerous behaviors such as overtakes and

cut-ins. The system is tested on ten sequences of real-world

data collected on U.S. highways. The results show the po-

tential use of multiple low-cost visual sensors for semantic

understanding around the ego-vehicle.

1. Introduction

Trajectories of surrounding vehicles are essential to

the extraction of higher-level semantics. Recent scientific

progress in visual vehicle detection and tracking allows for

robust trajectories [19] that enables us to automate explo-

ration of vehicle behaviors, which has previously been a

time-consuming manual hand-labeling process. However,

until now, visual cameras have not been used to cover full

surroundings of a vehicle with the purpose of estimating tra-

jectories of surrounding vehicles and analyzing maneuvers.

In this study we show how existing methods for monocular

vehicle detection and tracking adapts to a multi-perspective

framework with the purpose of reaching a higher level un-

derstanding of surrounding vehicle maneuvers and behav-

iors as shown in Fig. 1. If successful, these trajectories con-

tain information, which is valuable to naturalistic driving

studies (NDS) that seek to answer how drivers behave and

why, in order to understand circumstances of crashes and

near-crashes. By learning how surrounding trajectories de-

velop over time, it is possible to predict which route the
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Figure 1. The ascending levels of vehicle interpretation in a vision-

based application. At the lowest level is vehicle detection, which

locates visible vehicles on a single-camera and single-frame basis.

One level up, detections are associated between frames and views,

in order to track vehicles on a multiple-camera and multiple-frame

basis. At the highest level, the spatio-temporal trajectories are used

to classify behaviors of vehicles.

vehicles will probably follow in the near future. The pre-

diction of trajectories is an integral part of path-planning in

advanced driver assistance systems (ADAS).

The leading technologies in terms of sensing vehicu-

lar surroundings are LiDAR and radar. A lot of research

has been conducted in the field using three-dimensional

point clouds, consequently enabling autonomous vehicles

to successfully drive public roads without causing acci-

dents. However, by introducing low-cost passive visual

cameras it is possible to add a level on top of the already

existing solutions that rely purely on spatiotemporal posi-

tions and shapes. The visual modality contains appearance

cues that can help improve the performance, e.g. by de-

tecting brake lights, estimating orientation of vehicles, and

recognizing traffic signs and signals. Thus, by using multi-

perspective visual cameras together with existing ADAS, it

is possible to achieve rich information of surroundings.

The main contributions of this paper can be summarized
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Figure 2. The top image displays the placement of the six synchro-

nised cameras. The bottom image shows the flow of the system

from the input of six video sequences to the output of a trajectory

analysis.

as follows: (1) Using six cameras, we develop a framework

for estimating vision-based multi-perspective trajectories

on a moving platform. The method has three steps: Vehicle

detection in six different perspectives, vehicle tracking be-

tween frames in the six perspectives, and multi-perspective

tracking that connects the trajectories across perspectives;

(2) The multi-perspective trajectories are analyzed for se-

mantics of surrounding vehicular events. We show how the

combination of six perspectives, a top-down visualization

of trajectories, and a list of events that have occurred, can

be used as a powerful tool to interpret higher-level seman-

tics of the surrounding vehicular maneuvers; (3) A vehicle

equipped with six cameras is used to capture several hours

of free-flow highway driving. We show a real-world study

of 10 sequences chosen to prove the potential of the system.

2. Related Work

High-level semantics have previously been analyzed,

identifying maneuvers as overtakes, lane-changes, cut-ins,

cut-outs, or simply staying in lane. Early examples [9]

use simulated data, while recently, real data are used in a

front view of a moving platform [17, 12, 21], classifying

up to 27 maneuvers regarding lane-changes. In [18], both

a mono and a stereo camera are used to obtain trajecto-

ries in front of the ego-vehicle. The behaviors of the ob-

tained trajectories are then learned using an unsupervised

learning approach. A similar approach is seen in [16] with

vehicles behind the ego-vehicle. Trajectories are further-

more used to infer traffic patterns in intersections using

stereo vision [24, 7]. Estimating trajectories from vision-

based sensors can be divided into classic computer vision

disciplines as detection and tracking of vehicles. These

are well researched fields with public available databases

with common benchmarks. Multi-target vehicle tracking is

mainly found in KITTI [8] and DETRAC [22], where multi-

perspective tracking is mainly found for pedestrian tracking,

as seen in Pets2009 [5] with overlapping views, MOT Chal-

lenge [14], and MCT Challenge [1] with non-overlapping

views. In comparison to trajectories observed from pedes-

(a) Front left (b) Front (c) Front right

(d) Rear left (e) Rear (f) Rear right

Figure 3. Sample images captured from the synchronized multi-

perspetive setup. Note the challenges of e.g. glare, shadows, and

distortion.

trians with static cameras [13], vehicle trajectories discov-

ered with a multi-camera setup on a moving platform are

subject to additional difficulties [18], such as effects of rel-

ative motion. Non-overlapping perspectives require the use

of re-identification, which is traditionally used in surveil-

lance applications [10]. In the application of tracking sur-

round vehicles, the re-identification problem between per-

spectives is considerably simplified, since only a limited

number of candidates exist, depending on the traffic den-

sity.

Previous studies have detected and tracked vehicles us-

ing multi-camera setups. An early example is seen in [6],

where an omnidirectional camera together with a pan-tilt-

zoom camera are used to detect and classify vehicles.

In [3] surrounding vehicles and pedestrians are detected

and tracked in a simple low-velocity parking environment.

In [20] vehicles are detected around the ego-vehicle in a

highway scenario using a method based on the deformable

parts model (DPM) [4]. These studies focus on the low-

level aspects of detecting and tracking in surround view ap-

plications, whereas we in this work furthermore show the

potential use of the resulting trajectories as a tool for ana-

lyzing the behaviors of surrounding vehicles.

The challenge of associating trajectories between per-

spectives is studied in [15], where four cameras are used

with partial overlap. Trajectories are extracted from each

individual camera and projected to a common plane, where

trajectories are associated. A similar approach is seen in [2],

finding local trajectories and projecting to a common plane

and linked if both the spatio-temporal features match.

3. System Overview

The synchronized data used in this work are collected

on U.S. highways in California. The vehicle used for data

collection is equipped with six Point Grey cameras and a

42



GPS tracker. Furthermore, data are logged from the con-

troller area network (CAN) bus. The six cameras are placed

strategically around the vehicle, as shown in Fig. 2, in or-

der to achieve a full surround view as seen in Fig. 3. The

front and rear cameras are considered the most important

in the process of estimating the multi-perspective trajecto-

ries, for which reason they are capturing with a resolution

of 1280 × 960. The two cameras use low-distortion lenses

with horizontal field of view of 70◦ and 80◦, respectively.

The four side view cameras are captured at a lower reso-

lution of 640 × 480, to achieve a frame rate of 15 frames

per second (FPS) for the synchronized data collection. The

side view cameras are mounted with wide angle lenses with

a horizontal field of view of 135◦, to ensure a full surround

coverage with overlapping views, at the cost of a higher de-

gree of distortion.

A flow diagram of the system is shown in Fig. 2. Vehi-

cle detection is performed for each of the six inputs of the

cameras. The detections in each perspective are used by

the vehicle tracker, which associates the detections between

frames for each of the six perspectives. The trajectories are

connected between perspectives, and finally an analysis of

the multi-perspective trajectories is performed.

4. Multi-Perspective Trajectory Estimation

In the following section we present the methods designed

for estimating trajectories of vehicles present in surround-

ings of the ego-vehicle using six different visual perspec-

tives.

4.1. Vehicle Detection

Visual vehicle detection is a well researched topic that

has seen recent scientific progress, but is not yet considered

a solved problem. In this work we use six different perspec-

tives from the same location on a moving platform, and are

thus subject to variances in capturing such as the viewpoint

of vehicles, lighting, shadows, and glare. An example of

these challenges is shown in Fig. 3. The side views are espe-

cially challenging with lower resolutions and severe distor-

tion caused by the wide angle lenses. The multi-perspective

challenges require the vehicle detection to be either one ver-

satile detector, or to use a separate detector optimized for

each perspective.

In this work we use the model-based Deformable Parts

Model (DPM) detector [4] in a two-stage implementation

presented in [24, 7]. The implementation includes a pre-

trained vehicle model trained on the KITTI dataset [8],

which is used for all six perspectives. The first stage is a

regular DPM detector, while the second stage detects vehi-

cles in an upscaled version of the image in an area around

the horizon. The horizon is specified for each of the per-

spectives. Detections for both stages are combined in a non-

maxima suppression.

We have a set of captured video sequences in the time

interval T , which is VVV T =
{

VVV T
1 ,VVV

T
2 , · · · ,VVV

T
K

}

for K
cameras. A video sequence for one camera is a sub-

set, VVV T
k ⊂ VVV T . Each video sequence has F images, thus

VVV T
k = {I1, I2, · · · , IF }. We use the two-stage DPM detec-

tor to find a set of detections DDDT = {DDDT
1 ,DDD

T
2 , · · · ,DDD

T
K}

for K cameras in the time interval T . Furthermore, the

set of detections in camera k over time T has a length

of N and is DDDT
k = {d1, d2, · · · , dN}. Each detection is

dn = [t, x1, y1, x2, y2, s] where t is the time index/frame

number, x1 is the horizontal coordinate of the top left corner

of the bounding box with respect to the top left corner of the

input image, y1 is the vertical coordinate of the top left cor-

ner, x2 and y2 are the bottom right corner of the bounding

box, and s is a score.

4.2. Vehicle Tracking

Just like visual vehicle detection, the topic of visual ve-

hicle tracking has received a lot of attention in scientific

research. The challenge of tracking vehicles in six differ-

ent perspectives over longer time periods is mainly difficult

due to three things; sudden changes in capturing conditions,

similar appearance of vehicles, and inter-vehicle occlusions.

Despite these challenges, the visual vehicle tracking meth-

ods have reached an accuracy that allows for higher-level

understanding of trajectories in a scene.

We use the online tracking method presented in [23] in

a tracking-by-detection manner for each perspective in or-

der to track vehicles between frames. It uses Markov deci-

sion processes (MDP) in combination with the widely used

Tracking-Learning-Detection (TLD) tracker [11].

The tracker is originally designed for tracking pedestri-

ans, for which reason, it is optimized for tracking vehicles

in this study. The first change is the aspect ratio of the tem-

plate, which is chosen based on typical vehicle aspect ra-

tios in the annotations of the KITTI dataset [8] as shown

in Fig. 4. Note that the aspect ratio of vehicles varies with

the orientation at which they are observed. From this fol-

lows that vehicles observed in the side views will have a

larger aspect ratio than vehicles observed in the rear and

front views. We use an aspect ratio of 1.5, which is the

mean of the annotated bounding box aspect ratios of the

KITTI dataset. The second change is the state transition pa-

rameters of the MDP, which has been trained for vehicles.

The MDP is trained on a sequence from the KITTI dataset

[8] using available ground-truth annotations and detections

computed by the DPM detector.

We find a set of associations of detections between

frames AAAT =
{

AAAT
1 ,AAA

T
2 , · · · ,AAA

T
K

}

for K cameras in the

time interval T . The kth set of associations has a length

of M and is AAAT
k =

{

ak1 , a
k
2 , · · · , a

k
M

}

. Each association is

akm = [ID, dn] where ID is a unique vehicle identification

number.
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Figure 4. Histogram of annotated vehicle aspect ratios in the

KITTI dataset [8]. The mean is shown with the vertical line at

approximately 1.5.

4.3. Multi­Perspective Tracking

The final step of the multi-perspective trajectory gen-

eration is the connection of trajectories between cameras.

Stationary setups have shown reliable performance, but in

this study we have six perspectives on a moving platform,

which makes the challenge of correctly associating trajec-

tories non-trivial.

The trajectories are associated between perspectives, by

assigning the same identification number to trajectories be-

longing to the same vehicle across perspectives. The associ-

ation is done directly in the image planes, where stationary

multi-perspective setups often perform the trajectory asso-

ciation in a common ground-plane. Since the camera views

are known to overlap, predefined overlap regions are de-

termined for each view denoted Ωk = [Ωk
L,Ω

k
R]. Each

trajectory is only evaluated once, in the first frame it ap-

pears. The bounding box of the new trajectory is firstly

examined to be positioned in either the left or right over-

lapping region. Secondly, the corresponding adjacent view

is examined for possible candidates to be associated with.

Associated trajectories between cameras are described as

BBBT = {BBBT
k,k±1

} for k ∈ [1, 2, · · · ,K] in the time inter-

val T , with K being the number of cameras. Note that k
wraps around, such that k1 and kK are adjacent perspec-

tives. Each set of associations between two cameras k and

k ± 1 is BBBT
k,k±1

= {b1, b2, · · · , bL} where bl = [akm, ak±1

m′ ]
is the lth association.

bl =

{

[akm, ak−1

m′ ] if Ωk−1

R < ak−1

m′ (x2) and akm(x1) < Ωk
L

[akm, ak+1

m′ ] if Ωk
R < akm(x2) and ak+1

m′ (x1) < Ωk+1

L

As an example, see Fig. 7(b), where the leftmost car just

appeared, and is being associated with the rightmost car in

Fig. 7(a). A similar association is made between Fig. 7(f)

and Fig. 7(e). In the case with multiple possible matches in

the adjacent view, a constraint is added, where an ID only

can exists once in each view, or else the closest match is

chosen.

This association scheme is seen to fail at high density

scenes, or at late detections, when the vehicle has already

passed the overlapping part of the image, resulting in two

pass left

ego-pass right

pass right

ego-pass left

stay R stay F

LC = lane change

left-ego RLC ego-left RLC

right-ego RLC ego-right RLC

F = frontR = rear

left-ego FLC ego-left FLC

right-ego FLC ego-right FLC

Figure 5. The 14 events detected in the trajectory analysis.

trajectories not being associated. The simple association

method is found sufficient in free-flow highway scenarios.

One advantage of using multiple views, is the ability to

remove short-lived faulty trajectories, since the trajectories

of interest are considered as long tracks in order to describe

an event. All trajectories with a length less than a certain

threshold measured in frames are removed. The threshold

has been determined experimentally to 75 frames, corre-

sponding to 5 seconds with 15 FPS, for the results presented

in this work.

5. Trajectory Analysis

A map or a list of the dynamics and behaviors of

surrounding vehicles is an integral part of understanding

what is happening around the ego-vehicle, and why some-

thing is happening. In this section we present how the

multi-perspective trajectories are transformed to a common

framework and analyzed for events and certain behaviors.

The system output is thus two-fold; a visualization of tra-

jectories in the road surface enabling an in-depth analysis

and a list with events that allows for fast interpretation.

5.1. Visualization of Trajectories

The visualization enables NDS to describe why events at

certain time instances are happening. Combined with the

actual video feeds, this is a powerful tool for studying on-

road vehicle behaviors in a way that has not been presented

previously.

The multi-perspective trajectories are mapped to a com-

mon framework being the road surface. This is achieved by

inverse perspective mapping (IPM) the front and rear per-

spectives, and using the middle of the bottom of the bound-

ing box as a position of tracked vehicles. The trajectories

are filtered using the average of the last n positions in order

to achieve smooth tracks. The side views are used as dis-

crete positions for rear left, rear right, front left, and front

right. Furthermore, a simple lane estimator is used to show

in which lane vehicles are positioned when they are on the

side of the ego-vehicle. As the road might have a curve or

slope, the IPM can not be expected to be accurate at larger

distances. Vehicles are therefore tracked up to a distance

of approximately 70 meters behind and in front of the ego-

vehicle.
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5.2. Data Reduction

Visualizations are valuable for analyzing vehicle dynam-

ics, but they contain a lot of data that are not easily in-

terpretable. This problem can be solved by reducing the

amount of information presented to the end-user. Further-

more, It allows for NDS to be automated.

The top-view trajectories are used to compute which

events are occurring. We detect 14 different events as shown

in Fig. 5. The method is currently limited to detecting lane

changes in the front and rear perspectives, and only for ad-

jacent lanes. Passing vehicles are found for all available

lanes. For example, if a vehicle moves from a rear left to

a front left position it is passing the ego-vehicle on the left.

Likewise, if a vehicle moves from a front left to a rear left

position the ego-vehicle is passing it on the right.

A combination of events can be grouped into semantics

allowing for a higher-level understanding of vehicular ma-

neuvers. For example, if a vehicle stays in front of the ego-

vehicle within a certain distance over a time period, it can

be concluded that the ego-vehicle is tailgating the vehicle in

front. Another example is a vehicle that changes from ego-

lane to left lane to pass the ego-vehicle on the left. This is

defined as an overtake. If a passing vehicle changes lane to

the ego-lane close to the front of the ego-vehicle, it is called

a cut-in. A behavior that is potentially dangerous.

6. Experimental Evaluation

In this section we evaluate the performance of the system

based on ten highway sequences ranging from 10 seconds to

40 seconds. The sequences are chosen from several hours of

captured data in free-flow traffic, where interesting events

are observed, to prove the potential of the system. These

events include overtaking, tailgating, cut-ins, and cut-outs.

In order to gain further insight in the performance, we show

a detailed evaluation of one of the sequences.

It would be time consuming for NDS to analyze the

events from six different perspectives. Our visualization al-

lows for a top-down view of the scene, helping to get an

overview of the different events. Fig. 6 shows the visualized

trajectories at three time instances of a 40 seconds sequence

(Seq2). In this way it is possible to see what is happening in

the sequence over time. At the first time instance Fig. 6(a),

the ego-vehicle has two receding vehicles in the rear right

lane, one approaching vehicle in the rear ego-lane, one ap-

proaching vehicle in the rear left lane, one vehicle on the

left side, and three vehicles in the lanes in front. At the sec-

ond time instance Fig. 6(b), one of the vehicles has chosen

to overtake on the right side of the ego-vehicle, which is

probably caused by the vehicle overtaking on the left that

has a lower velocity. Also, a new vehicle is approaching in

the rear left lane. Note that this vehicle has a higher veloc-

ity than the vehicle currently overtaking on the left. This

0 20 40 60204060
meters in front

0
meters behind

(a) Frame 100

0 20 40 60204060
meters in front

0
meters behind

(b) Frame 350

0 20 40 60204060
meters in front

0
meters behind

(c) Frame 600

Figure 6. Top-view trajectories of Seq2 at three time instances. As

seen over time, the ego vehicle is being overtaken multiple times,

where one vehicle furthermore makes a potential dangerous cut-in.

might be the reason why the very same vehicle at the third

time instance Fig. 6(c), cuts into the ego-lane after over-

taking the ego-vehicle on the left and starts to overtake the

slower moving vehicle on the right. Fig. 7 displays the six

perspectives at the time instance where the vehicle cuts into

the ego-lane.

The list of events for Seq2 shown in Table 1 reduces the

information further. With three detected left side passes and

one right side pass, it can be concluded that the ego-vehicle

drives slower than the surrounding traffic. However, as a

vehicle stays in front of the ego-vehicle, it is likely that the

ego-vehicle drives with a velocity similar to that vehicle.

The combination of the visualization and the list of events

is a powerful tool that allows for fast interpretation of be-

haviors occurring in a scene.

Table 1 summarizes the number of occurrences of each

event for all ten sequences compared to the ground-truth ob-

tained by manual inspection of each sequence. An overview

of the ten sequences is shown in Fig. 8 along with all the

trajectories from all ten sequences plotted in Fig. 8(k). This

demonstrates the variety in the sequences of vehicles over-

taking on both left and right, lane changes, and a few po-

tential dangerous cut-ins. The system shows approximately

the same tendencies as the ground-truth throughout all the

ten sequences. This is also confirmed by the precision

TP/(TP + FP ) and recall TP/(TP + FN), where TP
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(a) Front left (b) Front (c) Front right

(d) Rear left (e) Rear (f) Rear right

Figure 7. The six perspectives of Seq2 at frame 506. The multi-perspective tracked vehicles are shown by their latest detection in colored

bounding boxes with corresponding identification number. Note some vehicles can be seen in multiple perspectives due to overlap, thus

assigned the same identification number.

is true positives, FP is false positives, and FN is false

negatives. The most frequent event is found to be vehicles

passing the ego-vehicle on the left, while there was no one

going from the ego-lane to the right-lane in front of the ego-

vehicle. This indicates a passive driver, not forcing any of

the cars in front to make a lane change. Also noteworthy

is the event of a vehicle changing from ego-lane to left lane

in front of the ego-vehicle, having a precision and recall of

zero. This is partly explained by the false positives caused

by the inaccuracy at far distances as seen in Fig.8(a). The

inaccuracy is mainly caused by a road surface that is not

completely flat or curved, which will make the IPM inac-

curate, or the fact that only a small number of pixels are

available the further away the vehicle is. The two false neg-

atives seen in sequence three and seven respectively, may be

caused by the filtering of trajectories, resulting in the trajec-

tories coming up short, as the trajectories direction indicate

a lane change, according to Fig.8(c) and Fig. 8(g).

As seen in Fig. 8(k), the system is primarily tracking ve-

hicles in the ego-lane and adjacent lanes. This is primarily

due to frequent occlusions of vehicles in other lanes, but

also the fact that they need a bigger distance to the ego-

vehicle before appearing in the front and rear perspectives.

The result is that vehicles in outer lanes have a higher prob-

ability of causing false negatives, which also reflects in the

result for left passes in Table 1. Also, the association be-

tween views has difficulties if two vehicles pass on the same

side simultaneously. Including more features than position

may solve this problem, e.g. by using appearance cues. Fur-

thermore, instead of using the overlap restriction, vehicles

can be associated between views by allowing them to appear

in other views within a certain time frame. This is how-

ever more a task of vehicle re-identification than overlap-

association.

7. Concluding Remarks

This work developed a multi-perspective framework for

analyzing on-road vehicle behavior in real-world highway

data. The usage of multiple overlapping cameras proves

useful for estimating persistent trajectories in full surround-

ing of the ego-vehicle. The multi-perspective framework

successfully enables in-depth analysis despite the chal-

lenges introduced in the visible domain such as variances

in point of view, glare from the sun, shadows of differ-

ent sizes and shapes, and distortion (see Fig. 7 and Fig. 9

for examples), and is efficiently removing short-lived false

trajectories. Furthermore, by using low-cost passive sen-

sors in the visible spectrum the system allows for an inter-

face that is easily understandable by humans, which is an

important property in terms of human-computer-interaction
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Table 1. Events detected by the system for all ten sequences compared to ground-truth (GT) [System/GT].

Event Seq1 Seq2 Seq3 Seq4 Seq5 Seq6 Seq7 Seq8 Seq9 Seq10 Precision Recall

Stay front 2/1 0/1 1/1 1/0 0/1 1/1 1/1 1/1 1/1 1/1 0.78 0.78

Stay rear 0/0 0/0 0/0 0/0 1/1 0/0 0/0 1/1 1/1 0/0 1.00 1.00

Pass on left 3/4 3/4 1/2 1/1 0/0 1/1 3/3 1/1 0/0 3/5 1.00 0.76

Pass on right 0/0 1/1 1/1 0/0 1/1 0/0 0/0 0/0 0/0 1/1 1.00 1.00

Ego-pass on left 0/0 0/1 0/1 4/4 1/1 0/0 0/0 0/0 1/1 0/0 1.00 0.75

Ego-pass on right 0/0 0/0 1/1 0/0 0/0 0/0 0/0 0/0 1/1 0/0 1.00 1.00

In front, left to ego-lane 1/0 2/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1/1 0.50 1.00

In front, right to ego-lane 0/0 0/0 1/1 0/1 1/1 0/0 1/1 0/0 0/0 0/0 1.00 0.75

In front, ego-lane to left 1/0 0/0 0/1 0/0 0/0 0/0 0/1 0/0 0/0 0/0 0.00 0.00

In front, ego-lane to right 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1.00 1.00

In rear, left to ego-lane 0/0 0/0 1/1 0/0 0/0 0/0 0/0 0/0 0/1 0/0 1.00 0.50

In rear, right to ego-lane 1/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1.00 1.00

In rear, ego-lane to left 1/1 0/0 0/0 0/0 0/0 1/1 0/0 0/0 0/0 1/1 1.00 1.00

In rear, ego-lane to right 0/0 1/1 0/1 0/0 0/0 0/0 1/0 0/0 0/0 0/0 0.50 0.50

Precision 0.7 0.88 1.0 0.83 1.0 1.0 0.83 1.0 1.0 1.0

Recall 0.88 0.7 0.6 0.83 0.8 1.0 0.83 1.0 0.8 0.78

(a) Seq1 (b) Seq2 (c) Seq3

(d) Seq4 (e) Seq5 (f) Seq6

(g) Seq7 (h) Seq8 (i) Seq9

(j) Seq10 (k) Total

Figure 8. Visualization of the ten sequences along with all the trajectories in total. Evaluated in Table 1.

(HCI). This makes the system an attractive addition to the

sensor suite of intelligent vehicles.

The potential of the system is not limited to highway

driving. More complex scenarios are a logical next step for

example in urban areas as shown in Fig 9. In this specific

scenario, the vehicle is stopped at an intersection with vehi-

cles coming from the front right, and going through multiple

perspectives, before disappearing in the rear left perspec-

tive. This is only one scenario among many. Applications

able to model scenes by utilizing the surround view allow

for sophisticated understanding of events and behavior. The

obtained information can be used for both NDS and ADAS,

ultimately answering questions such as: Why did this vehi-

cle make a cut-in? Is it safe to make a left turn now?

A more comprehensive study of semantics from the de-

tected events would include classification of e.g. safe and

aggressive lane changes. Thus, a movement towards under-

standing high-risk semantics that need the attention of the

driver or the ADAS. Also, by using a data-driven learning

approach instead of the heuristic rule-based event classifi-

cation, it will be possible to model typical trajectories al-

lowing for future predictions of dynamics and behaviors in

the scene.
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(a) Front left (b) Front (c) Front right

(d) Rear left (e) Rear (f) Rear right

Figure 9. Six perspectives at an intersection in an urban scenario.
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