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Abstract

Probe-based confocal laser endomicroscopy (pCLE) is

an emerging tool for epithelial cancer diagnosis, which en-

ables in vivo microscopic imaging during endoscopic pro-

cedures. As a new technique, definite clinical diagnosis is

still referenced to the gold standard histology images. In

this paper, we propose a Multi-View Multi-Modal Embed-

ding framework (MVMME) to learn representative features

for pCLE videos exploiting both pCLE mosaic and histol-

ogy images. Each pCLE mosaic is represented by multiple

feature representations including SIFT, Texton and HoG.

A latent space is discovered by embedding the visual fea-

tures from both mosaics and histology images in a super-

vised scheme. The features extracted from the latent spaces

can make use of multi-modal imaging sources that are more

discriminative than unimodal features from mosaics alone.

The experiments based on real pCLE datasets demonstrate

that our approach outperforms, with statistical significance,

several single-view or single-modal methods. A binary clas-

sification accuracy of 96% has been achieved.

1. Introduction

Probe-based Confocal Laser Endomicroscopy (pCLE)

enables endoscopist to acquire real-time in situ and in vivo

microscopic images of the epithelium during an endoscopy

procedure. As mentioned in [3], the main task for the endo-

scopists is to establish a diagnosis from the acquired pCLE

videos, by relating a given appearance of the epithelium to

a specific pathology. Due to the processing involved, tissue

characterization is often performed offline in current prac-

(a)

(b)

(c)

Figure 1. Morphological appearances of non-neoplastic breast tis-

sues on pCLE (left panel) and corresponding histology images

(right panel). We observe that there exists latent correspondence

in view of visual similarity between pCLE and histology images.
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tice. As an emerging technique, clinically the final diagno-

sis still needs the support from histology images.

Recently, there has been significant interest in design-

ing classification-based or content-based retrieval model to

determine the categorization of newly-sampled mosaics [5,

1, 3, 2, 22, 4]. SIFT [15] is widely used for visual repre-

sentation of mosaics which is proved to outperform other

features [5, 1]. Andre et.al [4] have introduced several se-

mantic attributes to improve the retrieval accuracy and in-

terpretability. However, we discovered several observations

as follows:

Multi-view Representation Although SIFT-like fea-

tures perform well in characterizing pCLE mosaics, they

are designed to capture the local structures of images while

the textures and contours cannot not be fully characterized.

Several features including Texton [19] and HoG [8] are

sound to gain additional information for visual representa-

tion. How to integrate multiple features of mosaics is one

of core problem addressed in this paper.

Multi-modal Correspondence Current works on pCLE

video retrieval and classification are mostly based on single

modal dataset, i.e., they only use pCLE mosaics to design

the strategies. However, the final diagnosis is often refer-

enced to the histology images as a gold standard. The his-

tology image seems to be able to provide extra information

for better discrimination. However, the difference between

mosaics and final histology is considerably large as shown

in Figure 1. The latent relationship between mosaics and

histology images exists but is difficult to uncover. More-

over, for real-time captured mosaics, the final histology im-

age is not available. Therefore, another task in this paper

is to design the latent correspondence between mosaics and

histology images in offline learning which can be used in

online schemes.

In this paper, we propose a Multi-View Multi-Modal Em-

bedding (MVMME) framework to learn discriminative fea-

tures of pCLE videos by exploiting both mosaics and his-

tology images. For mosaic images, multiple features in-

cluding SIFT, Texton and HoG are deployed as multi-view

visual representations. For multimodal embedding, we pro-

pose a supervised scheme which generates a mapping from

original features to a latent space by maximizing the seman-

tic correlation between mosaics and histology images. The

learned mapping function can transform multi-view mosaic

representations into robust latent features.

The remainder of this paper is organized as follows: Sec-

tion 2 briefly reviews the previous works on classification

and retrieval approaches for pCLE videos as well as multi-

view learning methods. In Section 4, the workflow of the

proposed MVMME framework is introduced step by step.

Empirical experiments on real datasets are conducted in

Section 4. The conclusions and future works are presented

in Section 5.

2. Related Works

2.1. Classification and Retrieval on pCLE

The research on pCLE video mostly relies on classi-

fication or retrieval tasks for determining the categoriza-

tion of mosaics [5, 1, 3, 2, 22, 4]. In the work of An-

dre et. al[5], SIFT and nearest neighbor search are used

for content-based image retrieval tasks with pCLE mo-

saics. In [1], Andre et. al proposed a densely-sampled

SIFT approach for better representation as well as k-nearest

neighbors classification with leave-one-patient-out (LOPO)

cross-validation. [3] also follows the densely-sampled SIFT

boosted by multi-scale detection. An effective metric is

learned to calculate the similarity between bag-of-words

features based on SIFT. In order to reduce the gap between

visual content and diagnosis, Andre et. al introduced se-

mantic attributes in [4] to describe the visual content that

improve the performance on pCLE retrieval. Tafresh et. al

[22] learned query-specific schemes to extract the region-

of-interest (ROI) and relevant sub-sequence of video sam-

ples before pCLE video retrieval. Most of the previous

works on pCLE video classification and retrieval tasks use

only SIFT-like feature for visual representation. The infor-

mation from other visual features and, more importantly,

histology images has not been investigated.

2.2. Multi­view and Multiple Feature Learning

Multi-view learning is an active research topic in recent

years. The multiple views can be the different viewpoints

of an object in the camera, or the various descriptions of a

given sample. Multi-view learning aims at matching differ-

ent types of features or modalities to form a common shared

subspace that maximises the cross-view correlation. A di-

rect strategy is to concatenate the different kinds of features

into a long vector. This often leads to the curse of dimen-

sionality problem and thus it is not practical. Another typ-

ical approach to obtain a common space for two views is

canonical correlation analysis (CCA) [11]. CCA is an unsu-

pervised method that attempts to learn transforms by maxi-

mizing the cross correlation between two views. The exten-

sions of CCA including MVCCA can process the multiple

views problems [16, 17]. Supervised methods [18, 20, 12]

learn the common space incorporating labels and catego-

rization information. The class labels can be utilized to

characterize the intra-class and inter-class discriminant.

The task for multiple feature fusion is to assign mul-

tiple features with weight in task-specific cases. For re-

trieval tasks, the early and late fusion are two representa-

tive approaches to integrate multiple features. For classifi-

cation tasks, multiple kernel learning (MKL) strategies are

widely used to fuse multiple kernels with support vector

machines [9, 21]. MKL was also used for dimensionality

reduction of the multi-view data based on graph embed-
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ding [14]. Kloft et al. [13] extended the traditional L1-norm

MKL to arbitrary norms, and showed that the non-sparse

MKL was superior to the state-of-the-art in combining dif-

ferent feature sets for biometrics recognition.

In this paper, we aim to design a supervised embedding

strategy to represent mosaics with multiple weighted fea-

tures and build a latent subspace between mosaics and his-

tology images for discriminative representation.

3. Methodology

3.1. Problem Formulation and Denotations

The pCLE dataset is formed with a set of mosaic images

{Xi}, i = 1, . . . , n where n is the number of mosaics. The

mosaics are extracted from continuous videos which are la-

beled with two-level groundtruth. The coarse-level label

Lc
i indicates whether the mosaic supports non-neoplastic

or neoplastic status while the fine-level label Lf
i refers to

fine-grained diagnosis and tissue information. Each mosaic

is represented with multiple views of features that are de-

noted by X
(k)
i , k = 1, . . . , nk where nk is the number of

visual features. A fraction of mosaics are matched with his-

tology images {Yi}, i = 1, . . . , nh;nh < n. The task of

the MVMME is to learn a mapping function from pCLE

mosaics to latent space for discriminative representations

exploiting multi-view multi-modal under semantic supervi-

sion.

3.2. Preprocessing and Visual Features

Since the mosaics are extracted from continuous pCLE

videos, the size of region of interest (ROI) can vary with

the capturing steps and the background as shown in the left

side of Figure 3 will affect the performance of visual rep-

resentation, especially the global features. We firstly crop

the ROI from original mosaic as shown in the right side of

Figure 3. Given the mosaics, we focus more on texture and

contour of tissues. Therefore, visual features that can pre-

serve the local texture information are deployed including

SIFT, Texton and HoG.

The densely-sampled SIFT is claimed in previous works

that can well capture the local features of pCLE mosaics.

Therefore, we follow the similar settings in [1] to extract

dense SIFT features for mosaics as well as histology im-

ages.

Texton feature [19] is based on a dense description of

local texture features. Compared with SIFT that focuses

on interesting points, Texton is extracted with a set of

manually-designed filtering banks which allows the integra-

tion of task-specific priors.

HoG feature [8] has been widely used in computer vision

tasks to characterize the local gradient information. Com-

pared with SIFT and Texton, HoG is uniformly extracted

with sliding window that reveals more local details. How-

ever, HoG cannot well promise the invariant of scale and

rotation transformation.

Features mentioned above are designed to reflect the tex-

ture information in specific tasks. In this paper, we will ad-

dress the issue of how to make fully use of these features to

generate discriminative representation of mosaics.

3.3. Multi­view Multi­modal Embedding

To leverage the semantic labels for MVMME, we con-

struct the pairwise semantic similarity based on two-level

label vectors. More specifically, the similarity between the

ith entity and the jth entity is defined as follows:

Sc(i, j) =

{

0 if (Lc
i )

TLc
j = 0

1 + (Lf
i )

TLf
j if (Lc

i )
TLc

j = 1
(1)

According to the definition of Sc, when two samples be-

long to different classes in coarse-level, i.e. non-neoplastic

or neoplastic, the similarity is zero. However, the diagno-

sis and tissue information is taken into consideration when

samples belong to the same coarse-class.

Since the labels can provide semantic description for mo-

saics, the task for MVMME is to reconstruct the seman-

tic similarity Sc in the latent subspace. We firstly focus on

learning the mapping functions based on the mosaics with

histology images in a single-view scheme where only single

feature from mosaics and histology images are deployed.

The objective function of the proposed method is to mini-

mize the reconstruction error as follows:

min
f(·),g(·)

∑

i,j

(
1

c
f(Xi)

T g(Yj)− Sc(i, j))
2 (2)

where f(·) and g(·) are mapping functions to learn from

original feature space to the latent subspace. c is the di-

mension of the latent subspace. Although many differ-

ent kinds of functions can be used to define f(·) and g(·),
we adopt the commonly used linear function form where

f(x) = WT
x x and g(y) = WT

y y. Therefore, the problem in

Eq.(2) can be rewritten into the matrix form:

min
Wx,Wy

‖(XWx)(YWy)
T − cSc‖

2
F (3)

The solution to problem in Eq.(3 )can be obtained by

adding orthogonality constraints and the transform matrix

Wx can be learned. In order to deploy multiple visual fea-

tures of mosaics, the objective function is extended as fol-

lows:

min
W

(k)
x ,Wy

‖(

nk
∑

k=1

X(k)W (k)
x )(YWy)

T − cSc‖
2
F (4)

where X(k) is the kth feature of mosaics and W
(k)
x is the

corresponding transform function. In order to make the bits
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pCLE mosaics

Histology images
SIFT-BoW

HoG

SIFT-BoW

Texton

Multiview Feature

Semantic 

Labels

Multimodal 
Embedding

Latent Multimodal 
Feature

Semantic Labels
Coarse-Level：

Benign/Neoplastic

Fine-Level：
Dilated Breast Ducts/Fibrosis/Fibroadenoma

ROI 
Extraction

ROI 
Extraction

Figure 2. Workflow of the proposed framework: The regions of interest (ROIs) are firstly extracted from original mosaics and histology

images. For mosaics, SIFT-BoW, HoG and Texton features are generated as visual representation while the histology images are represented

with simple SIFT-BoW. A supervised embedding strategy maps the visual information from mosaics and histology images into a latent

space exploiting two-level semantic labels. The learned feature can be further used a specific tasks.

(a) Original Frame (a) ROI Frame

Figure 3. Example of ROI detector

between different functions uncorrelated and preserve the

local smoothness, we impose the manifold regularization

and orthogonality constraints to Eq.(4). The final objective

function is formulated as follows:

min
W

(k)
x ,Wy

‖(

nk
∑

k=1

X(k)W (k)
x )(YWy)

T − cSc‖
2
F

+
∑

i,j

Zy(i, j)‖yiWy − yjWy‖
2

+
∑

i,j

nk
∑

k=1

Z(k)
x (i, j)‖

nk
∑

k=1

x
(k)
i W (k)

x − x
(k)
j W (k)

x ‖2

s.t.WT
y Y TYWy = nIc

(

nk
∑

k=1

X(k)W (k)
x )T (

nk
∑

k=1

X(k)W (k)
x ) = nIc

(5)

where Z
(k)
x (i, j) = e−‖x

(k)
i

−x
(k)
j

‖2/σ and Zy(i, j) =

e−‖yi−yj‖
2/σ are similarity matrix based on original fea-

tures. With simple matrix transformation and substituting

the Eq.(5), the above equation can be rewritten as follows:

min
W

(k)
x ,Wy

‖(

nk
∑

k=1

X(k)W (k)
x )(YWy)

T − cSc‖
2
F

+ tr(YWyLy(YWy)
T )

+ tr(

nk
∑

k=1

X(k)W (k)
x

nk
∑

k=1

L(k)
x (

nk
∑

k=1

X(k)W (k)
x )T )

s.t.WT
y Y TYWy = nIc

(

nk
∑

k=1

X(k)W (k)
x )T (

nk
∑

k=1

X(k)W (k)
x ) = nIc

(6)

where L
(k)
x = D

(k)
x − Z

(k)
x is the graph Laplacian of kth

view of mosaics and D
(k)
x is a diagonal matrix whose ele-

ments are the sum of each row in Z
(k)
x . Similarly, Ly =

Dy − Zy is the graph Laplacian of histology images.

3.4. Optimization

In order to obtain the solution to Eq.(6),

we denote the sum of manifold regulariza-

tion terms as LR = tr(YWyLy(YWy)
T ) +

∑nk

k=1 tr(X
(k)W

(k)
x L

(k)
x (X(k)W

(k)
x )T ) and then ex-
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pand the objective function in Eq.(6) as follows:

‖(

nk
∑

k=1

X(k)W (k)
x )(YWy)

T − cSc‖
2
F + LR

= tr[(

nk
∑

k=1

X(k)W (k)
x )(YWy)

T (YWy)(

nk
∑

k=1

X(k)W (k)
x )T ]

− 2c · tr[(

nk
∑

k=1

X(k)W (k)
x )Sc(YWy)

T ] + tr(c2ST
c Sc) + LR

= −2c · tr[(

nk
∑

k=1

X(k)W (k)
x )Sc(YWy)

T ] + LR + const

where tr(·) denotes the trace of matrix. Therefore, the prob-

lem above can be converted into:

min
W

(k)
x ,Wy

− 2c · tr[(

nk
∑

k=1

X(k)W (k)
x )Sc(YWy)

T ]+

+ tr(YWyLy(YWy)
T )

+ tr(

nk
∑

k=1

X(k)W (k)
x

nk
∑

k=1

L(k)
x (

nk
∑

k=1

X(k)W (k)
x )T )

s.t.WT
y Y TYWy = nIc

(

nk
∑

k=1

X(k)W (k)
x )T (

nk
∑

k=1

X(k)W (k)
x ) = nIc

(7)

Then, let X̃ = [X(1), . . . , X(nk), Y ] and :

S̃ =

[

∑nk

k=1 L
(k)
x −cSc

−cSc Ly

]

W̃ =

[

W
(1)
x , . . . ,W

(k)
x 0

0 WY

]

The final problem is formulated as follows:

min
W̃

tr(W̃T X̃T S̃X̃W̃ )

s.t. W̃T X̃T X̃W̃ = 2nI2c

(8)

It can be proved that the problem in Eq. (8) is equivalent

to a generalized eigenvalue problem. The optimal solution

of W̃ is the eigenvectors corresponding to the 2c smallest

eigenvalues of (X̃T S̃X̃)W̃ = λ(X̃T X̃)W̃ . The projection

matrix W
(k)
x and Wy can also be obtained.

4. Experiment

4.1. Dataset and Measurement

The dataset is collected by a pre-clinical pCLE system

(Cellvizio, Mauna Kea Technologies, Paris, France) as de-

scribed in [7]. Breast tissue samples are obtained from

50 patients that are diagnosed with two classes at coarse-

level including non-neoplastic and neoplastic. The fine-

level labels are defined based on tissue and diagnosis in-

formation. The tissue information contains adipose tissue,

elastic fibres, collagen fibres and breast lobule. The diag-

nosis result supports the existence of specific lesion includ-

ing ductal carcinoma in situ (DCIS), invaisve ducal carci-

noma (IDC), invasive lobular carcinoma (ILC), metaplastic

carcinoma with spindle-cell morphology, invasive tubular

carcinoma (ITC) and Invasice cancer infiltrating fat. Af-

ter completion of pCLE imaging, each sample underwent

routine histopathology processing to generate the histology

images. In order to evaluate the performance of MVMME,

we conduct the classification based on coarse-level labels.

The features from MVMME or other baseline approaches

are fed into a support vector machine (SVM) classifier to

determine the class.

Since the evaluation is exactly a two-class classification

task, we use Specificity,Sensitivity and Accuracy and

to measure the performance that can be calculated as fol-

lows:

Sensitivity = TP/(TP + FN)

Specificity = TN/(TN + FP )

Accuracy = (TN + TP )/(TN + FP + TP + FN)

4.2. Experimental Settings and Baselines

For visual representation, SIFT interesting points are ex-

tracted from mosaics and histology images respectively. We

generate 500D BoW SIFT feature for mosaics and 200D

BoW SIFT feature for histology images. All 46 blanks of

Texton feature are extracted for each mosaics and a 1000D

Bag-of-Words feature is obtained based on Texton. HoG

features are only deployed in KF classification since the size

of ROI is closed over all samples where the dimension of

HoG is 97650D and then reduced to 128D by PCA [10].

The dimension of the latent space learned by MVMME is

set to 10. Several baselines are implemented in this paper

for comparison.

- Single-view Raw Feature: SIFT, Texton and HoG are

individually used as visual representation and directly

fed into the classifier. We denote these schemes with

SIFT-only, Texton-only and HoG-only.

- Single-view Multi-modal CCA: The mosaic is repre-

sented by single feature that are embedded with his-

tology images by unsupervised CCA [11]. We denote

these schemes with CCA-SIFT, CCA-Texton and CCA-

HoG.

- Multi-view CCA: The multi-view multi-modal em-

bedding strategy implemented by Multi-view CCA

that takes multiple features from mosaics and histology

images equivalently. The result is denoted by MVCCA.
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(e) MVMME

(b) HoG

(d) MVCCA

(a)SIFT (c)Texton

* Neoplastic

* Non-neoplastic

Figure 4. Visualization result by t-SNE: The red dots refer to the neoplastic samples while the black dots refer to non-neoplastic samples.

Figures in the first line present the samples based on simple features including (a) SIFT, (b) HoG and (c) Texton. The embedded features

by unsupervised MVCCA and the proposed supervised MVMME are listed in the second line.

- Single-view MVMME: Only one view of the mo-

saics is embedded with histology images via super-

vised mapping strategy proposed in this paper. The

result is denoted by MVMME-SIFT, MVMME-Texton

and MVMME-HoG. The proposed method that uses all

features is denoted by MVMME-All.

All experiments are performed by 10-fold cross-validation.

The hardware platform for evaluation is a PC with Intel

2.4GHz CPU and 16GB RAM. Methods are implemented

with MATLAB. We use LIBSVM package [6] for SVM

classifier.

4.3. Visualization Results

We firstly provide the visualization of the raw feature and

the embedded feature via t-SNE [23] that maps the original

feature into a 2D space.

Figure 4 illustrates the distribution of mosaics with dif-

ferent type of visual representation. We can observe that

there are overlaps between different classes when the mo-

saics are represented by original features. Therefore, the

raw features are not discriminative. Although MVCCA can

largely improve the performance as shown in Figure 4(d),

the problem of overlapping samples is still not fully ad-

dressed. Figure 4(e) shows that the proposed MVMME

makes the mosaics distributed in dense clusters as well as

large margin between different classes. Therefore, the em-

bedded feature are likely to provide better performance in

separating the non-neoplastic and neoplastic cases.

4.4. Numerical Results

Table 1 presents the classification performance of mul-

tiple baseline approaches and the proposed MVMME. The

following observations can be derived::

- Different features for mosaics gain different perfor-

mance. Texton-based schemes have higher specificity

while HoG and SIFT contribute to better sensitivity.

- Compared with single feature schemes, the multi-

modal embedding strategy that discover the latent rep-

resentation between mosaics and histology images can

largely improve the classification performance.

- The unsupervised MVCCA cannot fully make use of

multiple views since it treats the features of mosaics

and histology images equivalently. The semantic infor-

mation is also not investigated to weight the features.

- The sensitivity of MVMME is 0.960 and final accuracy

is 0.966 which achieves the best performance in com-

parison with baselines. The specificity is 0.972 which

is ranked at 2nd place and close to the highest value

obtained by CCA-SIFT.

4.5. Key Frames v.s. Growing Frames

The experiments conducted above are based on the mo-

saics that are captured with increasing size of content as

16



Table 1. Classification Accuracy

Method Sensitivity Specificity Accuracy
Texton-Only 0.880 0.957 0.916

SIFT-Only 0.933 0.867 0.902

HoG-Only 0.876 0.833 0.853

CCA-Texton 0.889 0.940 0.913

CCA-SIFT 0.919 0.989 0.952

CCA-HoG 0.856 0.902 0.880

MVCCA 0.903 0.912 0.908

MVMME-Texton 0.937 0.943 0.938

MVMME-SIFT 0.923 0.972 0.956

MVMME-HoG 0.938 0.831 0.886

MVMME-All 0.960 0.972 0.966

shown in the upper side in Figure 5. In some cases, we

only have the mosaics observed within the capturing scope

which is shown in the lower side in Figure 5 denoted by

KF. The key hole scheme moves the visible scope with ap-

proximately fixed size. Since the information is limited in

KF, the classification is relatively challenging. We simply

report the classification accuracy by single features (SIFT,

HoG and Texton), MVCCA and MVMME in Table 2.

(a) Growing Frame Series

(b) Key Frame Series

Figure 5. Growing Frames (GF) contains the full procedure of cap-

ture. Key Frames (KF) only shows the scope of key holes.

Table 2. Classification Accuracy of KF and GF.

Method GF KF

SIFT 0.902 0.452

Texton 0.916 0.444

HoG 0.853 0.666

MVCCA 0.908 0.466

MVMME 0.966 0.652

According to Table 2, several results can be observed:

- The accuracy of GF classification is much higher than

KF’s as expected. Frames from non-neoplastic and

neoplastic may share the same KF in different captur-

ing progress which introduce ambiguity for classifica-

tion. In contrast, the GF scheme provides complete

view of tissues and the discriminative part can be pre-

served.

- Although the performance of KF is not promising, the

integration of pCLE and histology by MVMME can

largely boost the classification accuracy. Similarly,

MVMME performs best in GF classification.

4.6. Discussion

According to the workflow of MVMME, parameters in-

volved in the proposed method are limited except the di-

mension of the latent subspaces learned from mosaics and

histology images. The dimension refers to c in Eq. (7)

which is the number of smallest eigenvectors. Since the

smallest eigenvalue of a matrix can be obtained with lin-

ear complexity, the scalability of the proposed method is

promising. The classification accuracy with different di-

mensions of latent space is illustrated in Table 3.

Table 3. Classification Accuracy with different dimensions of the

latent space.

Dimension 4 8 12

Accuracy 0.8228 0.8751 0.9750

Dimension 16 24 32

Accuracy 0.9841 0.9852 0.9886

According to the result in Table 3, with the dimension

of the latent subspace increases, the classification accuracy

is improved. However, when the dimension is larger than

16, MVMME cannot obtain significantly higher accuracy.

Therefore, the proposed method can generate compact rep-

resentation of mosaics that can largely reduce the storage

space and the training time of classifiers.

5. Conclusion and Future Works

In this paper, we propose a Multi-View Multi-Modal Em-

bedding (MVMME) framework to learn discriminative fea-

tures of pCLE videos exploiting both mosaics and histol-

ogy images. For mosaic images, multiple features includ-

ing SIFT, Texton and HoG are deployed as multi-view vi-

sual representations. For multimodal embedding, we pro-
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pose a supervised scheme which generates a mapping from

original features to a latent space by maximizing the seman-

tic correlation between mosaics and histology images. The

learned mapping function can transform multi-view mosaic

representations into robust latent features. The experiments

on real dataset demonstrate that MVMME can outperform

baseline approaches with single view or single modal fea-

tures.

Since the dataset is not large and the number of labeled

data is limited, the experiments on fine-level classification

cannot be conducted. Moreover, the features used in this

paper is relatively old-fashioned. In future works, the con-

volutional neural networks can be used to generate more

powerful representations.
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