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Abstract

Wide area motion imagery from an aerial platform of-

fers a compelling advantage in providing a global picture

of traffic flows for transportation and urban planning that

is complementary to the information from a network of

ground-based sensors and instrumented vehicles. We pro-

pose an automatic moving vehicle detection system for wide

area aerial video based on semantic fusion of motion infor-

mation with projected building footprint information to sig-

nificantly reduce the false alarm rate in urban scenes with

many tall structures. Motion detections are obtained us-

ing the flux tensor and combined with a scene level depth

mask to identify tall structures using height information de-

rived from a dense 3D point cloud estimated using multi-

view stereo from the same source imagery or a prior model.

The trace of the flux tensor provides robust spatio-temporal

information of moving edges including the motion of tall

structures caused by parallax effects. The parallax induced

motions are filtered out by incorporating building depth

maps obtained from dense urban 3D point clouds. Using

a level-set based geodesic active contours framework, the

coarse thresholded tall structures depth masks evolved and

stopped at the actual building boundaries. Experiments are

carried out on a cropped 2k × 2k region of interest for

200 frames from Albuquerque urban aerial imagery. An

average precision of 83% and recall of 76% have been re-

ported using an object-level detection performance evalua-

tion method.

1. Introduction

Aerial imaging provides a global picture of the traffic

flow patterns over different time scales that captures large

scale activity analysis of vehicles and pedestrians in urban

settings. Airborne imagery enables understanding the si-

multaneous behavior of multiple drivers sharing the same

road using multi-object tracking, covers a greater variety of

interactions between road-users than would be encountered

by any one single user, and facilitates routing around ac-

cidents to improve traffic flow [38, 42, 35, 33, 25]. City

wide aerial imaging enables the collection of a broad range

of road-user interaction behaviors between different cate-

gories of vehicles like private vehicles, public transportation

vehicles, police cars, rescue vehicles, motorcyclists, con-

struction vehicles, bicyclists, assisted/autopiloted vehicles,

autonomous vehicles, pedestrians, animals and others in-

cluding rare and infrequent behaviors and interactions. The

analysis of rare events, accidents and unusual conditions

due to weather, construction, public events, law enforce-

ment, ambulances, etc. is facilitated using aerial video an-

alytics of traffic at the individual vehicle level. Combining

aerial with ground-based imaging and sensor information

would be helpful in the development of rule-based reason-

ing engines for autopiloted and autonomous driving systems

to better anticipate and predict the behavior of other agents

in the environment and improve overall safety. Automatic

moving object detection and segmentation are fundamen-

tal low-level computer vision tasks for many traffic surveil-

lance applications including traffic monitoring [25], change

detection [42, 27], classification [28, 41, 15], activity and

behavior recognition [40, 29, 16, 9], and object tracking

[45, 37, 11, 22, 39].

Detection and segmentation of objects in aerial im-

agery is impacted by many difficulties including small and

low resolution targets, large moving object displacement

due to low frame rate, congestion and occlusions, motion

blur and parallax, camera vibration, camera exposure and

varying viewpoints [13, 11, 34, 31] in addition to back-
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Figure 1. Semantic fusion-based moving vehicle detection system pipeline.

ground variance, illumination changes or shadow interfer-

ence [24, 32, 36].

A typical moving object detection system follows either

an appearance-based or motion-based approach to address

these challenges. However, many of the moving vehicle

detection algorithms typically focus on motion-based de-

tection methods [7, 14] since appearance-based approaches

[4, 39] are mostly computationally expensive especially

when applied to large scale aerial imagery. Furthermore,

recently different fusion schemes are proposed to combine

the strength of each individual detection technique and im-

prove system robustness [24, 21, 14, 43, 23, 17].

In this paper, we propose a scalable motion-based vehi-

cle detection technique in dense urban scenes which fuses

the spatio-temporal flow provided by the trace of the flux

tensor with information about tall structures provided by a

depth map also referred to as a building or altitude map, to

filter out motion parallax induced flow responses and en-

hance robustness. We improve reliability of the depth mask

filtering process

In order to avoid rejecting detected motion blobs asso-

ciated with moving vehicles that are positioned next to the

tall structures (and covered by building mask), the coarse

thresholded building masks were guided and stopped at ac-

tual building boundaries using a level-set based geodesic

active contour framework.

We used a state-of-the-art structure from motion (SfM)

and registration algorithm called MU BA4S in order to or-

thorectify image sequences in a global reference system and

maintain the relative movement between the moving cam-

era platform and the fixed scene [2, 3]. Figure 1 illustrates

our proposed semantic fusion-based moving vehicle detec-

tion system pipeline. The ultimate goal of our system is to

achieve highly reliable motion detection to perform persis-

tent tracking of moving vehicles over long time frames in

large scale urban imagery.

Section 2 briefly reviews the applied orthorectification

technique which is used to register the image sequence as

well as extract the altitude maps, and describes the moving

object detection approach using flux tensor. Section 3 elab-

orates on the fusion scheme and refinement of tall structures

altitude mask. Finally, experimental results and conclusion

are discussed in Section 4 and 5, respectively.

2. Moving Vehicle Detection in Aerial Video

2.1. Orthorectification

Videos in aerial imagery are captured on a moving air-

borne platform. Detection of moving objects, e.g. vehicles,

in a scene which is observed by a camera that by itself has

large movement and big jitters can be extremely challeng-

ing. To address this problem, images from camera planes

are orthorectified (registered) in a global reference system

to maintain the relative movement between the moving plat-

form and the scene fixed. In this work the registration has

been carried out by applying a homography transformation

between each image plane and the ground dominant plane

of the scene. Such homography transformations are analyt-

ically obtained using camera parameters, i.e. their rotation

matrices and translation vectors. First the noisy camera pa-

rameters (referred to as metadata) obtained from platform

sensors (i.e. IMU and GPS) are refined by a fast Structure-

from-Motion algorithm(BA4S), proposed in [2, 3]. After

the refinement process, the homography matrix between the

ground plane π and the image plane of camera C is com-

puted as follows:

cHπ = K
[

r1 r2 t
]

(1)

r1 and r2 being the first and second columns of the rotation

matrix from the world’s to the camera local coordinate sys-

tem, t is the corresponding translation vector, and K is the

camera calibration matrix. As a result, a 2D homogeneous

image point x̃ from camera C can project back on π as:

πx̃ = cH−1
π x̃ = πHc x̃ (2)
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Figure 2. (UL) Illustrates raw ultra high resolution images (∼ 30 MB, each) collected from an airborne platform flying over downtown

Albuquerque-NM. (UR) shows the corresponding registered images exploiting BA4S orthorectification approach, (LL) corresponding raw

image depth mask and (LR) shows the corresponding orthorectified depth mask.

where πHc is the inverse of the homography cHπ in 1.

Such a homography transformation is valid to transform all

points between the image and ground plane, provided that

their corresponding 3D point lies on the ground plane. Oth-

erwise applying this homography transformation for points

off the ground plane would cause a phenomenon known as

parallax (see [20, 46] for more details).

Unlike to the image-to-image registration method in

[26], in which the aerial images within each dataset could

not be registered all together (they were broken to sev-

eral segments, see Table-I in [26]), our method is able to

efficiently register all the frames together with no frag-

mentations, thanks to the used robust optimization method

(BA4S).

In this paper, we conducted our experiments on ABQ

aerial imagery which were collected by TransparentSky

over downtown Albuquerque, NM and ortho-rectified us-

ing MU BA4S state-of-the-art registration approach. Figure

2 shows samples of raw and geo-registered ultra high res-

olution images (6400 × 4400). However, we worked on a

cropped 2k × 2k region of interest for which the ground-

truth are provided by Kitware (area bounded by yellow box

in Fig. 5(UL)).

2.2. Depth Maps in Orthorectified Projections

The output of MU BA4S bundle adjustment includes

refined camera parameters and a sparse 3D point cloud

[2, 3, 1]. Sparse point clouds can be improved to produce

dense point clouds using different multi-view stereo algo-

rithms like PMVS[18], VisualSFM/Bundler[44] or proba-

bilistic volume method described in [12]. The dense 3D

point clouds are then used to produce depth or altitude maps

by projecting the 3D points into each camera view. Each

point is projected on a grid on the image plane, and after

taking occlusion into account, each pixel in the grid is as-

signed at most one point in the point cloud. The altitude

value of this point is used as the intensity for the corre-

sponding pixel. This way we can produce a mask for each

view such as the one shown in Figure 2(LL). Then same

homography that was applied to original image can be used

for the altitude mask to obtain the estimated altitude of ev-

ery pixel in the orthorectified image, as shown in Figure

2(LR). Frame specific depth maps provide valuable infor-

mation for distinguishing between motion detections due to

motion parallax (motion of tall structures due to viewpoint

changes) and moving objects on the ground. The semantic

fusion method for combining depth and motion is discussed

in more detail in Section 3.
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2.3. Detecting Moving Objects and Strong Parallax
Regions

The proposed framework uses flux tensor to extract mo-

tion blobs and to refine building mask. Flux tensor is pre-

sented as an extension of 3D structure tensor that allows

reliable motion segmentation without expensive eigenvalue

decomposition [30]. Following section briefly describes

flux tensor structure and computations.

2.3.1 Flux Tensors

The flux tensor has been shown to be useful for detect-

ing moving objects in computer vision and biomedical

applications[6, 30]. In the current geospatial application

we applied the flux tensor for moving object detection but

we also found the flux tensor to be very useful for refining

the automatically estimated structure of building footprints.

The flux tensor was used to detect the parallax induced mo-

tion of the building structure that is in many cases more ac-

curate than the multiview stereo based building depth edges.

Under constant illumination model, optic-flow equation

of a spatiotemporal image volume I(x) centered at location

x = [x, y, t] is

dI(x)

dt
=

∂I(x)

∂x
vx +

∂I(x)

∂y
vy +

∂I(x)

∂t
vt

= ∇IT (x) v(x) (3)

taking the derivative of Eq. 3 with respect to t, we obtain
Eq. 4

∂

∂t

(

dI(x)

dt

)

=
∂2I(x)

∂x∂t
vx +

∂2I(x)

∂y∂t
vy +

∂2I(x)

∂t2
vt

+
∂I(x)

∂x
ax +

∂I(x)

∂y
ay +

∂I(x)

∂t
at (4)

which can be written in vector notation as,

∂

∂t
(∇I

T (x)v(x)) =
∂∇IT (x)

∂t
v(x) +∇I

T (x) a(x) (5)

where v(x) = [vx, vy, vt] is the optic-flow vector and
a(x) = [ax, ay, at] is the acceleration of the image bright-
ness located at x. Usually v(x) is estimated by minimizing
Eq. 5 over a local 3D image patch Ω(x,y):

∂∇IT (x)

∂t
v(x) +∇I

T (x) a(x) = 0 (6)

Assuming a constant velocity model subject to the normal-

ization constraint ||v(x)|| = 1 and consequently zero accel-

eration, a least-squares error measure els(x) (Eq. 7) is used

to minimize the Eq. 6

els(x) =

∫

Ω(x,y)

(

∂(∇IT (y)

∂t
v(x)

)2

dy

+λ
(

1− v(x)
T
v(x)

)

(7)

Differentiation of els(x) with respect to v, leads to eigen-

value decomposition problem JF(x) v̂(x) = λ v̂(x). The

3D flux tensor JF for the spatiotemporal volume centered

at (x, y) can be written in expanded matrix format as

JF =















∫

Ω

{

∂2
I

∂x∂t

}

2

dy
∫

Ω

∂2
I

∂x∂t
∂2

I

∂y∂t
dy

∫

Ω

∂2
I

∂x∂t
∂2

I

∂t2
dy

∫

Ω

∂2
I

∂y∂t
∂2

I

∂x∂t
dy

∫

Ω

{

∂2
I

∂y∂t

}

2

dy
∫

Ω

∂2
I

∂y∂t
∂2

I

∂t2
dy

∫

Ω

∂2
I

∂t2
∂2

I

∂x∂t
dy

∫

Ω

∂2
I

∂t2
∂2

I

∂y∂t
dy

∫

Ω

{

∂2
I

∂t2

}

2

dy















(8)

The elements of the flux tensor incorporate information

about temporal gradient changes which leads to efficient

discrimination between stationary and moving image fea-

tures. Thus the trace of the flux tensor matrix which

can be compactly written and computed as, trace(JF) =
∫

Ω
|| ∂
∂t
∇I||2dy can be directly used to classify moving and

non-moving regions without the need for expensive eigen-

value decompositions.

3. Fusion of Flux Tensor and Depth Maps

As described in Section 2.3, each pixel is classified as

moving versus stationary by thresholding the trace of the

corresponding flux tensor matrix (trace(JF)) at that pixel

location. However, approximately 70% of the detected mo-

tions are induced by parallax effects from tall structures

as the camera viewpoint changes (Fig. 5). We develop a

context-based semantic fusion approach to identify and re-

move such non-vehicle detections by using the depth map

information with an active contour boundary refinement and

filtering process. As described in Section 2.2, the accurate

height of every pixel in the orthorectified temporal frames

can be estimated using 3D point clouds or meshes resulting

from dense multiview 3D reconstruction algorithms. In or-

der to produce a frame specific building mask, the 3D point

cloud or mesh is projected to produce a depth map that is

then thresholded. lmage pixels with a height value greater

than a threshold value are identified as part of tall struc-

tures or buildings which will be used to remove flux tensor

motion responses (Fig. 6). Figure 3 illustrates the true mo-

tion detection produced by flux tensor (in yellow color) and

undesirable moving detection caused by parallax in white

color. The areas of tall structures are filtered by building

mask and shown in blue. Provided ground-truth bounding-

boxes are drawn in red to enable visual evaluation of the

detection performance.

2D depth maps are projected from 3D point clouds that

are obtained by 3D reconstruction of the scene (Section

2.2). These point clouds have lower resolution compared

to the analyzed images. Low resolution combined with 2D

projection inaccuracies may result in filtering out correctly

detected vehicles positioned close to tall structure (zoomed
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Filtered by 

building mask

Figure 3. Illustration of motion detection results: true motion de-

tection produced by flux tensor (in yellow color) and false detec-

tion caused by parallax in white color. The areas with high alti-

tude are filtered by building mask and are shown in blue. Provided

ground-truth bounding-boxes are shown in red.

in Fig. 3).

In order to refine the coarse building map Bdmap, we

proposed to fuse the high resolution moving edges infor-

mation from trace of the flux tensor with Bdmap through a

level-set based geodesic active contours framework.

The trace of flux tensor is used to construct an edge indi-

cator function gF which will guide and stop the evolution of

the geodesic active contour when it arrives at tall structure

boundaries,

gF (trace(JF)) =
1

1 + trace(JF)
(9)

The edge indicator function is a decreasing function of the

image gradient that rapidly goes to zero along building

edges and holds high values elsewhere.

Active contours evolve a curve C, subject to constraints

from a given image. In level set based active contour meth-

ods the curve C is represented implicitly via a Lipschitz

function φ by C = {(x, y)|φ(x, y) = 0}, and the evolution

of the curve is given by the zero-level curve of the function

φ(t, x, y). Evolving C in a normal direction with speed F

amounts to solving the differential equation [10],

∂φ

∂t
= |∇φ|F ; φ(0, x, y) = φ0(x, y) (10)

Unlike parametric approaches such as classical snake, level

set based approaches ensure topological flexibility since dif-

ferent topologies of zero level-sets are captured implicitly

in the topology of the energy function φ. Topological flex-

ibility is crucial for our application since we want to guide

Figure 4. Improved building mask using level-set based geodesic

active contours: blue lines are the initial building contours which

are evolved and stopped at building actual boundaries (red lines).

the coarse thresholded building mask to the actual build-

ing contours and reveal the filtered moving vehicles next to

buildings. We used geodesic active contours [8] that are ef-

fectively tuned to trace of flux tensor edge information. The

level set function φ is initialized with the signed distance

function of the coarse building mask (Bdmap) and evolved

using the geodesic active contour speed function,

∂φ

∂t
= gF (trace(JF))(c+K(φ))|∇φ|+∇φ·∇gF (trace(JF))

(11)

where gF (trace(JF)) is the fused edge stopping function

(Eq. 9), c is a constant, and K is the curvature term,

K = div

(

∇φ

|∇φ|

)

=
φxxφ

2
y − 2φxφyφxy + φyyφ

2
x

(φ2
x + φ2

y)
3

2

(12)

The force (c + K) acts as the internal force in the classical

energy based snake model. In this work, the constant ve-

locity c pushes the curve inwards to the tall structures. The

regularization term K ensures boundary smoothness. The

external image dependent force gF (trace(JF)) is used to

stop the curve evolution at building boundaries edges. The

term ∇gF ·∇φ introduced in [8] is used to increase the basin

of attraction for evolving the curve to the boundaries of the

objects.

Figure 4 shows the improved building contours results

in red. The blue line are the initial building contours which

are evolved and stopped at building actual boundaries. As

it can be seen, the previously filtered detected cars by initial

building mask are revealed and counted as true detections.
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4. Experimental Results

In this Section we elaborate and evaluate our proposed

vehicle moving object detection results for ABQ aerial ur-

ban imagery which were collected by TransparentSky us-

ing an aircraft with on-board IMU and GPS sensors flying

over downtown Albuquerque, NM. Figure 2 shows samples

of raw ultra high resolution images (6400 × 4400) and the

corresponding registered images using MU BA4S registra-

tion approach which processes the total sequence of 1071

images in very short amount of time. Refinement of camera

parameters using MU BA4S on this dataset took less than 12

minutes. Inputs to the MU BA4S pipeline were the images

accompanied by noisy camera parameters measured from

onboard sensors. For the camera calibration matrix, a rough

initial value of the focal length was fed to the MU BA4S with

considering the principal points equal to the image centers.

After camera parameters refinement, a 3D model (dense

point clouds) of the scene was obtained (215 views were

used) followed by projecting the elevation maps over each

image, which totally took less than two hours. We worked

on a cropped 2k× 2k region of interest (ROI) for which the

ground-truth are provided by Kitware (Fig. 5).

4.1. Moving Object Segmentation

The first input of our fusion scheme is the trace of flux

tensor matrix which provides information about temporal

gradient changes or moving edges. Figure 5 shows the orig-

inal cropped ROI and the trace of flux tensor results. Every

pixel is classified as moving versus stationary by threshold-

ing trace of the corresponding flux tensor matrix. However,

approximately and in average 70% of the detected motions

are posed by parallax of tall structures which significantly

degrade the precision of the motion detection results.

We incorporate the altitude information of tall structure

to the flux tensor mask information in order to filter out the

detected motion caused by parallax effect of tall buildings.

Figure 6 presents the results of trace of flux tensor motion

detection filtered by building mask. The left most image

in Fig. 6 shows the flux tensor motion detection results in 2

colors; motion detections due to parallax are shown in white

color and the rest are in yellow. In order to enable visual

evaluation of the results ground truth bounding boxes are

overlaid on flux tensor mask in red color. Altitude mask

corresponding to the ortho-rectified ROI is shown in the

middle. All the pixels with altitude values greater than 20

are considered as tall structures and are shown in blue in

the rightmost image. As discussed in Section 3 level-set

based geodesic active contours is used to improve the build-

ing mask and reveal the filtered moving vehicles positioned

next to the buildings. Improved building mask and final mo-

tion detection results are shown in Figure 7.

4.2. Evaluation Methodology

Since the ultimate goal of the proposed motion detec-

tion system is to enable persistent tracking of moving vehi-

cles, we used an object-level detection performance evalua-

tion method. Associations of the detected moving blobs to

ground truth objects is performed using a bidirectional cor-

respondence analysis described in [5, 19]) that handles not

only one-to-one matches but also merge and fragmentation

cases. Precision and Recall are computed at each stage of

fusion as

Precision =
NTrueDetection

NDetection

=
|TP |

|TP |+ |FP |
(13)

Recall =
NTrueDetection

NGT

=
|TP |

|TP |+ |FN |
(14)

where NTrueDetection or TP is defined as total number

of true one-to-one individual matches plus the number of

ground-truth fragmented objects and the number of merged

detected objects. NDetection is the cardinality of de-

tected objects and NGT is the total number of moving ob-

ject bounding boxes presented in ground-truth. We report

Fmeasure to evaluate the harmonic mean of recall and pre-

cision as well.

Fmeasure = 2×
Precision×Recall

Precision+Recall
(15)

Figure 8 reports the object level performance evaluation re-

sults. We improved the low 20% precision of trace of flux

tensor only motion detection results to 83% and maintained

high recall of 76% by fusing flux tensor motion masks with

improved tall structures masks. Table 1 reports the average

performance results obtained from each stage of fusion.

Table 1. Average Performance Results

Average Flux Only Flux+Depth Flux+Depth+GAC

GT Objs 8214 8214 8214

TP 6400 6038 6241

FP 25384 928 1223

FN 1814 2176 1973

Precision 0.200 0.867 0.836

Recall 0.779 0.735 0.759

Fmeasure 0.318 0.796 0.796

5. Conclusion

We develop a novel context-based semantic fusion ap-

proach to detect moving objects in urban aerial imagery.

Images were first orthorectified using a fast SfM method.

Flux tensor has been used to extract motion blobs. It

was shown that using purely conventional motion detection
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Figure 5. Illustration of motion detection using trace of flux tensor only: From left to right, cropped ROI of Albuquerque aerial imagery

(fr100), the spatio-temporal motion information computed by trace of flux tensor for the selected image, and flux tensor mask in which

each pixel is identified as moving or stationary by thresholding the trace of flux tensor. Morphology is applied to improve the result.

Figure 6. Illustration of motion detection results using trace of flux tensor filtered by depth mask. Left most image presents the motion

detection results by thresholding the trace of flux tensor in 2 colors; motion detections due to parallax are shown in white besides other

detection results in yellow color. In order to enable visual evaluation of the detection results ground-truth bounding boxes are overlaid on

flux tensor mask in red color. Altitude mask corresponding to the ortho-rectified image is shown in the middle. All the pixels with altitude

values greater than 20 meters are considered as tall structures and are shown in blue in the rightmost image.

Figure 7. Moving object detection results using the proposed semantic fusion-based approach. The evolved building contours are shown

in red in the left most image. The final moving object detection results of the region bounded in green box are shown in middle in red and

final building contours in blue. Results are superimposed on the original image where building masks are shown in blue.

methods would not be sufficient for a wide area aerial im-

agery in which there are strong traces of parallax induced by

tall buildings. In order to reject undesirable detections due

to tall structures we used depth map information – obtained

from the fast SfM followed by a dense 3D point clouds al-

gorithm – in a boundary refinement and filtering processing

stage. Using the proposed approach a high average preci-

sion of 83% and average recall of 76% have been achieved

which promises a reliable persistent tracking.
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(a) Precision and Recall

(b) Fmeasure

Figure 8. Object-Level performance evaluation of proposed fused

moving object detection method.
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