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Abstract

Cervical cancer is one of the leading causes of cancer

death in women. Screening at early stages using the popu-

lar Pap smear test has been demonstrated to reduce fatali-

ties significantly. Cost effective, automated screening meth-

ods can significantly improve the adoption of these tests

worldwide. Automated screening involves image analysis of

cervical cells. Gaussian Mixture Models (GMM) are widely

used in image processing for segmentation which is a cru-

cial step in image analysis. In our proposed method, GMM

is implemented to segment cell regions to identify cellular

features such as nucleus, cytoplasm while addressing short-

comings of existing methods. This method is combined with

shape based identification of nucleus to increase the accu-

racy of nucleus segmentation. This enables the algorithm to

accurately trace the cells and nucleus contours from the pap

smear images that contain cell clusters. The method also

accounts for inconsistent staining, if any. The results that

are presented shows that our proposed method performs

well even in challenging conditions.

1. Introduction

Cervical cancer is one of the leading causes of cancer

death in women. In several cases, symptoms usually show

up in advanced stages of cancer where the treatment is non

responsive. Screening at early stages is important in reduc-

ing fatalities due to cervical cancer. Pap smear test is the

most popular screening technique to diagnose cervical can-

cer where the cervical cells are smeared onto a glass slide

and observed under microscope to look for abnormality in

nucleus and cytoplasm. The abnormal cells that are poten-

tially precancerous are called dysplastic cells. The dysplas-

tic cells appear to possess bigger and darker nuclei. Cyto-
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screeners look for dysplastic cells to decide whether further

tests are required for diagnosis and treatment.

Manual screening of pap smear samples for cancer diag-

nostics is tedious and prone to errors. Moreover, the pene-

tration of conventional cytology in low and middle income

countries is low due to cost and manpower constraints.

Therefore, there is enormous interest to develop suitable au-

tomatic screening systems that reduce human effort and in-

crease adoption of cytology based techniques. In order to

automate the screening process, nucleus and cytoplasm has

to be segmented from pap smear image acquired via mi-

croscope. Hence accurate, unsupervised segmentation and

classification of nucleus is critical to this automated diag-

nostic approach.

Nucleus and cytoplasm segmentation for single cell im-

ages have already been carried out earlier. Various meth-

ods have been developed to segment single cell images

[5, 7, 10, 15, 16]. But generally cells appear in the form of

clusters which possess local intensity variance within each

cell makes the problem challenging. The segmentation of

nucleus alone without its cytoplasm has been executed in

the past using watershed segmentation, edge based contour

fitting and active contour methods [2, 3, 12] which require

higher contrast and intensity gradient difference around nu-

cleus. Watershed based methods are highly subjected to

preprocessing and requires user to select markers. Hier-

archical clustering based segmentation of nucleus and cy-

toplasm have also been put forward to segment nucleus

and cytoplasm in cells in the cases where several cells are

present close to each other as clusters [8]. Most of methods

mentioned above fails to perform well under poor staining

conditions and overlapping of cells. Tareef et al., [14] dis-

cuss methods to exactly segment nucleus and cytoplasm for

overlapping cells. However, the applicability of the method

to cell clusters is limited. Zhang et al., [17] discussed cell

segmentation and classification for particular staining tech-

nique but the method requires several parameters that need

to be tuned. Some preliminary results with GMM have been
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reported earlier [9]. Moreover segmenting cytoplasm and

nucleus for each cell in a cluster of cells is difficult even for

human eye as most of the edge information is hidden.

We propose a generic image processing method to seg-

ment nucleus and cytoplasm wherein the of pap smear im-

ages contain cells that overlap and are prepared under poor

staining conditions [13]. Attempt to segment cytoplasm and

demarcating for each cell is not made due to its complexi-

ties mentioned above. GMM is implemented to segment the

nucleus and cytoplasm. In this method, pap smear images

are assumed to be generated from mixture of Gaussians and

each pixel is assigned to a class based on its weight asso-

ciated with a component in mixture of distributions. The

parameters for Gaussian distribution are calculated using

expectation maximization (E-M) algorithm with the num-

ber of components determined heuristically. To eliminate

the false negatives, this method is coupled with shape fit-

ting of nucleus contours using Hough transform. Moreover,

this method does not demand any preprocessing of images

and can also be applied to cells that are clustered.

2. Dataset

Anonymized glass slides prepared using liquid based cy-

tology (LBC) were provided for image analysis. The im-

ages are acquired using DinoLite digital microscope (cam-

era sensor 1.3MP) of magnification ∼700x with image size

1280 x 1020. The dark spots in the image constitutes the

nucleus and surrounding coloured area constitutes the cyto-

plasmic material of a cell. Some of the images were poorly

or inconsistently stained (Fig.1) and had significant number

of overlapping cells Fig.2.

Figure 1. Clusters of cells with inconsistent staining

3. Methodology

3.1. Segmentation

Segmentation of nucleus and cytoplasm is the most im-

portant step for extracting cellular features from images and

we propose to address this using a multi-step algorithm.

Figure 2. Image showing presence of overlapping cells

In the first step, GMM is implemented to segment the im-

age roughly into certain number of classes. The number of

classes is obtained heuristically using Akaike information

criterion (AIC). After segmenting the image, further clus-

tering of image regions is performed based on user defined

parameters to reduce the final number of classes to three ie.,

nucleus, cytoplasm and background. This step is followed

by morphological operations that removes over segmented

nucleus based on its characteristics. Finally, the shape based

identification of nucleus based on edge information is im-

plemented to reduce false negative rates using Hough trans-

form methods.

3.1.1 Gaussian Mixture Model

Gaussian Mixture Model (GMM) has been widely used for

image segmentation [11]. Each pixel in the image is mod-

elled as belonging to a class out of mixture of Gaussians.

GMM algorithm estimates the probability of a pixel belong-

ing to a class by modelling probability density functions

(PDF) of the pixel’s intensity values. The parameters of

the PDF i.e., mean and covariance are evaluated using E-M

algorithm.

3.1.2 Expectation Maximization (EM)

The EM algorithm is the common method of estimating pa-

rameters of GMM in which the maximum likelihood esti-

mates are iteratively determined. The usual EM algorithm

constitutes of E step and M step. E step computes the loga-

rithmic likelihood of entire data set with K samples. M-Step

finds the parameters by maximising the logarithmic likeli-

hood function. The procedure is iterated till convergence.

The mean and covariance matrix arrived at the coverging

step is considered as the final model parameters. The image

is quantized into m levels with mean calculated as intensity

values.
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3.1.3 Model Selection

One of the key concerns in probabilistic modelling is ap-

propriate model selection, which in this case refers to the

number of components in the mixture model. The number

of Gaussian components to be estimated can be heuristi-

cally found using various information criteria techniques.

Here AIC [1] is used to estimate the approximate number

of components present in the data.

AIC = 2p− 2 ln(L)

where, p is the number of parameters and L is the maxi-

mum of likelihood value of model. AIC values are calcu-

lated for GMM ranging from 1 to 15 components and the

model possessing minimum AIC value is chosen. From the

Fig.3, it is clear that the AIC value is approximately the

same for GMM with 8 upto 15 components. Hence to re-

duce the computational load and over fitting, it is appropri-

ate to choose lesser number of components in the model.

Moreover, the change in AIC value is less than 1% between

the model with 15 components and model with 8 compo-

nents.

Figure 3. AIC vs Number of Components

3.1.4 Region Merging

The number of classes to be finally resolved is known a pri-

ori i.e., nucleus, cytoplasm and background. Since the re-

gions in the image have higher variations within each class,

applying the AIC criteria results in identifying a large num-

ber of classes. Hence appropriate merging of regions is es-

sential to reduce the classes to 3. The classes are merged

based on user defined criteria which can be tuned according

to nature of image acquired. In case of poorly stained sam-

ples, these parameters can serve as a tool to avoid poor seg-

mentation. The obtained image after clustering is converted

to gray scale image. The intensities of quantized image are

sorted in descending order. It is obvious that intensity of

nucleus region is least and intensity of background is high-

est.

Consider a vector L of size m containing the quantized lev-

els in descending order. Lmax and Lmin are the maximum

and minimum level intensities. If

L(m)− L(m− 1) < TN

where TN is the threshold for nucleus to be merged, then re-

gions corresponding to last 2 levels are merged. If Lmax >

TB then, the region corresponds to Lmax becomes single

brighter background region where TB is the minimum in-

tensity threshold for the regions in the image to be labelled

as background. If

L(m− (m− 1))− L(m− (m− 2)) < TBD

then L(m − (m − 1)) = 1. If the difference between

maximum and second maximum level is less than threshold

TBD, the region corresponding to those level are merged.

The remaining regions are merged to become single region

that results in segmenting cytoplasm. If Lmax−Lmin < TL

then all regions are merged to single background layer ie.,

when the contrast is less than TL, regions of cells are said

to be absent and corresponding pixels are labelled as back-

ground. TN , TBD and TL are usually fixed at 3 − 4% of

maximum intensity value in the image. TB is approximately

half the value of maximum intensity of image. These meth-

ods of merging with user defined parameters are on par with

clustering techniques.

3.1.5 Identifying over segmented Nucleus

False segmentation of regions in image is likely to occur

by implementing the above GMM-EM framework on pap

smear images when intensity ranges of cytoplasm and nu-

cleus overlap. This may occur due to poor imaging condi-

tions (low light and issue with focus) and inconsistent stain-

ing of slides. Apriori knowledge of characteristics of nu-

cleus are exploited to reduce the high false positive identifi-

cation of nucleus. The nucleus shape is most likely circular

but also occur in form of ellipses. Hence additional features

such as area, eccentricity and major axis to minor axis ratio

plays role in identifying the nucleus correctly and reduc-

ing the possibility of falsely segmented nuclei. Abnormally

sized nuclei can be distinguished from falsely segmented

nuclei by comparing the ratio of nucleus area to cytoplasm

area. If the nucleus area, eccentricity and ratio of major to

minor axis is within user specified range, then the nucleus is

said to belong to set S. The darker regions that do not satisfy

these conditions are eliminated. This results in higher accu-

racy in estimating the cytoplasmic area. The set S consists

of all nucleus satisfying the conditions below.
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N ∈ S if C1 ∩ C2 ∩ C3

C1 : Rmin < R < Rmax

C2 : Emin < E < Emax

C3 : Amin < A < Amax

Where, A,R,E are the area, major to minor axis ratio and

eccentricity of nucleus. Rmin and Rmax denotes minimum

and maximum of major to minor axis ratio, Emin and Emax

denotes minimum and maximum of eccentricity and Amin

and Amax denotes minimum and maximum of area of nu-

cleus. Rmax is typically between 4 to 6. In order to remove

highly irregular shape particle Emax is usually chosen be-

tween 0.8 and 0.9. Amax is fixed at 5% of total cell size

known apriori which depends on the magnification level of

microscope. List of tuning parameters are listed in Table. 1

3.1.6 Shape based identification of nucleus

Debris present on a slide either due to environmental ex-

posure or during sampling may account for darker pixels in

the image as in Fig.7 with similar size and shape of nucleus.

This debris when darker than the true nucleus does have a

negative effect on segmentation. Presence of these particles

in the images forces the algorithm to falsely segment the nu-

cleus as cytoplasm. Though tuning of TN would solve this

issue, manual tuning of each and every image acquired is

not recommended due to random occurrence and unknown

intensity information of debris. In such cases, shape infor-

mation of nucleus is utilised to segment the nucleus that are

not identified. The intensity gradient around the nucleus is

relatively higher than the gradient between cytoplasm and

background. The nucleus can be considered to be approxi-

mately circular object lying on the cytoplasmic background

and Hough transform based methods [6] can be used to

identify nucleus based on its shape. The image acquired is

converted to gray scale image and edges are identified using

canny edge detector [4]. This is followed by circular object

detection using Hough transform. Since the edge detection

is sensitive to noise, the sensitivity of Hough transform is

kept low as to detect only sharp edges. The nucleus iden-

tified by Hough transform has to satisfy the user defined

criteria mentioned above to reduce high false positive rates.

Moreover the entire method is developed such a way that

the false negative rate in identifying the nucleus is kept as

low as possible.

Apart from above parameters, another information about

nucleus is their spatial location with respect to cytoplasm.

Nucleus is always present in the centre surrounded by cyto-

plasm. This prior information is exploited to avoid nucleus

that are falsely segmented at edges and are present on the

cytoplasmic borders.

Table 1. List of Parameters
Parameters Description

TN Difference between two lowest intensity levels

TBD

Difference between two highest in-

tensity levels

TL

Difference between highest and lowest in-

tensity levels

TB Minimum intensity to be labelled as background

Rmin,Rmax Minimum and maximum radius of nucleus

Emin,Emax

Minimum and maximum eccentricity of

nucleus

Amin,Amax Minimum and maximum area of nucleus

4. Results

The step by step procedure of algorithm with the results

is illustrated. In the Fig.5, GMM segmentation of the the

RGB image of overlapping cervical cells is done. Colour is

quantized to m levels. Secondly, the RGB image converted

to gray scale image to morphologically process the image to

remove noise and oversized nucleus. The eccentricity and

ratio of major axis to minor axis are also considered to re-

move over segmented areas. This followed by imposing a

spatial constraint on nucleus position to eliminate nucleus

present at vicinity of the cytoplasm. Dark regions indicate

the nucleus, grey region indicates the cytoplasm area and

white region denotes the background. In Fig.6 illustration

of cytoplasm and nucleus segmentation is made for whole

field of view obtained. Contours of nucleus and cytoplasm

indicate accurate segmentation. Implementation was car-

ried out in MATLAB and associated toolboxes.

This method works well even for poorly stained slides

as illustrated in Fig.4. Consistent staining is always not

expected even in automated staining machines. At certain

instances, the intensity distribution of the nuclear region

may not account for all the nuclei present due to inconsis-

tent staining and inherent errors propagated during image

acquisition. With the help of shape based identification of

nucleus, the nucleus detection accuracy is increased as illus-

(a) Original Image (b) Image showing segmented re-

gions

Figure 4. Segmentation of cell clusters even with poor staining
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(a) Original image (b) Image quantized to m levels

(c) Gray scale image of colour

quantized image

(d) Segmented image with dark re-

gions indicating nucleus and gray

region indicating cytoplasm

Figure 5. Step by Step illustration of proposed algorithm

(a) Original image

(b) Image showing segmented regions

Figure 6. Segmentation for clusters of cells

(a) Original Image (b) Segmented image

(c) Identifies nucleus with shape

Figure 7. Effect of shape based identification of nucleus

trated in Fig.7. Though debris is misclassified as nucleus in

Fig.7, overall methods reduces the false negative rate. The

number of components chosen in model selection step does

not have any effect on segmentation when the components

chosen is greater than 8, though false segmentation arises

when the number of components chosen is significantly low.

The number of components is selected between 8 and 10 to

account the trade off between over fitting and computational

load.

5. Performance measures

Performance is measured by examining the algorithm re-

sults against ground truth. The algorithm is evaluated on the

images containing cells with a total of 148 nuclei. Each of

the images are manually segmented into nucleus and cyto-

plasm for evaluation purpose with coordinates of the center

of the nucleus marked and considered as ground truth. Pre-

cision and recall are treated as performance measures for

evaluating nucleus identification that are commonly used in

field of information retrieval and also used in object based

evaluation procedures.

Recall =
No.of correctly detected Nucleus

No.of Nucleus present in image

Precision =
No.of correctly detected Nucleus

Total number of detected nucleus

Recall was found to be 94.90 and precision to be 91.46.

The under segmentation of remaining nucleus may be at-

tributed to highly overlapping nature of cells where some
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potential gradient information are lost underneath the over-

lapped cells. The accuracies of segmented contours of cy-

toplasm were also quantified using Dice similarity Coeffi-

cient (DSC). A1 is the area segmented by proposed algo-

rithm and A2 is the ground truth area manually delineated.

This measure is evaluated only for 20% of the image dataset

acquired.

DSC = 2 |A1∩A2|
|A1|+|A2|

Table 2. DSC measures
µDSC ± σDSC

Nucleus Cytoplasm

Consistent staining 0.86±0.03 0.96 ±0.03
Inconsistent staining 0.84±0.02 0.92±0.02

DSC values greater than 0.7 are considered satisfac-

tory [18]. Given the limitations of the microscope and in-

consistent staining conditions, the performance of the pro-

posed method is acceptable.

6. Conclusion

The results shows the suitability of our proposed frame-

work for automatic analysis of cervical cell images. The

image is assumed to be generated from mixture of Gaussian

and the parameters are found using E-M algorithm. Under-

segmentation of nucleus is avoided using Hough transform

based ellipse fitting methods to segment nucleus. We ex-

pect a very high accuracy for images when acquired through

highly resolved optical microscope. This method even per-

forms well for cells appearing in form of clusters and poorly

stained slides.
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