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Abstract

We present a novel approach for supervised domain

adaptation that is based upon the probabilistic framework

of Gaussian processes (GPs). Specifically, we introduce

domain-specific GPs as local experts for facial expression

classification from face images. The adaptation of the clas-

sifier is facilitated in probabilistic fashion by conditioning

the target expert on multiple source experts. Furthermore,

in contrast to existing adaptation approaches, we also learn

a target expert from available target data solely. Then, a

single and confident classifier is obtained by combining the

predictions from multiple experts based on their confidence.

Learning of the model is efficient and requires no retrain-

ing/reweighting of the source classifiers. We evaluate the

proposed approach on two publicly available datasets for

multi-class (MultiPIE) and multi-label (DISFA) facial ex-

pression classification. To this end, we perform adapta-

tion of two contextual factors: ‘where’ (view) and ‘who’

(subject). We show in our experiments that the proposed

approach consistently outperforms both source and target

classifiers, while using as few as 30 target examples. It also

outperforms the state-of-the-art approaches for supervised

domain adaptation.

1. Introduction

Human face is believed to be the most powerful channel

for conveying, non-verbally, behavioral traits such as per-

sonality, intentions and affect, among others [2, 34]. Facial

expressions can be studied at the message level (interpre-

tation in terms of the message conveyed, e.g., emotions),

and sign level (analysis of facial muscle movements named

action units (AUs)). To this end, the Facial Action Coding

System (FACS) [10] has been used. It is the most com-

prehensive anatomically-based system for describing facial

expressions at both the levels. FACS defines 33 unique

AUs, and several categories of head/eye movements.
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Figure 1. The proposed GPDE model. The learning consists of training

the multiple source (sk, k = 1, · · · ,M ) and the target (t) GP experts (in

this case, each subject is treated as an expert), using the available labeled

training data pairs (x,y) – the input features (e.g., facial landmarks) and

output labels (e.g., AU activations), respectively. Adaptation (dashed lines)

for the target data is performed via conditioning the latent functions, f ,

of the target GP on the source experts (t|s). During inference, we fuse

the predictions from the experts (µ{t,(t|s)}) by means of their predictive

variance (V {t,(t|s)}), with the role of a confidence measure.

Due to its practical importance in medicine, marketing

and entertainment, automated analysis of facial expressions

has received significant research attention over the last two

decades. Despite rapid advances in computer vision and

machine learning, majority of the models proposed so far

for facial expression analysis rely on generic classifiers.

These classifiers are expected to generalize well when

applied to data recorded within specific contexts, as defined

by the W5+ context questions (‘who’, ‘where’, ‘how’,

‘what’, ‘when’ and ‘why’) [27]. Nevertheless, due to

possible variations in these contextual dimensions, the

performance of virtually all existing generic classifiers

for facial expression analysis is expected to downgrade

largely when applied to previously unseen data [12]. This
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is especially pronounced in the case of unseen subjects

(due to variation in their age, gender, expressiveness),

changes in pose and illumination, environments, and so

on. To circumvent these challenges, two lines of work

have been proposed. The first relies on carefull design

of ’context-independent’ image features and the use of

generic classifiers [35, 17, 23], while the second attempts

adaptation of the target classifiers [27, 5, 29]. In this work,

we employ the latter approach and focus on adaptation of

the context questions ‘where’ and ‘who’ in our data.

Variation in head-pose and illumination (‘where’)

has been addressed by combining illumination in-

variant features with multi-view learning tech-

niques [35, 17, 23, 26, 14, 11]. On the other hand,

the individual differences among subjects (‘who’) have

mainly been tackled by accounting for the subject informa-

tion at the training stage. Specifically, the original feature

set is extended by adding the subject-specific features [27],

or by building person-specific classifiers [31]. Although

these approaches showed improvement over generic clas-

sifiers, there is still a number of challenges to address. In

particular, the multi-view learning requires a large amount

of images in various poses, which is typically not available.

On the other hand, for building personalized classifiers,

access to an adequate collection of images of the target

person is essential. Consequently, existing approaches

perform re-weighting previosly learned classifiers to fit

the target data (e.g., [5]), or training of new models using

the additional target data. However, both of these are sub-

optimal. Thus, our aim is to find an effective approach to

adapt the already trained generic models for facial behavior

analysis by using a small number of target data. In the case

of the context question ‘where’, this boils down to adapting

the frontal classifier to a non-frontal view using only a

small number of expressive images from the target view.

Similarly, in the case of the subject adaptation (‘who’), the

model adaptation is performed by using as few annotated

images of target subject as needed to gain in the prediction

performance (e.g., AU detection). This approach is ex-

pected to generalize better than generic classifiers learned

from the available source and/or target (training) data.

To address the challenges mentioned above, we use the

notion of domain adaptation to perform two tasks: (i) view

and (ii) subject adaptation, for facial expression recogni-

tion (FER) and AU detection. In particular, we address the

problem of domain adaptation where the distribution of the

(facial) features varies across domains (i.e., contexts such as

the view or subject), while the output labels (in our case, the

emotion or AU activations) remain the same. This is also

known as covariate shift, and the two domains are called

source (e.g., frontal view) and target (e.g., profile view)

domain, respectively. Furthermore, a supervised setting,

where a small number of labeled target examples is avail-

able during the adaptation process, is assumed. We build

our model upon the probabilistic framework of Gaussian

processes (GPs) [25], and generalize the product of expert

models [7, 3] to domain adaptation scenario. More specifi-

cally, instead of adjusting the classifier parameters between

the domains, as in [5, 33, 4, 22, 29], we propose domain-

specific GP experts that model the domain specific data.1

Moreover, instead of minimizing the error between the dis-

tributions of the original source and target domain data [5,

22], we use Bayesian domain adaptation [20] and explain

the target data by conditioning on the learned source ex-

perts. An advantage of our probabilistic formulation is that

during adaptation, we exploit the variance in the predictions

when combining the source and target domains [30]. This

results in a confident classifier that minimizes the risk of

potential negative transfer (i.e., the adapted model perform-

ing worse than the model trained using the adaptation data

only). In contrast to transductive adaptation approaches

(e.g., [5]) that need to be re-trained completely, adaptation

of our model is efficient and requires no re-training of the

source model. The model outline is depicted in Fig. 1. The

contributions of this work can be summarized as follows:

• We present a novel approach for supervised domain

adaptation that can, for the first time, perform adap-

tation to contextual factors ‘where’ (across different

views) and ‘who’ (by personalizing the target classi-

fier) during modeling of facial expression data.

• To the best of our knowledge, this is the first work in

the domain of facial behavior modeling that can simul-

taneously perform adaption to multiple outputs (i.e.,

AUs). Existing models in the field that attempt the

model adaptation do so for each output independently.

• Due to its probabilistic nature, the proposed approach

provides the confidence in the predicted labels for the

target expressions. This is in contrast to majority of the

models that are purely discriminative, and thus, cannot

provide a measure of how ‘reliable’ the predictions are.

• We show in our experiments on view and subject adap-

tation that the proposed model can generalize better

than source and target domains together by using as

few as 30 target samples to perform the adaptation.

Furthermore, virtually all existing domain adaptation

approaches fail to reach the performance of the tar-

get classifiers when more target data become avail-

able (negative transfer). Our approach overcomes this

due to the newly introduced scheme for combining the

source and target experts.

1The use of GPs for this task is motivated by their good generalization

abilities, even when trained with limited amount of data [25, 11]. This

property is crucial for the training of the target expert, since the available

data are scarce.
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2. Related Work

2.1. Domain Adaptation in Facial Behavior Analysis

The majority of approaches for domain adaptation in the

context of facial behavior analysis focus on building per-

sonalized classifiers for the test subjects. For instance, [22]

uses the supervised kernel mean matching (KMM) to align

the source and target data distributions. This is achieved

by re-weighting the source data, which, in combination

with the target data, form the input features that are used

to train the support vector machine (SVM) [6] classifier

for FER. Likewise, [5] uses unsupervised KMM to learn

person-specific AU detectors. This is attained by modifying

the SVM cost function to account for the KMM between

source and target data, adjusting the SVM’s hyperplane to

the target test data. However, this results in the transductive

learning approach, thus, the classifier has to be re-learned

for each target subject. In [4], a two-step learning approach

is proposed for person-specific pain recognition and AU

detection. First, data of each subject are regarded as differ-

ent source domains, and are used to train weak Adaboost

classifiers. Then, the weak classifiers are weighted based

on their classification performance on the available target

data. In [29, 5], the Adaboost classifiers are replaced with

the linear SVMs, and then the support vector regression

(SVR) is employed to learn the mapping from the feature

distribution to the parameters of the SVM classifier.

Note that, apart from [4], all the works mentioned above

perform in the unsupervised adaptation setting. While this

requires less effort in terms of obtaining the labels for the

target sub-sample, its underlying assumption is that target

data can be well represented as a weighted combination of

the source data. However, in real-world data, this assump-

tion can easily be violated, resulting in poor performance of

the adapted classifier. In this work, we adopt a supervised

approach that needs only a few annotated data from target

domain to perform the adaptation. This, in turn, allows us

to define both target and source experts, assuring that the

performance of the resulting classifier is not constrained

by the distribution of the source data, as in unsupervised

adaptation approaches. Contrary to transductive learning

approaches such as [5], our approach requires adaptation

of the target expert solely, without the need to re-learn

the source experts, resulting in an efficient adaptation

process. Moreover, in contrast to our approach, none of the

aforementioned works provides a measure of confidence

in the predicted labels. Finally, note that the proposed

approach and the methods mentioned above differ from

those recently proposed for transfer learning [1]. The goal

of the latter is to adapt a classifier learned for, e.g., one AU

to another AU, which is different from the adaptation task

addressed in this work.

2.2. Domain Adaptation

Domain adaptation is a well studied problem in machine

learning (for an extensive survey, see [24]). Here we

review relevant (semi-)supervised adaptation approaches.

For instance, [19] learns a transformation that maximizes

similarity between data in the source and target domains

by enforcing data pairs with the same labels to have high

similarity, and pairs with different labels to be dissimilar.

Then, a k-NN classifier is used to perform classification

of target data. [15] is an extension of this approach to

multiple source domains. The input data are assumed to be

generated from category-specific local domain mixtures,

the mixing weights of which determine the underlying

domain of the data, classified using an SVM classifier.

Similarly, [16] learns a linear asymmetric transformation

to maximally align target features to the source domain.

This is attained by introducing max-margin constraints that

allow the learning of the transformation matrix and SVM

classifier jointly. [8] extends the work in [16] by introducing

additional constraints to the max-margin formulation. More

specifically, unlabeled data from the target domain are used

to enforce the classifier to produce similar predictions for

similar target-source data. While these methods attempt to

directly align the target to source features, several works

attempted this through a shared manifold. For instance,

[9] learns a non-linear transformation from both source

and target data to a shared latent space, along with the

target classifier. Likewise, [32] finds a low-dimensional

subspace, which preserves the structure across the domains.

The subspace is facilitated by projection functions that

are learned jointly with the linear classifier. Again, the

structure preservation constraints are used to ensure that

similar data across domains are close in the subspace.

All of the above methods tackle the adaptation problem

in a deterministic fashion, thus they do not provide a mea-

sure of confidence in the target predictions. By contrast,

our approach is fully probabilistic and non-parametric due

to the use of GPs. The proposed is related to recent ad-

vances in the GP literature [20, 18] on domain adaptation.

Specifically, in [20], the predictive distribution of a GP

trained on the source data is used as a prior for making

inference in the target domain. Similarly, [18] proposed

a two-layer GP that jointly learns separate discriminative

functions from the source and target features to the labels.

The intermediate layer facilitates the adaptation step, and

variational approximation is employed to integrate out this

layer. In contrast to [20], the proposed defines a target

specific expert, which is then combined in a principled

manner with the source domain experts. The benefit of

this is that the resulting classifier is not limited by the

distribution of the source data. Also, in contrast to [18],

the training of the experts is performed independently, and

thus, we need not retrain the source classifier.
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3. Problem Formulation

We consider a supervised setting for domain adapta-

tion, where we have access to a large collection of labeled

source domain data, and a smaller set of labeled target do-

main data. Let X and Y be the input (features) and out-

put (labels) spaces, respectively. We assume that the in-

put space is comprised of the source and target domains,

S and T , respectively, that may differ in feature distribu-

tion. Hence, X(s) = {x
(s)
ns

}Ns

ns=1 and X(t) = {x
(t)
nt
}Nt

nt=1,

with x
(s)
ns

,x
(t)
nt

∈ R
D, and Nt ≪ Ns. In our case, these

can be different views or subjects. On the other hand,

Y (s) = {y
(s)
ns

}Ns

ns=1 and Y (t) = {y
(t)
nt
}Nt

nt=1 correspond

to same labels for both source and target domains. Each

vector y
{s,t}
n contains the binary class labels of C classes.

We now formulate the regression problem as:

y(v)
nv

= f (v)(x(v)
nv

) + ǫ(v), (1)

where ǫ(v) ∼ N (0, σ2
v) is i.i.d. additive Gaussian noise,

and the index v ∈ {s, t} denotes the dependence on each

domain. The objective is to infer the latent functions f (v),

given the training dataset D(v) = {X(v),Y (v)}. By fol-

lowing the framework of GPs [25], we place a prior on

the functions f (v), so that the function values f (v)
nv

=

f (v)(x
(v)
nv

) follow a Gaussian distribution p(F (v)|X(v)) =

N (F (v)|0,K(v)). Here, F (v) = {f (v)
nv

}Nv

nv=1, and K(v) =

k(v)(X(v),X(v)) is the kernel covariance function, which

is assumed to be shared among the label dimensions. In this

work, we use the radial basis function (RBF) kernel

k(x,x′) = σ2
f exp

(

−
1

2ℓ2
‖x− x′‖2

)

, (2)

where {ℓ, σf} are the kernel hyper-parameters. The re-
gression mapping can be fully defined by the set of hyper-
parameters θ = {ℓ, σf , σv}. Training of the GP con-
sists of finding the hyper-parameters that maximize the log-
marginal likelihood

log p(Y (v)|X(v)
,θ

(v)) =−
1

2
tr
[

(K(v) + σ
2
vI)

−1
Y

(v)
Y

(v)T
]

−
C

2
log |K(v) + σ

2
vI|+ const. (3)

Given a test input x
(v)
∗ we obtain the GP predictive

distribution by conditioning on the training data D(v) as

p(f (v)
∗ |x

(v)
∗ ,D(v)) = N (µ(v)(x

(v)
∗ ), V (v)(x

(v)
∗ )) with

µ
(v)(x(v)

∗ ) = k(v)
∗

T
(K(v) + σ2

vI)
−1Y (v) (4)

V (v)(x
(v)
∗ ) = k

(v)
∗∗ − k(v)

∗

T
(K(v) + σ2

vI)
−1k(v)

∗ , (5)

where k
(v)
∗ = k(v)(X(v),x

(v)
∗ ) and k

(v)
∗∗ = k(v)(x

(v)
∗ ,x

(v)
∗ ).

For convenience we denote µ
(v)
∗ = µ(v)(x

(v)
∗ ) and

V
(v)
∗∗ = V (v)(x

(v)
∗ ). Within the introduced notation, we

have the choice to learn either (i) independent functions

f (v) or (ii) a universal function f that couples the data from

the two domains. However, neither option allows us to ex-

plore the idea of domain adaptation: In the former we learn

domain-specific models, while in the latter we simplify the

problem by concatenating the data from the two domains.

4. Domain Conditioned GPs

4.1. GP Adaptation

A straightforward approach to obtain a model capable

of performing inference on data from both domains is to

assume the existence of a universal latent function with a

single set of hyper-parameters θ. To this end, the authors

in [20] proposed a simple, yet effective, three-step approach

for GP adaptation (GPA):

1. Train a GP on the source data with likelihood

p(Y (s)|X(s),θ) to learn the hyper-parameters θ. The

posterior distribution is the given by Eqs. (4–5).

2. Use the obtained posterior distribution of the source

data, as a prior for the GP of the target data

p(Y (t)|X(t),D(s),θ).

3. Correct the posterior distribution to account for the tar-

get data D(t) as well.

The prior of the target data in the second step is given by

applying Eqs. (4–5) on X(t)

µ
(t|s) = K

(s)
st

T

(K(s) + σ2
sI)

−1Y (s) (6)

V (t|s) = K
(s)
tt −K

(s)
st

T

(K(s) + σ2
sI)

−1K
(s)
st , (7)

where K
(s)
tt = k(s)(X(t),X(t)),K

(s)
st = k(s)(X(s),X(t)),

and the superscript t|s denotes the conditioning order.

Given the above prior and a test input x
(t)
∗ , the correct form

of the adapted posterior after observing the target domain
data is given by:

µ
(s)
ad (x

(t)
∗ ) = µ

(s)
∗ + V

(t|s)
∗

T
(V (t|s) + σ

2
sI)

−1(Y (t) − µ
(t|s))

(8)

V
(s)
ad (x(t)

∗ ) = V
(s)
∗∗ − V

(t|s)
∗

T
(V (t|s) + σ

2
sI)

−1
V

(t|s)
∗ , (9)

with V
(t|s)
∗ = k(s)(X(t),x

(t)
∗ ) − k(s)(X(s),X(t))

T
(K(s) +

σ2
sI)

−1k(s)(X(s),x
(t)
∗ ).

Eqs. (8–9) shows that final prediction in the GPA is

the combination of the original prediction based on the

source data only, plus a correction term. The latter shifts

the mean toward the distribution of the target data and

improves the model’s confidence by reducing the predictive

variance. Note that we originally constrained the model

to learn a single latent function f for both conditional

21



distributions p(Y (v)|X(v)) to derive the posterior for the

GPA. However, this constraint implicitly assumes that the

marginal distributions of the data p(X(v)) are similar. This

assumption violates the general idea of domain adaptation,

where by definition, the marginals may have significantly

different attributes (e.g., input features from different ob-

servation views). In such cases, GPA could perform worse

than an independent GP trained solely on the target data

D(t). One possible way to address this issue is to retrain the

log p(Y (t)|X(t),D(s),θ) of the GPA w.r.t. θ [20]. This op-

tion will compensate for the differences in the distributions

by readjusting the hyper-parameters. However, it comes

with the price of retraining of the model. Furthermore,

it does not allow for modeling domain-specific attributes

since the predictions are still determined mainly from the

source distribution.

4.2. GP Domain Experts

Product of GP Experts. In the proposed approach, we

assume that each expert is a GP that operates only on

a subset of data, i.e., D(s),D(t). Hence, we can follow

the methodology presented in Sec. 3 in order to train

domain-specific GPs and learn different latent functions,

i.e., hyper-parameters θ(v). Within the current formu-

lation we treat the source domain as a combination of

multiple source datasets (e.g., subject-specific datasets)

D(s) = {D(s1), . . . ,D(sM )}, where M is the total number

of source domains (datasets).

Training. Given the above mentioned data split and assum-

ing conditional independence, the marginal likelihood can

be approximated by

p(Y {s,t}, |X{s,t},θ{s,t}) =

p(Y (t)|X(t),θ(t))

M
∏

k=1

pk(Y
(sk)|X(sk),θ(s)). (10)

Note that we share the set of hyper-parameters θ(s) across

all the source domains. The intuition behind this is that in

each source domain we may observe different label distribu-

tion p(Y (sk)), yet after exploiting all the available datasets

we can model the overall distribution p(Y (s)) with a sin-

gle set of hyper-parameters θ(s). However, this does not

guarantee that we are also able to explain the target la-

bel distribution p(Y (t)) with the same hyper-parameters.

Thus, we also search for θ(t) for modeling the domain-

specific attributes. Similarly to Sec. 3 learning of the hyper-

parameters is performed by maximizing

log p(Y {s,t}, |X{s,t},θ{s,t}) = log p(Y (t)|X(t),θ(t))

+

M
∑

k=1

log pk(Y
(sk)|X(sk),θ(s)), (11)

Algorithm 1 Domain adaptation with GPDE

Inputs: D(s) = {X(s),Y (s)},D(t) = {X(t),Y (t)}
Training:

Learn the hyper-parameters θ{s,t} by maximizing Eq. (11).

Adaptation:

Adapt the posterior from the source experts via Eq. (8–9).

Predictions of Experts:

Combine the prediction from each GP domain expert via

Eq. (13–14).

Output: y∗ = sign(µgpde
∗ ).

where each log-marginal is computed according to Eq. (3).

The above factorization, apart from facilitating learning of

the domain experts, allows for efficient GP training even

with larger datasets, as shown in [7]. Note that the source

experts can be learned independently from the target, which

allows our model to generalize to unseen target domains

without retraining.

Predictions. Once we have trained the GPDE, we need to

combine the predictions from each expert to form an overall

prediction. To this end, we follow the approach presented

in [3], where we further readjust the predictions from the

source experts using the trick of GPA. Hence, the predictive

distribution is given by

p(f (t)
∗ |x

(t)
∗ ,D) =

M
∏

k=1

p
βsk

k (f (t)
∗ |x

(t)
∗ ,D(sk),D(t),θ(s))·

pβt(f (t)
∗ |x

(t)
∗ ,D(t),θ(t)), (12)

where βsk , βt control the contribution of each expert. In
this work we equally weight the experts and normalize them
such that βt +

∑

βsk = 1, as suggested in [7]. The predic-
tive mean and variance are given by

µ
gpde
∗ = V

gpde
∗

[

βtV
(t)
∗

−1
µ

(t)
∗ +

∑

k
βskV

(sk)
ad

−1
µ

(sk)
ad

]

(13)

V
gpde
∗ =

[

βtV
(t)
∗

−1
+

∑

k
βskV

(sk)
ad

−1
]−1

. (14)

At this point the contribution of the GPDE becomes

clear: Eq. (13) shows that the overall mean is the sum

of the predictions from each expert, weighted by their

precision (inverse variance). Hence, the solution of the

GPDE will favor the predictions of more confident experts.

On the other hand, if the quality of a domain expert is poor

(noisy predictions with large variance), GPDE will weaken

its contribution to the overall prediction. Algorithm 1

summarizes the GPDE adaptation procedure.

5. Experiments

We evaluate the proposed model on acted and spon-

taneous facial expressions from two publicly available
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datasets: MultiPIE [13] and Denver Intensity of Sponta-

neous Facial Actions (DISFA) [21]. Specifically, MultiPIE

contains images of 373 subjects depicting acted facial

expressions of Neutral (NE), Disgust (DI), Surprise (SU),

Smile (SM), Scream (SC) and Squint (SQ), captured at

various pan angles. In our experiments, we used images

from 0◦, −15◦ and −30◦. DISFA is widely used in the

AU-related literature, due to the large amount of (subjects

and AUs) annotated images. It contains video recordings

of 27 subjects while watching YouTube videos. Each

frame is coded in terms of the AU intensity on a six-point

ordinal scale. For our experiments we selected the six most

frequently occurring AUs, i.e., AUs (4, 6, 9, 12, 25, 26), while

we treated each AU with intensity larger than zero as active.

Features: We use a set of geometric features derived

from the facial landmark locations. DISFA dataset comes

with frame-by-frame annotations of 66 facial points, while

the same annotated points for MultiPIE were obtained

from [28]. We discarded the contour landmarks, leading

to the set of 49 facial points. These were then registered to

a reference face (average face per view for MultiPIE, and

average face for DISFA) using an affine transform. In order

to further remove potential noise and artifacts, the aligned

landmark points were post-processed via PCA, retaining

99% of the energy, which resulted in 30D feature vectors.

Evaluation procedure. We evaluate GPDE on both multi-

class (FER on MultiPIE) and multi-label (multiple AU

detection on DISFA) scenarios. We also assess the adapta-

tion capacity of the model with a single (view adaptation)

and multiple (subject adaptation) source domains. For the

task of FER, the frontal view, i.e., 0◦, served as a single

source domain, and inference was performed via adaptation

to the target domains −15◦ and −30◦. For the AU detection

task, the various subjects from the train data were used as

multiple source domains, and adaptation was performed

each time on the tested subject. To evaluate the model’s

adaptation ability we strictly follow a training protocol,

where for each experiment we vary the cardinality of the

training target data (we always use all the available source

domain data). For MultiPIE, we first split the data in 5-folds

(4 training, 1 testing) and then, we keep increasing the

cardinality as: Nt = 10, 30, 50, 100, 200, 300, 600, 1200.

For DISFA we partition the data in 3-folds (20 training

source subjects at a time). From the test subject’s sequence

the first 500 frames were used as target training data (with

increasing cardinality Nt = 10, 30, 50, 100, 200, 500),

while inference was performed on the rest frames of the

sequence. This is in order to avoid the target model over-

fitting the temporally neighboring examples of test subject.

For the FER experiments, we employ the classification

ratio (CR) as the evaluation measure, while for the AU

detection, due to the imbalance in the data, we report the

F1 score and the area under the ROC curve (AUC).

Models compared. We compare the proposed GPDE with

the two generic models GPsource and GPtarget. The former

is trained solely on the source data, while the latter on the

target data used for the adaptation. Furthermore, we com-

pare to the state-of-the-art models for supervised domain

adaptation, i.e., the GPA [20] and the asymmetric transfer

learning with deep GP (ATL-DGP) [18]. The GPA is an

instance of the proposed GPDE, with only a source domain

expert (no target) and predictions given by Eq. (8–9). ATL-

DGP2 employs an intermediate GP to combine the predic-

tions of GPsource and GPtarget. In the multi-source exper-

iment we also compare to GPDEss, which is the instance

of GPDE with all the subjects treated as a single source

domain. Note that We do not include comparisons with

the deterministic approaches (e.g., [16, 19]), as it has been

shown in [18] that ATL-DGP outperforms these methods.

5.1. View adaptation from a single source

In this experiment, we demonstrate the effectiveness

of the proposed approach when the distributions between

source and target domain (0◦ → −15◦ and 0◦ → −30◦)

differ in an increasing non-linear manner. For this purpose

we evaluate all considered algorithms in terms of their

ability to perform accurate FER as we move away from the

frontal pose. Example images for the specified task can be

seen in Fig. 2. Table 1 summarizes the results. The generic

classifier GPsource exhibits the lowest performance, due

to the fact that it has only been trained on source domain

images. It is important to note the drop in the classification

rate (≈ 5%) when the target domain changes from −15◦ to

−30◦. This indicates the inefficiency of a generic classifier

to deal with data of different characteristics. On the other

hand, the GPtarget when trained with as few as 30 data

points achieves similar performance to the GPsource since

it benefits from modeling domain-specific attributes. A

further increase of the cardinality of the target training data

results in a significant improve in the classification rate.

A similar trend can be observed in the performance of the

adaptation methods, where the inclusion of 10 labeled data

points from the target domain is adequate to shift the learned

source classifier towards the distribution of the target data.

The GPA uses the extra data to condition on the generic

classifier GPsource and increase its prediction performance.

ATL-DGP on the other hand facilitates a joint learning

scheme where GPsource and GPtarget are fused together,

via conditioning, in a deep architecture. The advantage of

the latter is evidenced from the highest achieved accuracy,

i.e., 83.32% for Nt = 10. However, the joint training

scheme of ATL-DGP limits its adaptation ability, due to

the high effect of the source prior. Consequently, its per-

2The provided code for ATL-DGP is not capable of multi-label classi-

fication, since it treats the labels only in a 1-of-K encoding. Thus, it cannot

be evaluated on the multiple AU detection task.
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Table 1. Average classification rate across 5-folds on MultiPIE. The adaptation is performed from 0◦ → −15◦ and 0◦ → −30◦, with

increasing cardinality of labeled target domain data (10− 1200).

Method
0◦ → −15◦ 0◦ → −30◦

10 30 50 100 200 300 600 1200 10 30 50 100 200 300 600 1200

GPsource 81.65 76.94

GPtarget 55.85 81.19 84.59 89.61 90.66 91.31 91.57 97.26 51.99 76.09 81.97 86.48 88.57 89.75 92.16 98.43

GPA [20] 82.36 84.00 85.37 88.63 90.20 91.51 93.79 96.15 77.73 79.82 81.65 85.43 87.79 87.72 89.29 93.01

ATL-DGP [18] 83.32 86.34 85.22 85.62 85.16 86.42 86.53 87.80 79.82 82.93 83.36 85.53 82.08 84.32 80.03 83.04

GPDE 82.95 86.35 87.52 92.10 93.73 94.64 95.36 97.84 78.71 82.17 84.65 87.85 88.83 90.01 91.38 96.86

0o -15o -30o

Neutral Disgust Scream

Figure 2. View adaptation for FER on MultiPIE dataset.

formance saturates. A further disadvantage of ATL-DGP’s

joint learning is that it requires retraining every time the

target distribution changes. Finally, the proposed GPDE,

uses the notion of experts to unify GPsource and GPtarget

into a single classifier. To achieve so, GPDE measures

the confidence of the predictions from each expert (by

means of predictive variance), in contrast to GPA (uses

source expert only) and ATL-DGP (uses an uninformative

prior). This property of GPDE is more pronounced in the

adaptation 0◦ → −30◦ with Nt > 300, where GPtarget

achieves the highest classification ratio. GPDE performs

similarly to the target expert while, GPA and ATL-DGP

underestimate the prediction capacity of the target-specific

classifier, and thus, attain lower results.

A better insight into the performance of the considered

methods can be obtained from the confusion matrices in

Fig. 3. The reported results are for 0◦ → −30◦ adaptation

with Nt = 50 (at which point the GPtarget starts outper-

forming GPsource). The proposed GPDE takes advantage

of the target-specific expert and significantly reduces the

confusion between the subtle expressions of Disgust and

Squint with the Neutral face.

5.2. Subject adaptation from multiple sources

In this section, we evaluate the models in a multi-label

classification scenario, where the adaptation is performed

from multiple source domains. This is a more challenging

setting, since the dataset is comprised of naturalistic facial

expressions, and the recorded subjects are experiencing the

affect in different ways and levels. The difficulty of the task

can be seen in Table 2, where the subject-specific classifier

GPtarget, trained with 30 labeled data points, achieves a

higher F1 score than the generic classifier GPsource, which

is trained on 20 subjects. The adaptation attained by GPA

and GPDEss (the single source instance of GPDE) results in

an improved average score compared to the subject specific

GPtarget. At this point note that GPA and GPDEss perform

similarly. The reason for this is that by treating all training

subjects as a single source domain, GPDEss smooths out

the individual differences of the training subjects by treat-

ing them as data from a single, broader, source domain.

Thus, the contribution of the target domain expert is dimin-

ished, as the variations of the target data can be explained,

on average, by the source domain. On the contrary, the

proposed GPDE with the adaptation from multiple sources

(one per training subject) not only attains the best average

F1 scores, but also achieves a more robust performance

as evidenced from the higher AUC. Finally, note that with

Nt = 10 GPDE performs better than the target specific

classifier with Nt = 500. Note also that the proposed

GPDE reaches the full (and the highest of all) performance

with only 30 samples from the target domain. This is an

important result, since obtaining the AU annotations (6 in

this experiment) is expensive and time consuming.

Table 3 reports the detailed results (F1 score) per AU for

the case of Nt = 50. The proposed GPDE attains a signif-

icant improvement (more than 5%) in AU4,6,25 compared

to its counterparts, while it only suffers a loss from GPA

on AU26. Moreover, the ROC curves in Fig. 4 show that

GPDE exhibits a more robust performance not only on AUs

with more pronounced improvement (i.e., AU6), but also on

AUs with similar F1 score to GPA (i.e., AU12). The latter

indicates that the proposed GPDE is a more robust model.

Table 3. F1 score for joint AU detection on DISFA. Subject adap-

tation with Nt = 50.

Method AU4 AU6 AU9 AU12 AU25 AU26 Avg.

GPsource 51.93 42.34 41.06 58.89 78.84 57.98 53.17

GPtarget 59.85 48.54 46.79 53.23 63.14 54.61 54.36

GPA [20] 56.75 47.97 43.88 60.33 78.35 59.82 57.85

GPDEss 60.20 50.90 47.67 59.17 73.82 59.17 58.49

GPDE 65.59 53.62 47.10 60.02 79.96 57.08 60.56

Finally, in Fig. 5 we demonstrate the ability of the pro-

posed GPDE to fuse the predictions from the individual ex-

perts in order to form the overall prediction. In the selected

example, we used the 20 first subjects from DISFA as the

source domains, and correctly predicted the ground truth la-
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Figure 3. Confusion matrices averaged across the folds when using 50 target training data for 0◦ → −30◦ adaptation.

Table 2. Average results of 6 jointly predicted AUs with subject adaptation on DISFA.

Method
Average F1 score Average AUC

10 30 50 100 200 500 10 30 50 100 200 500

GPsource 53.17 74.77

GPtarget 52.16 53.74 54.36 55.24 55.60 55.06 70.61 73.00 73.84 74.94 75.32 74.59

GPA [20] 56.54 57.42 57.85 57.87 58.22 58.39 76.45 77.64 78.14 78.52 79.07 79.38

GPDEss 56.27 57.74 58.49 58.76 59.12 58.88 75.04 77.83 78.72 79.23 79.67 79.08

GPDE 58.66 60.04 60.56 60.18 60.48 60.17 78.25 80.15 80.59 80.20 80.27 79.86
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Figure 4. Average ROC curves for AU6 (left) and AU12 (right). Subject

adaptation with Nt = 50.

bel (AU12 and AU25 active) for 2 different target subjects,

i.e., subj. #21 and #22. The depicted weights correspond

to the normalized precisions of Eq. (13) and indicate a

measure of confidence of each domain expert. The impor-

tance/confidence of the target expert increases when we use

more labeled target data during the adaptation, as expected.

6. Conclusions

The work on domain adaptation in facial behavior anal-

ysis is still in its early stage. The conducted experiments

on two adaptation tasks (view and subject) indicate several

interesting facts: the source classifier trained on a large

number of data can easily be outperformed by the classifier

trained on as few as 50 examples from the target domain.

Furthermore, the existing adaptation approaches try to adapt

the target domain to the source domain by assuming that the

two distributions can be matched. Yet, as we showed in our

experiments on view adaptation, when more target data be-

come available, the target classifier can largely outperform

the existing adaptation approaches. The proposed model

addresses these challenges by introducing the target expert,
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Figure 5. Importance weight of each domain expert (20 source, 1 tar-

get) by means of normalized predicted precision for Nt = 10 (left) and

Nt = 50 (right). The confidence of the target specific expert (red/last bar)

increases as we increase the cardinality of the labeled target domain data.

GPDE correctly predicts the activated AUs, i.e., 12,25, in both cases.

allowing it to reach (and outperform) the full performance

of either source or target classifiers with as few as 30 target

samples. In our future work, we plan to investigate the

model adaptation to the other context factors (i.e., ‘when’,

‘why’,‘what’ and ‘how’), and also to address modeling of

the structure in the output (in the case of AU detection).
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