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Abstract

Segmentation is a fundamental step in analyzing biolog-

ical structures in microscopy images. When state-of-the-art

automated methods are found to produce inaccurate bound-

aries, interactive segmentation can be effective. Since the

inclusion of domain experts is typically expensive and does

not scale, crowdsourcing has been considered. Due to con-

cerns about the quality of crowd work, quality control meth-

ods that rely on a fixed number of redundant annotations

have been used. We here introduce a collection strategy

that dynamically assesses the quality of crowd work. We

propose ICORD (Intelligent Collection Of Redundant an-

notation Data), a system that predicts the accuracy of a

segmented region from analysis of (1) its geometric and

intensity-based features and (2) the crowd worker’s behav-

ioral features. Based on this score, ICORD dynamically

determines if the annotation accuracy is satisfactory or if a

higher-quality annotation should be sought out in another

round of crowdsourcing. We tested ICORD on phase con-

trast and fluorescence images of 270 cells. We compared

the performance of ICORD and a popular baseline method

for which we aggregated 1,350 crowd-drawn cell segmen-

tations. Our results show that ICORD collects annotations

both accurately and efficiently. Accuracy levels are within

3 percentage points of those of the baseline. More impor-

tantly, due to its dynamic nature, ICORD vastly outperforms

the baseline method with respect to efficiency. ICORD only

uses between 27% and 50% of the resources, i.e., collection

time and cost, that the baseline method requires.

1. Introduction

High-throughput microscopy technology enables re-

searchers to produce large numbers of images of cells that

must be segmented for further analysis [16]. Over the past

decades, many automatic and interactive segmentation al-

gorithms have been proposed (e.g., [5, 14, 20, 28, 29]).

Finding a one-size-fits-all algorithm, however, that works

well for segmenting cells with simple and complex bound-

aries, as shown in Figure 1, is a challenging task. An al-

Figure 1. Given the outline of a cell in a microscopy image drawn

by a crowd worker, how can we automatically determine the qual-

ity of this segmentation? Does, for example, the time a crowd

worker takes to trace the outline of the cell correlate with segmen-

tation quality? Or the number of mouse clicks the worker makes

to create the cell boundary? Do automatically extracted shape and

intensity features of the segmented region correlate with segmen-

tation quality?

ternative option is to leverage crowdsourcing and design a

“human-in-the-loop” solution. In this paper, we show how

this option can be made scalable using computer vision and

machine learning techniques.

Researchers from communities like human computer in-

teraction [10], computer vision [13, 18], computer graph-

ics [2], multimedia [7], and bioinformatics [8] have pro-

posed a variety of approaches for offloading labor-intensive

image segmentation tasks to crowd workers. However, a

clear message emerges from the literature: Crowd work is

not reliable and thus needs redundant data collection (e.g.,

5 workers per task [9]). In one study as much as 32% of

annotations obtained from internet workers had to be dis-

carded [2].

In this paper, we address the question: What automated

mechanism should be applied to ensure the efficient collec-

tion of high-quality cell segmentations by the crowd? The

question how to crowdsource high-quality segmentations

has been asked for images of “everyday objects” such as

birds or cars photographed with visible-light cameras [19].

Few works have considered the crowdsourcing of cells in

microscopy imagery [9]. Consequently, little is known

about how to specifically collect high-quality segmentations

of cells from internet workers.
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For general crowdsourcing tasks, i.e., not necessarily

involving image analysis, a common approach to qual-

ity control is to aggregate a fixed number of annotations

from multiple workers and then apply an aggregation pol-

icy. An example of a simple aggregation policy is ma-

jority voting [19]. Alternatively, the influence of differ-

ent responses by crowd workers can be weighed by the

level of expertise and interest of the worker [17]. Learning

algorithms based on the Expectation-Maximization (EM)

method [6] have been designed that evaluate the perfor-

mance of multiple workers in the absence of ground truth

by iteratively measuring the performance of annotators and

using these measurements to refine estimates of the ground

truth [15, 19, 24, 26, 27]. Task difficulty can also been es-

timated [27], as well as annotator bias [25]. Aggregation

methods yield higher quality results yet introduce costs and

delays that we can avoid with our proposed method, which

dynamically determines how many annotations to aggre-

gate.

Verification of the quality of crowd work by the crowd

is an effective strategy for yielding higher quality work.

As with aggregation approaches, this strategy also comes

at the expense of additional costs and delays. According

to this strategy, crowd workers are asked to vote whether

submitted crowd work is sufficiently accurate. These votes

are then used to decide whether to keep or discard crowd

work [12, 22]. Our proposed method avoids the second

verification round for annotation results that it deems suffi-

ciently accurate. Only for crowd-submitted annotations that

it flags to be potentially inaccurate, our method requires ad-

ditional annotations from the crowd.

Related work aim to automatically infer the quality of

segmentations created by algorithms [4, 1]. For example,

Kohlberger et al. [11] used nonlinear regression to predict

segmentation error in CT images of the lung, liver, and other

organs. Both works did not test their proposed regressors in

a crowd setting. Our method is also based on a regression

model. It differs from the above approaches by analyzing

behavioral cues of the internet worker who creates the an-

notation.

The first behavioral cue that our prediction method con-

siders is effort. When internet workers annotate the bound-

ary of a cell with the software we provide, they select a se-

ries of points that the software connects sequentially with

straight lines to create a closed polygon around the cell,

as shown in Figure 1. The selection of each point is per-

formed by the right-button click of the mouse. Our method

trains workers by providing instructions on how to accu-

rately draw the outline of example cells. However, they

have to make choices themselves about how many points to

click in order to accurately capture the details of a cell with

complicated protrusions (or how few points are needed to

define the outline of a round cell).

The second behavioral cue that our prediction method

considers is annotation time. Inaccurate segmentations may

occur when a crowd worker is uncertain how a cell should

be separated from the background or from other cells. The

worker’s uncertainty may result in hesitation and slower an-

notation time.

For image segmentations performed by the crowd, ex-

isting literature reports the crowd worker’s time and ef-

fort, which are the time a worker spends to draw a bound-

ary [3, 23] and the number of clicks a worker makes to de-

marcate the boundary [2, 18, 21]. These works, however,

did not investigate, as we do, if there is any correlation be-

tween these behavioral cues and the quality of segmenta-

tions. Our work complements existing efforts by demon-

strating the value of predictive models for cell segmentation

using both behavioral features and image features.

We first created training data by collecting segmentations

from crowd workers, comparing them to expert-drawn seg-

mentations, and computing a quality label for each crowd-

drawn segmentation. We then developed a prediction model

using both image features and behavioral cues to predict the

quality of crowd work for microscopy images. We used our

prediction model to propose ICORD (Intelligent Collection

Of Redundant Annotation Data), an intelligent system that

incorporates the predicted scores into a dynamic platform

to detect whether a collected segmentation is sufficiently

accurate to be used as a final result. If a segmentation is

not deemed accurate, ICORD sends the image back to the

crowdsourcing platform to collect an additional outline. We

compared the performance of ICORD with that of two other

baseline strategies. Our results show its effectiveness in

terms of accuracy and, most significantly, efficiency.

In summary, our contributions are as follows:
• We propose a dynamic system for crowdsourcing re-

dundant segmentation data, called ICORD.

• Our experiments involved five rounds of crowdsourc-

ing which produced a total of 1,350 segmentations for

270 phase contrast and fluorescence images of cells.

• Our results demonstrate that analysis of behavioral

cues of the crowd worker, augmented by analysis of

image features, can be used to infer segmentation qual-

ity dynamically. ICORD predicts the accuracy of a

crowd-drawn cell outline and determines the need to

seek additional annotations.

• Comparisons with two baseline crowdsourcing strate-

gies show that ICORD collects annotations from the

crowd intelligently by effectively balancing annotation

accuracy and collection efficiency.

2. Training ICORD

We first describe how we generated labeled training data

for ICORD: We obtain the data by developing a crowd-

sourcing system and collecting redundant annotations of
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cell boundaries, and the labels by computing a quality score

for each annotation (Sec. 2.1). We then define the features

that ICORD uses to predict the accuracy of a crowd-drawn

cell segmentation in the absence of a quality label (Sec.

2.2). Finally, we describe the prediction model ICORD uses

to learn the relationship between segmentation quality and

extracted features (Sec. 2.3).

2.1. Training Data Generation

To capture a range of possible segmentation tasks and

difficulty levels, we selected the training data for ICORD to

involve crowd-drawn outlines of a variety of cells (smooth

muscle, fibroblast, and melanoma) imaged with two modal-

ities (phase contrast and fluorescence microscopy). The im-

age data is described in Section 3. Each image contains one

cell.

Annotation Tool. To collect crowd-drawn segmenta-

tions, we configured the freely-available source code for

the online image annotation tool LabelMe [18] to run in

the Amazon Mechanical Turk (AMT) Internet marketplace

(Figure 2). Workers trace the boundary of a cell by click-

ing on points in the image. LabelMe connects consecutive

points with straight lines. Workers complete the segmenta-

tion of the cell by clicking on the first point of the bound-

ary to create a closed polygon. Workers have the option

to delete and redraw the cell boundary, in case they made

a mistake. To support the annotation effort, LabelMe au-

tomatically enlargens the display of an image to span the

maximum possible width and/or height of the allotted space

in the worker’s browser window (while maintaining image

resolution and proportions). We release our configuration of

the LabelMe drawing environment for ATM with step-by-

step instructions that explain how to set it up and connect it

to AMT (http://Anonymous).

Annotation Instructions. Before a crowd worker on

AMT could accept our posted Human Intelligence Tasks

(HITs), he/she was shown our five-step set of instruc-

tions, in English, followed by pictures exemplifying accu-

rate and inaccurate annotations to clarify the aim of the task

(Figure 3).

Measuring the Quality of Crowd Annotations. Our

system measures the quality of crowd segmentations by

estimating the similarity of each crowd segmentation to a

gold-standard segmentation provided by a domain expert.

We use the Jaccard index to measure how closely two seg-

mented regions resemble each other. The index computes

the ratio of the number of pixels common to two segmented

regions to the number of pixels in the union of both re-

gions, i.e.,
|A∩B|
|A∪B| , where A represents the set of pixels in

the crowd-segmented region and B represents the set of pix-

els in the expert-segmented region. Resulting scores range

from 0 to 1 with larger values indicating greater similarity

between the two regions.

Figure 2. Our drawing interface enables crowd workers on Ama-

zon Mechanical Turk to draw polygonal cell outlines with La-

belMe [18].

Obtaining Training Data and Labels. Using our anno-

tation tool and instructions, we collected five crowdsourced

segmentations per cell image. Each segmentation repre-

sents a labeled training instance for our ICORD system.

The training label is the quality score of the segmentation

(i.e., the Jaccard score measuring its similarity to an expert-

drawn segmentation).

2.2. Prediction Features

We propose three categories of features to describe

crowdsourced cell segmentations: geometric features,

intensity-based features, and the crowd worker’s behavioral

features. The first two categories of features were obtained

by using the crowd-drawn boundaries of the cells and ex-

tracting features on the cell foreground and background.

The third category was extracted from the post-task statis-

tics that AMT provides. We standardized features by re-

moving the mean and scaling to unit variance.

2.2.1 Geometric Image Features

For each cell image, our method uses the crowd-drawn

boundary to mask out the background, i.e., the portion of

the image which was not part of the cell, and extracts six

geometric features:

Area. Number of pixels within the cell interior.

Convex Area. Number of pixels within the smallest convex

polygon that contains the cell interior.

Perimeter. Number of pixels on the crowd-drawn boundary

of the cell.

Euler Number. Number of annotated regions in the fore-

ground minus the number of holes within these regions

(should be 1 if worker annotates cell correctly).

Orientation. The angle between the x-axis and the major

axis of the ellipse that has the same second-moments as the

cell region.

Solidity. Number of pixels in the convex hull that are also

in the cell interior, i.e., (area/convex area).
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Figure 3. Crowdsourcing drawing instructions. The two examples

on the left are cells in phase contrast microscopy images, the two

on the right in fluorescence.

2.2.2 Image Intensity Features

Our method computes eight features of each cell image that

are based on analyzing its intensity:

Average Gray-scale Value of Drawn Cell Region.

Average Gray-scale Value of the Background.

Intensity Separability. The difference between the inten-

sity averages of foreground and background (cell interior

and exterior).

Average Contrast of Cell Pixels. The standard deviation

(σ) of the intensity of the foreground pixels.

Intensity Smoothness of the Cell Region. 1− 1/(1+σ2).

Skewness of the Intensity Distribution. Third moment

that specifies how asymmetric the intensity histogram is.

Uniformity Measure. Sum of the squared number of pixels

pi in each bin i of the intensity histogram of the cell region.

Entropy. −
∑

i
pi log pi.

2.2.3 Behavioral Features

We use the following three features to characterize the

drawing behavior of a crowd worker:

Time per Task. Lapsed time for each completed HIT, from

the time a worker clicks the “Accept HIT” button through

the time the worker clicks the “Submit HIT” button.

Number of Clicks. Number of points that the worker clicks

on the image to delineate the boundary of an object.

Average Time per Click. In order to normalize against the

effect of boundary complexity (e.g., a circular cell versus a

cell with many protrusions), we compute the average time

per click (i.e., Time per Task / Number of Clicks).

2.3. Creating a Prediction Model

We next propose a framework to learn a model that pre-

dicts the quality of a given crowd segmentation based on the

three categories of features described above. We chose a re-

gression model to capture the continuous nature of our mea-

sure of segmentation quality. Specifically, we performed

supervised learning by training a random forest regression

model to determine whether the extracted features can be

predictive of the quality of crowd-drawn annotations. This

regression model exploits individual regression trees and

grows a forest of many trees. Candidate splits at a node are

chosen based on minimizing an impurity measure, the sum

of the squared deviation from the leaf mean. The training

procedure can be summarized as follows:

1. Draw N bootstrap samples from the training data ran-

domly with replacement.

2. Grow a regression tree for each bootstrap sample.

3. At each node, randomly sample m predictors at ran-

dom out of all M possible variables and choose the best

split using only the selected predictors.

4. Aggregate the predictions of the N trees by averaging

the responses of the trees and use this aggregate make a

prediction for the new test data.

As described below, we used this procedure to create

several regression models in order to evaluate the predic-

tive power of various combinations of features. Our final

system, ICORD, uses the best performing model.

3. Testing the Use of Prediction

We conducted three studies using the proposed predic-

tion approach to answer: 1) Can we predict the quality of

a given crowd-drawn cell segmentation? 2) Does accuracy

improve if we train and test a prediction model on images

from only one image modality? 3) If we train a model on
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one image modality, can we use this model to predict qual-

ity for other image modalities?

3.1. Datasets

We used a freely available image library [9] that includes

151 phase contrast microscopy images showing rat and rab-

bit smooth muscle cells and mouse fibroblasts. The dataset

also contains 119 fluorescence microscopy images of Lu

melanoma cells and WM993 melanoma cells. The dataset

consists of raw images and expert-drawn annotations to be

used as pixel-level-accurate ground-truth segmentations.

3.2. Collection of Crowdsourced Segmentations

We recruited crowdsourced workers through AMT and

accepted all workers who had previously completed 100

HITs and maintained at least a 92% approval rating. We

paid workers $0.02 upon completion of each object segmen-

tation task and approved all submitted HITs. We allotted a

maximum of ten minutes to complete the task. In total, 40

unique workers created our 1,350 collected segmentations

(i.e., 5 crowd segmentations x 270 images).

3.3. Evaluation of Prediction Models

We analyzed the predictive power of our proposed re-

gression models by comparing predicted and observed seg-

mentation quality scores. Our measures for comparison are

the Pearson’s correlation coefficient r (−1 ≤ r ≤ 1), the

coefficient of determination R2 (0 ≤ R2 ≤ 1) and the mean

absolute error (MAE) between predicted and observed Jac-

card index (0 ≤ MAE ≤ 1).

3.4. Study 1: Which Feature Combination?

In this study, we used 5-fold cross-validation to train and

test our regression model. Specifically, we randomly par-

titioned all 1,350 segmentations into 5 independent sets of

equal size with all 5 segmentations of each unique image in

the same fold. For each of 5 iterations, a different set was

reserved as the test set and the combination of the remain-

ing sets were the training set. We used the predictions for

all crowd segmentations collected from the 5 partitions to

evaluate the quality of the model.

We first examined whether the quality of crowd segmen-

tations may be inferred based on crowd workers’ number

of clicks or time to annotate. Specifically, we trained two

prediction models independently based on these two fea-

tures using all 1,350 crowd segmentations from both im-

ages modalities. This study reveals a moderate correlation

(r = 0.52) between human annotation behavior and seg-

mentation quality when all three behavioral features are in-

cluded (Table 1, row 4). The number of points a worker

clicks to define a cell contour was the best predictor of seg-

mentation quality among the behavioral features (r = 0.59
in Table 1, row 2).

We next trained three prediction models, the first using

only the extracted geometric features from the foreground

Table 1. Evaluation of the predictive power of 8 combinations of

features. Predicted and measured quality scores (Jaccard overlap

index) are compared with the correlation coefficient (r), the coef-

ficient of determination (R2), and the mean absolute error (MAE).

The regression model trained on all features is most predictive.

Regression model based on r R2 MAE

1. Time 0.52 0.29 0.06

2. Number of clicks 0.59 0.42 0.05

3. Time per click 0.53 0.24 0.06

4. Only behavioral features 0.52 0.26 0.06

5. Only geometric features 0.66 0.44 0.05

6. Only intensity features 0.73 0.52 0.05

7. All image features 0.81 0.29 0.06

8. All features 0.83 0.69 0.04

and background of the segmented regions, the second using

only the intensity features, and the third using both (Table 1,

rows 5–7). Our results illustrate that there is a strong corre-

lation between geometric features and accuracy of segmen-

tations (r = 0.66), between intensity features and accuracy

(r = 0.73), and between both feature categories and accu-

racy (r = 81). This indicates that collected crowd annota-

tions can be used as masks to extract static image features

that are promising for predicting the quality of annotations.

Finally, we considered all three groups of features (ge-

ometry and intensity of the cell region and behavioral clues)

to train a prediction model. The correlation coefficient im-

proved to be the top predictor of annotation quality, r =
0.83 (Table 1, row 8). Similarly, the coefficient of determi-

nation R2 was the highest for this regressor and the mean

absolute error the lowest.

Overall, the results of study 1 demonstrate that image

and behavioral features can be combined to train an accurate

model, and this model can be used to predict the quality of

crowdsourced annotations in the absence of ground truth.

3.5. Study 2: Per Modality Evaluation

In the previous study, we trained our prediction mod-

els with all the cell images in our library, irrespective of

the imaging modality. In this study, we trained prediction

models separately for phase contrast and fluorescence mi-

croscopy images. This study was motivated by the facts

that an end user of ICORD would typically only have data

collected by one modality and the visual appearance of cells

in fluorescence versus phase contrast datasets differs. Phase

contrast images show cells with more complicated bound-

aries than the fluorescence images, e.g., Figure 3 bottom.

Cell boundary protrusions, e.g., lamellipodia or filopodia,

seen in the phase contrast images, are difficult to trace.

Moreover, we observed a large range of gray-scale values

within the area of the cells in phase contrast images, while

cells in fluorescence images have gray-scale values more

distinguishable from the background.

We split the data of each modality into training and test-
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Table 2. Evaluation of the predictive power of models trained and

tested separately on phase contrast (PC) and fluorescence (Fl) im-

ages. Training involves all image and behavioral features.

Train/ Test r R2 MAE

1. PC / PC 0.76 0.58 0.05

2. Fl / Fl 0.90 0.81 0.02

3. PC / Fl 0.54 -0.68 0.12

4. Fl / PC 0.44 -0.10 0.09

ing data using 5-fold cross validation and trained a random

forest regression model for each modality using both image

and behavioral features. For the first model, we had 755

(151×5) crowd-drawn boundaries of cells in phase contrast

microscopy images; for the second model, 595 (119 × 5)

in fluorescence images. When we analyzed the predictive

power of the two regression models by comparing predicted

and observed segmentation quality scores, we found high

correlations (Table 2, rows 1 and 2) for both. As we had

anticipated, it is beneficial to train and test on the same

modality, particularly for cells imaged by fluorescence mi-

croscopy (r = 0.9). Training and testing on phase contrast

images yielded a correlation coefficient of r = 0.76 (Table

2, row 2), slightly lower than the coefficient of r = 0.83 we

measured for regression model that was trained and tested

by all images in our database (Table 1, row 8).

3.6. Study 3: Cross Modality Evaluation

In our third study, we investigated the effect of cross

modality training and testing on prediction results. We first

trained a regression model using all features on 755 phase

contrast images, and then tested the model on 595 fluores-

cence images using the correlation coefficient r, coefficient

of determination R2, and the mean absolute error to com-

pare predicted and observed accuracy scores. We repeated

the experiment with training on fluorescence images and

testing on phase contrast images.

Despite moderately strong correlation coefficients for

both cases (0.54 and 0.44), the R2 values were negative (ar-

bitrarily worse), illustrating that the data is not able to fit

the model accurately (Table 2, rows 3 and 4). These results

suggest that there is a limited power in using one image

modality for training and another dataset with different im-

age modality for testing.

4. ICORD: When to Collect Redundant Data?

Automatically Balancing Efficiency and

Accuracy

As we described in Section 1, the collection of redun-

dant annotations is widely recommended for crowdsourc-

ing because the response of a single crowd worker is not

deemed trustworthy [19, 24]. Quality control mechanisms

that aggregate annotations from multiple workers can yield

higher quality results, yet introduce additional costs and de-

lays. Often ad hoc decisions are made by the designer of the

crowdsourcing system about how to balance collection effi-

ciency and annotation accuracy. For example, the designer

may decide that 5 crowd workers are needed to ensure a

sufficient accuracy level, but more than 5 would result in a

collection effort that is too inefficient and costly [9].

We argue that ad hoc decisions on how to set up crowd-

sourcing of cell annotations does not scale to the large

datasets produced by modern microscopy technology. An

automated process is needed that trades off annotation col-

lection efficiency and accuracy. We here propose ICORD,

a system that collects annotations by the crowd by effec-

tively balancing annotation accuracy and collection effi-

ciency. ICORD predicts the quality of crowd work and de-

cides when to collect additional data or when to stop and

trust the results of crowd workers:

ICORD Process for Cell Segmentation:

Input: Raw images of cells, quality threshold τ , number of

rounds N .

1. A single round of crowdsourcing is performed on all cell

images. One segmentation is obtained per cell.

2. Crowd segmentations are converted to binary masks, and

image and behavioral features are extracted.

3. The prediction model receives the feature vectors and

evaluates the quality of each segmentation.

4. For each cell: If the predicted score is higher than thresh-

old τ , the system accepts the annotation (step 7). Otherwise,

the annotation is flagged as inaccurate (step 6).

6. Repeat until all cell segmentations are predicted to be

accurate or N crowdsourcing rounds have been performed:

6.1 A new round of crowdsourcing is performed on the

cell images with annotations flagged as inaccurate.

6.2 Steps 2.-4. are applied to the current segmentation.

7. For any cells still predicted to have inaccurate segmen-

tations, the segmentation among the N collected is chosen

that has highest predicted quality.

Output: Cell annotations and their predicted quality scores.

An example annotation collection process for a phase

contrast image with the ICORD system with a threshold of

τ = 0.75 is shown in Figure 4. Here, after N = 5 rounds

of collecting crowdsourced segmentations, the prediction

score exceeds τ and the process stops. In another example,

shown in Figure 5, ICORD deemed the cell segmentation

obtained after the second round sufficiently accurate. By

not requiring a fixed number of crowdsourcing rounds for

each image, ICORD prevents collecting unnecessary data.

We tested ICORD with various threshold values and up to

N = 5 rounds of crowdsourcing.

Our experimentation showed that the performance of

ICORD is sensitive to the cutoff threshold τ . If the selected

threshold is too low, very few instances are selected and
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Figure 4. An example processed by ICORD: A phase contrast image of a cell and its segmentations, produced by crowd workers in 5 rounds.

In rounds 1–4, the prediction model flagged the segmentations as not sufficiently accurate (quality score below threshold τ = 0.75). In

round 5, ICORD predicts that the shown segmentation is accurate (score > 0.75) and terminates the processing on this cell. For each

round, the Jaccard scores measuring the overlap between expert-drawn and crowd-worker-drawn regions are also displayed (observed and

predicted scores only differ by 6 or fewer percentage points).

sent to the next crowdsourcing round. If the threshold is

too high, almost all of the instances will be sent to the next

round, making the prediction model almost superfluous. A

reasonable choice for a threshold that can be computed au-

tomatically is taking the average predicted score of the an-

notations obtained in the first round.

We compared the performance of ICORD to two base-

line collection processes. The first is called Perfect Ora-

cle Baseline and uses the same algorithm as ICORD except

for step 6.1, where a new round of crowdsourcing is per-

formed on the cell images with annotations that are flagged

to be inaccurate. In ICORD, the inaccuracy flag is based on

the prediction model. In the Perfect Oracle Baseline, how-

ever, the inaccuracy flag is based on ground-truth knowl-

edge. The reason we designed the baseline so that a perfect

oracle provides the inaccuracy score is that the performance

of the ICORD framework can be tested irrespective of the

”false negative detection rate” of the prediction model, i.e.,

the ability of the regressor to flag inaccurate outlines.

The second baseline process, called Fusion Baseline,

involves combining multiple crowd annotations as is

standard practice in crowdsourcing (e.g. [9]).

Fusion Baseline for Cell Segmentation:

Input: Raw images of cells, number of rounds N , aggrega-

tion number M .

1. A single round of crowdsourcing is performed on all cell

images. One segmentation is obtained per cell.

2. Repeat for N crowdsourcing rounds:

2.1 A new round of crowdsourcing is performed on all

cell images.

2.2 Any existing segmentations are combined with the

most recently collected segmentation as follows: If a pixel

is labeled as part of the cell for at least M segmentations, it

is assigned to be in the combined new segmentation.

Output: Cell annotations.

The accuracy scores averaged for all fluorescence and all

phase contrast images, respectively, are shown for ICORD

Figure 5. An example processed by ICORD involving a cell on

a fluorescence microscopy image. ICORD detects in the second

round that the outline is sufficiently accurate to be considered a

final product (τ = 0.83).

and the two baseline processes per crowdsourcing round in

Figure 6. Two thresholds were selected automatically per

imaging modality. The average predicted score of the first

batch of annotations was taken as one threshold (0.82 for

fluorescence and 0.75 for phase contrast), and this score mi-

nus 0.05 as the other threshold.

As can be observed in Figure 6, sending the suspicious

instances to a second round of crowdsourcing increases the

average Jaccard score of the new set for all of the cases.

This pattern was observed for both phase contrast and fluo-

rescence image sets and with all tested thresholds. For in-

stance, crowdsourcing the predicted inaccurate annotations

of fluorescence increased the average Jaccard accuracy from

0.79 to 0.83 for threshold of 0.85 images (Figure 6(a),

group 2). A third round of collecting redundant data is help-

ful in 3 of the shown 4 groups of experiments, slightly in-

creasing the average segmentation accuracy. The last two

rounds do not help improve the average Jaccard score much.

Comparing the results of ICORD to those of the Fusion

method demonstrates that for both modalities and thresh-

olds accuracy levels are similar. ICORD outperforms the

Fusion method in the second round with regard to accuracy

by up to 5 percentage points; the Fusion method outper-

forms ICORD in later rounds by up to 3 percentage points.

More importantly, with regards to efficiency, ICORD

vastly outperforms the Fusion method because it requires

significantly fewer collections of annotations. Using a

lower threshold, the fusion method requires 3.7 times more

collections than ICORD for fluorescence imaging and 3.0
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Figure 6. Average quality scores and the number of annotations collected per round of crowdsourcing for ICORD and the Fusion and

Perfect Oracle benchmarks for (a) Fluorescence images with thresholds τ = 0.82, and 0.85, and (b) Phase contrast images with τ = 0.75,

and 0.80. The number of collected annotations is the number shown above each bar. The total number of collected annotations for all five

round is shown in red. ICORD requires the collection of significantly fewer annotations than Fusion.

times more for phase contrast. The savings are slightly

smaller with a stricter threshold (3.0 and 2.0). This means

that ICORD only uses between 27% and 50% of the re-

sources, i.e., collection time and cost, that the Fusion

method requires.

Comparing the results of ICORD to the results of the

Perfect Oracle method shows the effects of a perfect pre-

diction method incorporated into ICORD. It yields equal

accuracy levels except in one case (0.1 difference) and even

fewer collection costs (15 and 31 fewer collections of anno-

tations on fluorescence images and 48 and 98 on phase con-

trast). (Average quality scores can be lower if crowdwork-

ers happen to outline cells more accurately in an ICORD

experiment than in a Perfect Oracle experiment, see sup-

plemental materials.) The comparison shows the potential

for improvement of the performance of ICORD if a predic-

tion method was incorporated that had a lower rate of pre-

dicting inaccuracies when the cell outline indeed matches

the ground truth well. Interesting future work would be

to evaluate other machine learning methods that could sub-

stitute the random forest regression approach we selected

here. Another interesting question is if other computer-

vision approaches to characterize the image features of the

segmented cell region could improve the automated assess-

ment of the quality of these segmentations.

5. Conclusions

State-of-the-art crowdsourcing techniques rely on ad hoc

decisions about the fixed number of redundant annotations

to be collected and aggregated. The more annotations are

collected, the higher is the likelihood for accuracy, but the

more costly the collection process becomes. The general-

izability and scalability of determining (manually) how to

balance accuracy and efficiency on a case-by-case basis are

questionable. An automated decision process is needed that

is scalable to the large datasets produced by modern mi-

croscopy technology. In this paper, we proposed such an

automated process. ICORD dynamically determines during

the collection process how many annotations should be col-

lected. ICORD uses image feature analysis and random for-

est regression to automatically interpret the quality of cell

annotations. ICORD decides when to collect additional data

or when to stop. It intelligently balances annotation accu-

racy and collection efficiency.

We collected a total of 1,350 crowd-drawn segmenta-

tions for 270 cell images. To the best of our knowledge,

we made a novel contribution by studying the correlation

between worker’s behavioral cues and the quality of their

cell segmentations. Our idea to integrate automatically-

extracted behavioral and image features to infer annotation

accuracy is also new. Lastly, we propose a new crowdsourc-

ing methodology for annotating images that use dynamic

decisions about which images to re-annotate. Our experi-

ments revealed that our strategy is highly effective for dy-

namically assessing cell segmentation quality.
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