
Recurrent Convolutional Neural Network Regression for Continuous Pain

Intensity Estimation in Video

Jing Zhou1,2, Xiaopeng Hong∗1, Fei Su2, and Guoying Zhao1

1Faculty of Information Technology and Electrical Engineering,the University of Oulu
2Beijing University of Posts and Telecommunications

1522670460@qq.com, xhong@ee.oulu.fi, sufei@bupt.edu.cn, gyzhao@ee.oulu.fi

Abstract

Automatic pain intensity estimation possesses a signifi-

cant position in healthcare and medical field. Traditional

static methods prefer to extract features from frames sepa-

rately in a video, which would result in unstable changes

and peaks among adjacent frames. To overcome this prob-

lem, we propose a real-time regression framework based

on the recurrent convolutional neural network for auto-

matic frame-level pain intensity estimation. Given vector

sequences of AAM-warped facial images, we used a sliding-

window strategy to obtain fixed-length input samples for

the recurrent network. We then carefully design the ar-

chitecture of the recurrent network to output continuous-

valued pain intensity. The proposed end-to-end pain in-

tensity regression framework can predict the pain intensity

of each frame by considering a sufficiently large historical

frames while limiting the scale of the parameters within the

model. Our method achieves promising results regarding

both accuracy and running speed on the published UNBC-

McMaster Shoulder Pain Expression Archive Database.

1. Introduction

Measuring or monitoring pain intensity is crucial in pain

medication, treatment or diagnosis to individuals who are

unable to communicate verbally, such as newborns and pa-

tients in intensive care units. Normally, pain intensity mea-

surements are conducted via self-report or checked by med-

ical staffs (e.g., nurse or physician). But these measure-

ments may cause unreliability or a large workload of hos-

pitals. Thus, a reliable automatic pain intensity estimation

model provides a more economical option to measure pain

intensity of different subjects.

∗Corresponding author

In the past decade, a plenty of approaches have been

proposed for automatic pain intensity estimation. Table 1

provides a brief summary of typical approaches. Early re-

searches tend to focus on estimating whether the subject is

painful or not, and thus, conduct pain intensity estimation

as a classification problem [2], [23], [21], [22], [24],

[19], [27], [32].

More recently, an increasing number of researchers re-

alize that simply judging whether it is painful or not for a

whole sequence is too rough for fine-grained pain intensity

estimation in practice. Therefore, they start to study frame-

level pain intensity estimation and regard it as a regression

problem.

One crucial issue here is to provide enough data where

each frame is well labeled under a standard scientific mea-

sure to facilitate related researches. In 2008, Prkachin and

Solomon [31] proposed a measure of pain intensity termed

by Prkachin and Solomon Pain Intensity (PSPI) based on

Facial Action Coding System (FACS) [8], [30]. PSPI is de-

fined as a function of the intensity of six pain related Facial

Action Units (AUs), which describe a set of facial config-

urations related to pain such as nose wrinkling and cheek-

raising. By using PSPI as the frame-level intensity measure,

a few recent works have been proposed for pain intensity re-

gression. Kaltwang et al. [18] compared three approaches

by using the locations of 66 facial landmark points, DCT,

and LBP, as well as the combinations among them. Flo-

rea et al. used the histogram of topographical features and

SVM, achieving a great result of average mean squared er-

ror (MSE) [11]. In [16], Hong et al. applied a second-order

standardized moment average pooling (2Standmap) method

which beats all approaches that only rely on a single de-

scriptor.

However, traditional static features like LBP and DCT,

which are extracted from separate frames, have inevitable

limitations in describing relevant dynamic information re-

84



Feature descriptors Pain levels Measures of pain intensity Classifier Cross Validation

C-APP + S-PTS [2] C-2 OPI, PSPI SVM Leave One Subject Out

PTS + APP [22] C-2 PSPI SVM Leave One Subject Out

PTS, APP [21] C-2 PSPI SVM Leave One Subject Out

SAPP +SPTS + CAPP [22] C-2 PSPI SVM+LLR Leave One Subject Out

AAM [24] C-2 OPI, PSPI SVM Leave One Subject Out

PLBP, PHOG [19] C-2 PSPI SVM 10-fold

Auto Encoder [27] C-2 PSPI SVM Leave One Subject Out

TPS [32] C-2 PSPI DML + SVM Leave One Subject Out

Canny Edge [15] C-2/C-8 OPI, PSPI TBM 3-fold

LBP [6] C-2 PSPI Transfer Learning Leave One Subject Out

PCA [1] C-3 VAS SVM, Angular Distance 10-fold

DCT + LBP [18] R PSPI RVR Leave One Subject Out

Hess + Grad + AAM [11] R PSPI SVM Leave One Subject Out

2Standmap [16] R PSPI RVR Leave One Subject Out

Table 1: A brief summary of the recent methods proposed for pain detection and pain intensity estimation.

1st column - Feature descriptors: S-PTS: Similarity Normalized Shape, S-APP: Normalized Appearance, C-APP: Canonical

Appearance, PTS: Normalized Shape, APP: Appearance, DCT: Discrete Cosine Transform, LBP: Local Binary Pattern,

AAM: Active Appearance Model, PLBP: Pyramid LBP, PHOG: Pyramid Histogram of Orientation Gradients, TPS: Thin

Plate Spline, PCA: Principal Component Analysis, Hess: Hessian based histograms, Grad: Gradient-based histograms; 2nd

column - Pain levels: C: classification, R-n: n-level regression; 3rd column - Measures of pain intensity: OPI: Observer

Pain Intensity, PSPI: Prkachin and Solomon Pain Intensity, VAS: Visual Analog Scale; 4th column - Classifier: SVM:

Support Vector Machine, RVR: Relevance Vector Regression, NN: Nearest Neighbor, LLR: Linear Logistic Regression,

TBM: Transferable Belief Model; and last column - Manner of Cross Validation.

quired by pain intensity estimation. For example, subjects

tend to close eyes when they are suffering pain, but tradi-

tional features and static methods cannot differentiate be-

tween normal eye blink or eye closure that related to pain

from independent frames. It thus results in unstable changes

and peaks of the estimation among adjacent frames.

To overcome this problem, we attempt to encode the

video not only from the separate frames but also among

adjacent frames. In this paper, we propose a regression

framework based on Recurrent Convolutional Neural Net-

work (RCNN) for automatic frame-level pain intensity esti-

mation. In the first step, we used Active Appearance Model

(AAM) to track faces and warped all facial images of differ-

ent poses. In the second step, given the vector sequences of

the warped facial images, we used a sliding-window strat-

egy to achieve fixed-length input samples of the recurrent

network from the video sequence. Finally, we carefully de-

sign the architecture of the recurrent convolutional neural

network for continuous-valued pain intensity. The proposed

end-to-end pain intensity regression framework can predict

the pain intensity of each frame by considering a sufficiently

large historical frames while limiting the scale of the param-

eters within the model.

The main contribution of this work is that we propose an

RCNN based framework to estimate pain intensity automat-

ically. According to the best knowledge of the authors, it is

the first time that the recurrent (convolutional) neural net-

work is applied to the task of pain intensity estimation. Cor-

respondingly, the RCNN is used as an end-to-end regressor,

which outputs continuous scores rather than discrete labels

as in the problem of classification.

The proposed regression network is evaluated on the

published UNBC-McMaster Shoulder Pain Expression

Archive Database, where our method gets promising results

with a real-time testing speed.

The remaining content of this paper is organized as

follows. Section 2 briefly introduces the background of

RCNN. Section 3 details the proposed framework. Quan-

titative experimental results are provided in Section 4. Sec-

tion 5 concludes the paper.

2. Recurrent Convolutional Neural Network

In the past few years, Convolutional neural network

(CNN) has made a great success in various computer vision

tasks, such as image classification [33], object detection

[12], and tracking [35]. CNN has been characterized by

local connections, weight sharing, and local pooling, which

largely attribute to excellent performances. Recurrent neu-

ral network (RNN) has a long history in the artificial neu-

ral network community [5], [9], [10], the most successful

85



Figure 1: The framework of the proposed pain intensity estimation approach.

applications refer to sequential tasks such as [13], [14].

RNN has been characterized by connecting hidden layers

of the current time step and several previous time steps. Be-

cause RNN reserves the temporal information in sequences,

it achieves a great performance in sequential tasks. Com-

bining the advantages of CNN and RNN, different struc-

tures of networks were proposed to fuse convolutional lay-

ers and recurrent layers to capture relevant contextual in-

formation from raw pixels in static images. In 2014, Pin-

heiro and Collobert [29] used extra recurrent connections

from the top layer to the bottom layer of a CNN for scene

labeling. In [20], Liang and Hu proposed an RCNN for ob-

ject recognition by using recurrent connections within the

same layer. Their models are different from our proposed

RCNN regression, which lies in two folds: first, the RCNNs

in [29] and [20] are applied to the tasks based on static im-

ages while here we used RCNN for modeling the temporal

information in videos; secondly, their RCNNs are used as

classifiers by using softmax function as the activation func-

tion of the fully connected layer, ours is used as a regres-

sor for estimate pain intensity. The architecture of normal

RCNN will be explained in Section 3.

3. Frame-by-Frame Regression Network

3.1. The Framework

The key problems of pain intensity estimation can be

summarized as four blocks. Firstly, each incoming facial

frame (n) of the testing video sequence should be aligned

and warped to the same frontal pose. Secondly, in order to

keep spatial and temporal information at the same time, we

need to convert each warped face into a (3-channel (RGB))

frame vector (FVn). Thirdly, because of the fixed height (H)

of the input that our RCNN requires, we applied a sliding

window to achieve testing samples. When testing the frame

n, the testing sample contains several continuous adjacent

frame vectors before the frame n (padding zeros if n <H).

Finally, we fed the samples to a trained RCNN, and the net-

work will output the PSPI predictions frame by frame. The

whole framework is shown as Fig. 1.

As for the training process, we used a random strategy

to achieve the training samples of fixed length. Similarly,

we converted all frame images into frame vectors. All con-

verted frame vector sequences will be immersed in a train-

ing pool; then the network uses windows to select randomly

a subset of the training data to conduct one training iter-

ation. The length of every training sample (H) indicates

the number of continuous frames that the recurrent network

will use at one time. Then, these training samples will be

fed into the RCNN regression structure to start learning.

3.2. Preprocessing

A pain intensity estimation algorithm should be both ro-

bust to face pose and the identity of the subject (not sub-

ject dependent). To achieve invariance to different face

poses, we exploited an Active Appearance Model (AAM)

86



Figure 2: AAM tracking; R, G, B warped faces; and RGB

warped face.

to warp all facial images of different poses into the same

frontal pose. AAM tracks the face and extracts visual fea-

tures, finding the key points on faces, such as eyebrows,

and the outline of faces. These AAM landmark points con-

stitute many non-overlapping triangles, which can warp and

align different faces into the same 2D triangulated mesh af-

ter some linear shape variation [7], [34]. In the process of

face aligning and warping, we used the same facial triangu-

lated mesh for all subjects. We warped every facial image in

RGB channels separately, then combined all channels back

to get the final RGB warped faces (see Fig. 2).

The input samples of our RCNN structure should be no

more than two dimensions, but to reserve the temporal in-

formation among frames and the spatial pixel information

of warped facial images at the same time, we considered

some different ways to convert each frame into a 1D vector,

such as flattening or extracting feature vectors. Finally, it

turned out that flattening is an effective way though it may

lose some structural information of the images. After flat-

tening, we concatenated all 1D flattened warped facial im-

ages in frame order to achieve frame vector sequences.

3.3. Architecture of RCNN

The basic idea of RCNN is to add recurrent connec-

tions within every convolutional layer of the feed-forward

CNN [20]. The overall architecture of RCNN is shown

in Fig. 3. The first layer (C1) is the standard feed-forward

convolutional layer without recurrent connections. Follow-

ing (C1), there are several recurrent convolutional layers

(RCL1∼RCLm), with a max pooling layer between every

two RCLs. Normally, the final output layer is a softmax

layer in the tasks of classification.

Each RCL is constituted by several iterative convolu-

tions, sharing weights in hidden layers among T + 1 time

steps. If unfolding an RCL, the layer can be seen as a feed-

forward subnetwork with the depth of T + 1 (see Fig. 4).

The difference between an RCL and a (T + 1)-layer CNN

Figure 3: The overall architecture of RCNN.

Figure 4: Unfolding an RCL.

is that the inputs of RCL are all the values of time steps

from 0 to T , but the inputs of CNN are the values of one

fixed time step. Thus, unfolding an RCNN through time

steps in RCLs can result in an arbitrarily deep network with

a fixed number of parameters.

The overall depth of the model is crucial for obtaining

good o the performance [37]. The existence of deeper lay-

ers or longer paths among layers in a network makes it pos-

sible for the network to learn highly complex features. On

the contrary, shorter paths may help gradient backpropaga-

tion during training. RCNN is actually a CNN with flexible

paths between the input layer to the output layer, which ex-

pands the depth of the network but also facilitate the learn-

ing [20]. In the structure of an RCL, there are several paths

from the first feature map of convolution (FM0) to the last

feature map (FMT ). In Fig.4, the darker the feature map is,

the deeper the path is. Attribute to the iteration in an RCL,

87



the length of path ranges from 1 to T + 1, including the

first path of the convolutional layer. In our framework, we

used four (m = 4) RCLs in the whole RCNN architecture.

Therefore, the length of the iterative path will range from 6

to 4(T + 1) + 2 including the first path of C1 and the last

path of the output layer. The length of recurrent time steps

(T ) was empirically set as 3.

The following subsection will introduce how the output

layer is modified for continuous-valued predictions. And

more detailed implementation setup of our network will be

described in Section 4.

3.4. Continuous Predictions

The recurrent convolutional neural network (RCNN) are

usually used to solve classification problems such as im-

age classification [20] and scene labeling [29]. Correspond-

ingly, to assign feature vectors to one of the C categories,

the final output layer is a softmax layer whose output is

given by:

ŷi =
exp

(

w
T

i
x

)

∑

i′
w

T

i′
x

, (1)

where ŷi is the predicted probability belonging to the ith

category, for i = 1, 2, ..., C, and x is the feature vector gen-

erated by the global max pooling before the output layer.

The training process is performed by minimizing the cross-

entropy loss function as:

L = −
1

N

N
∑

i=1

[yi log ŷi + (1− yi) log (1− ŷi)] . (2)

As for the estimation of pain intensity, the network

should allow continuous-valued predictions. A linear func-

tion is therefore simply used as the activation function in

the output layer of the network:

ŷ = w
T
x, (3)

where ŷ is the continuous predicted value of the network,

and x is the feature vector. Correspondingly, the loss func-

tion is modified to the mean squared error function as:

L =
1

N

N
∑

i=1

(ŷi − yi)
2
, (4)

rather than the cross-entropy function in Eq. 2. With it,

the output becomes continuous so that it turns a regressor.

Training is performed by minimizing the MSE function us-

ing the back-propagation through time (BPTT) algorithm

[36]. This is equivalent to using the standard BP algorithm

on the time-unfolded network. The final gradient of a shared

weight is the sum of its gradients over all time steps.

Figure 5: Frame distribution of the PSPI (0-15).

4. Experiments

4.1. Pain Intensity Dataset

Recently, researchers at the McMaster University and

University of Northern British Columbia (UNBC) pub-

lished a shoulder pain expression archive database [25].

This database is the most common database to be used to

assess pain detection or pain intensity estimation methods.

The database captured face videos of subjects (66 females

and 63 males) when they were performing a series of ac-

tive and passive range-of-motion tests to their affected and

unaffected limbs on two separate occasions. Out of which

videos of active tests are publicly available for research pur-

poses. In this database, each video was coded by FACS in

frame level. Observer and self-report measurements in se-

quence level were also taken. The PSPI score was computed

to quantify pain intensity in 16 discrete levels (0-15) based

on AUs [8], [30]. In this paper, we used the videos of active

tests to perform pain intensity estimation experiments, with

the 16-level PSPI as the ground-truth. Active tests include

200 sequences of 25 subjects, with totally 48,398 frames of

320×240 pixels. We noticed that the frame distribution of

the PSPI is quite unbalanced as shown in Fig. 5.

To solve the unbalanced training samples of 16 levels,

we designed a weighted strategy to keep training samples

of all labels balanced to some extent. The network selects

a subset of the training samples randomly to conduct one

training iteration. The subset contains samples of all PSPI

levels, and the percentage of samples corresponding to each

PSPI level is weighted manually.

4.2. Measurement

In our experiments, we conducted a leave-one-subject-

out strategy which leads to 25-fold cross-validation to as-

sess our method. We left all sequences of one chosen sub-

ject as the testing set and the rest sequences of 24 subjects as

the training set at the same time. The average Mean Squared

88



Error (MSE) and Pearson Product-moment Correlation Co-

efficient (PCC) were calculated by:

MSE =
1

N

N
∑

i=1

(ŷi − yi)
2
, (5)

PCC =

∑

N

i=1

(

ŷi − ŷi
)

(yi − y)
√

∑

N

i=1

(

ŷi − ŷi
)2

√

∑

N

i=1
(yi − y)

2

, (6)

where N is the total number of frames of testing sequences.

yi and ŷi are the ground-truth and the pain intensity estima-

tion of the i frame, respectively. ŷi and y are the sample

mean of {y1, ..., yN} and {ŷ1, ..., ŷN}.

4.3. Implementation Details

As is described in Section 3, we got 3-channel (RGB)

frame vector sequences (H×W) as the input of the network.

The choice of H is strongly related to the time cycle of the

pain occurrence. In our experiments, H and W were empir-

ically set as 30 and 713, respectively. In each RCL, we used

one convolutional layer first (functioning as a feed-forward

layer), then connected three iterations (T = 3 in Fig.4) fol-

lowing the feed-forward layer. In the fully connected layer,

we used a linear function as the activation to conduct the

regression task and the MSE function as the loss measure-

ment. A summary of the main network configurations is

shown in Table 2.

Layer type Configurations

Input W(713)× H(30) ×3
RGB vector sequence

Convolution l maps:256, k : 3× 3, s : 1
Max pooling 1 p : 4× 1, s : 4× 1
RCL 2 feed-forward map:256 k : 1× 1, s : 1

3 iteration maps:256 k : 3× 3, s : 1
Max pooling 2 p : 4× 1, s : 4× 1
RCL 3 feed-forward map:256 k : 1× 1, s : 1

3 iteration maps:256 k : 3× 3, s : 1
Max pooling 3 p : 4× 4, s : 4× 4
RCL 4 feed-forward map:256 k : 1× 1, s : 1

3 iteration maps:256 k : 3× 3, s : 1
Max pooling 4 p : 2× 2, s : 2× 2
RCL 5 feed-forward map:256 k : 1× 1, s : 1

3 iteration maps:256 k : 3× 3, s : 1
Max pooling 5 p : 1× 1, s : 1× 1
Output H(30) predictions

Table 2: A summary of the main network configurations.

k, s and p stand for the kernel size, stride and pooling size

in the related layer, respectively.

The initial learning rate was set heuristically and an-

nealed according to a schedule pre-determined on the cross-

validation set. When the accuracy improved so slowly, we

decreased the learning rate to its 1/10. Annealing was used

three times through a whole training process so that the final

learning rate was 1/1000 of the initial value. The momen-

tum was fixed at 0.9. Weight decay decreased overfitting as

well as dropout. Moreover, we used a batch normalization

technique [17] following the first convolutional layer and

every feed-forward layer in RCLs to accelerate the training

process. We implemented the network within the Theano

0.8 [3], [4] framework. Our experiments were carried out

on a workstation with two 2.30GHz Intel(R) Xeon(R) E5-

2650 v3 CPU, 320GB RAM, and an NVIDIA(R) Tesla K80

GPU to run our experiments. The average testing time is 25

frame per second.

4.4. Experimental Results

In our experiments, we compared our method with the

state-of-the-arts on the UNBC-McMaster Shoulder Pain

Expression Archive Database as shown in Table 3.

Methods MSE PCC

PTS [18] 2.59 0.36

DC [18] 1.71 0.55

LBP [18] 1.81 0.48

(DCT+LBP)/RVR [18] 1.39 0.59

2Standmap [16] 1.42 0.55

Hessian Histograms [11] 3.76 0.25

Gradient Histograms [11] 4.76 0.34

Hess+Grad [11] 3.35 0.41

VGG-face CNN SVR 1.70 0.43

RCNN regression 1.54 0.65

Table 3: Comparison of the proposed approach with other

approaches in the literature.

Single features, mean feature fusion, and RVR feature

fusion were proposed in [18], which includes the combi-

nations of DCT and LBP. The mean feature fusion method

calculates the weighted mean of the responses of the regres-

sion function based on one single descriptor directly, and

the RVR feature fusion method using Relevance Vector Re-

gression. [11] extracts Hessian based histograms, gradient

based histograms and AAM landmarks as features and uses

SVM as the classifier, getting the best average MSE among

all methods. [16] applies a second-order standardized mo-

ment average pooling (2Standmap) method which beats all

approaches that only rely on a single descriptor. Addition-

ally, we also used a method by extracting CNN features

(VGG-face CNN SVR) as a baseline method of neural net-

works. We fed all warped facial images into the VGG-face

89



Figure 6: An example sequence of pain intensity and estimation error for DCT+LBP SVR, VGG-face CNN SVR, and RCNN

Regression. (N.B. The ”X” on the Ground-Truth correspond to the frames of number 150, 210, 260, 290, 330, and 390).

CNN [26], then we delivered the VGG-face descriptors to

linear SVR [28].

As for our proposed method, we used regression RCNN

to conduct pain intensity estimation. We got promising re-

sults of the average MSE and PCC of 1.54 and 0.65, respec-

tively. It indicates that our method is effective. Regarding

the computational speed, our method was able to process

25 frames per second on our workstation (two 2.30GHz

Intel(R) Xeon(R) E5-2650 v3 CPU, 320GB RAM, and an

NVIDIA(R) Tesla K80 GPU). Therefore, our method is

testing efficient for real time application. Fig. 6 shows

an example pain intensity estimation sequence (frame 150

to 420) of one subject using: DCT+LBP SVR, VGG-face

CNN SVR, and our proposed RCNN regression. These

methods got the MSE of 3.83, 10.06, 1.12 and the PCC of

0.90, 0.55, 0.89 respectively in this sequence. Compared

to the other two methods, RCNN regression has a smoother

approximation and smaller estimation error. Besides, from

the frame 270 on, the subject appears to close her eyes.

Normally, eye closure relates to pain to some extent. Us-

ing traditional structural features (e.g., LBP and DCT) and

static methods (trained per frame) cannot differentiate eye

blink (short time) and eye closure (long time), so the model

tends to result in that all eye-closed images are strongly

related to pain as it has learned in the training stage. It

is the exact reason that the estimation of pain intensity by

using DCT+LBP SVR keeps a continuous high level after

the frame 270. However, our proposed regression RCNN

is a dynamic method that predicts one frame by using sev-

eral adjacent frames, which keeps the estimation line stable,

smooth, and closed to the ground-truth.

5. Conclusion

In this paper, we propose an automatic frame-by-frame

pain intensity estimation framework in video based on a re-

gression recurrent convolutional neural network. By lever-

aging the RCNN, firstly, the proposed framework predicts

the pain intensity of each frame by considering a sufficiently

large historical frames while limiting the scale of the param-

eters within the model; secondly, the framework encodes

the spatial information, without losing temporal informa-

tion of videos. To achieve continuous pain intensity esti-

mation frame by frame, we modify the loss and the acti-

90



vation functions in the last fully connected layer of normal

RCNN so that it has an output of continuous values. The

proposed method is evaluated the UNBC-McMaster Shoul-

der Pain Expression Archive Database. The comparisons

with state-of-the-art methods are promising. We also show

that the output of the proposed method turned out stable,

smooth, and also can avoid unstable jumps or peaks among

frames which are inevitable via static methods. Last but not

least, our method is computationally efficient for real-time

applications. Future work may study accelerating the train-

ing section of the RCNN for pain intensity estimation.

Acknowledgment

This work is sponsored by the Academy of Finland, In-

fotech Oulu and Tekes Fidipro Program. Moreover, Xi-

aopeng Hong is partly supported by the Natural Science

Foundation of China under the contract No. 61572205. Fi-

nally, we appreciate Mr. Ming Liang for sharing the codes

of the recurrent convolutional neural network.

References

[1] M. Adibuzzaman, C. Ostberg, S. Ahamed, R. Povinelli,

B. Sindhu, R. Love, F. Kawsar, and G. M. T. Ahsan. Assess-

ment of pain using facial pictures taken with a smartphone.

In Computer Software and Applications Conference (COMP-

SAC), 2015 IEEE 39th Annual, volume 2, pages 726–731.

IEEE, 2015.

[2] A. B. Ashraf, S. Lucey, J. F. Cohn, T. Chen, Z. Ambadar,

K. M. Prkachin, and P. E. Solomon. The painful face–pain

expression recognition using active appearance models. Im-

age and vision computing, 27(12):1788–1796, 2009.

[3] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfel-

low, A. Bergeron, N. Bouchard, and Y. Bengio. Theano: new

features and speed improvements; 2012. In Deep Learning

and Unsu pervised Feature Learning NIPS 2012 Workshop.

[4] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu,

G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio.

Theano: a cpu and gpu math expression compiler. In Pro-

ceedings of the Python for scientific computing conference

(SciPy), volume 4, page 3. Austin, TX, 2010.

[5] G. A. Carpenter and S. Grossberg. A massively parallel

architecture for a self-organizing neural pattern recognition

machine. Computer vision, graphics, and image processing,

37(1):54–115, 1987.

[6] J. Chen, X. Liu, P. Tu, and A. Aragones. Person-specific ex-

pression recognition with transfer learning. In Image Pro-

cessing (ICIP), 2012 19th IEEE International Conference

on, pages 2621–2624. IEEE, 2012.

[7] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active ap-

pearance models. IEEE Transactions on Pattern Analysis &

Machine Intelligence, (6):681–685, 2001.

[8] P. Ekman, W. Friesen, and J. Hager. Facial action coding sys-

tem: Research nexus. 2002. Network Research Information,

Salt Lake City, UT, USA.

[9] J. L. Elman. Finding structure in time. Cognitive science,

14(2):179–211, 1990.

[10] B. Fernandez, A. G. Parlos, and W. K. Tsai. Nonlinear dy-

namic system identification using artificial neural networks

(anns). In Neural Networks, 1990., 1990 IJCNN Interna-

tional Joint Conference on, pages 133–141. IEEE, 1990.

[11] C. Florea, L. Florea, and C. Vertan. Learning pain from emo-

tion: transferred hot data representation for pain intensity es-

timation. In Computer Vision-ECCV 2014 Workshops, pages

778–790. Springer, 2014.

[12] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 580–587,

2014.

[13] A. Graves, M. Liwicki, S. Fernández, R. Bertolami,

H. Bunke, and J. Schmidhuber. A novel connectionist system

for unconstrained handwriting recognition. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 31(5):855–

868, 2009.

[14] A. Graves, A.-r. Mohamed, and G. Hinton. Speech recog-

nition with deep recurrent neural networks. In Acoustics,

Speech and Signal Processing (ICASSP), 2013 IEEE Inter-

national Conference on, pages 6645–6649. IEEE, 2013.

[15] Z. Hammal and M. Kunz. Pain monitoring: A dynamic and

context-sensitive system. Pattern Recognition, 45(4):1265–

1280, 2012.

[16] X. Hong, G. Zhao, S. Zafeiriou, M. Pantic, and

M. Pietikäinen. Capturing correlations of local features for

image representation. Neurocomputing, 184:99 – 106, 2016.

[17] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

arXiv preprint arXiv:1502.03167, 2015.

[18] S. Kaltwang, O. Rudovic, and M. Pantic. Continuous pain

intensity estimation from facial expressions. In Advances in

Visual Computing, pages 368–377. Springer, 2012.

[19] R. A. Khan, A. Meyer, H. Konik, and S. Bouakaz. Pain de-

tection through shape and appearance features. In Multime-

dia and Expo (ICME), 2013 IEEE International Conference

on, pages 1–6. IEEE, 2013.

[20] M. Liang and X. Hu. Recurrent convolutional neural network

for object recognition. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

3367–3375, 2015.

[21] P. Lucey, J. Cohn, S. Lucey, I. Matthews, S. Sridharan, and

K. M. Prkachin. Automatically detecting pain using facial

actions. In Affective Computing and Intelligent Interaction

and Workshops, 2009. ACII 2009. 3rd International Confer-

ence on, pages 1–8. IEEE, 2009.

[22] P. Lucey, J. F. Cohn, S. Lucey, S. Sridharan, and K. M.

Prkachin. Automatically detecting action units from faces

of pain: Comparing shape and appearance features. In

Computer Vision and Pattern Recognition Workshops, 2009.

CVPR Workshops 2009. IEEE Computer Society Conference

on, pages 12–18. IEEE, 2009.

[23] P. Lucey, J. F. Cohn, I. Matthews, S. Lucey, S. Sridharan,

J. Howlett, and K. M. Prkachin. Automatically detecting

91



pain in video through facial action units. Systems, Man,

and Cybernetics, Part B: Cybernetics, IEEE Transactions on,

41(3):664–674, 2011.

[24] P. Lucey, J. F. Cohn, K. M. Prkachin, P. E. Solomon, S. Chew,

and I. Matthews. Painful monitoring: Automatic pain mon-

itoring using the unbc-mcmaster shoulder pain expression

archive database. Image and Vision Computing, 30(3):197–

205, 2012.

[25] P. Lucey, J. F. Cohn, K. M. Prkachin, P. E. Solomon, and

I. Matthews. Painful data: The unbc-mcmaster shoulder pain

expression archive database. In Automatic Face & Gesture

Recognition and Workshops (FG 2011), 2011 IEEE Interna-

tional Conference on, pages 57–64. IEEE, 2011.

[26] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face

recognition. Proceedings of the British Machine Vision,

1(3):6, 2015.

[27] H. Pedersen. Learning appearance features for pain de-

tection using the unbc-mcmaster shoulder pain expression

archive database. In Computer Vision Systems, pages 128–

136. Springer, 2015.

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,

V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-

chine learning in Python. Journal of Machine Learning Re-

search, 12:2825–2830, 2011.

[29] P. Pinheiro and R. Collobert. Recurrent convolutional neural

networks for scene labeling. In International Conference on

Machine Learning, pages 82–90, 2014.

[30] K. M. Prkachin. The consistency of facial expressions of

pain: a comparison across modalities. Pain, 51(3):297–306,

1992.

[31] K. M. Prkachin and P. E. Solomon. The structure, reliability

and validity of pain expression: Evidence from patients with

shoulder pain. Pain, 139(2):267–274, 2008.

[32] N. Rathee and D. Ganotra. A novel approach for pain inten-

sity detection based on facial feature deformations. Jour-

nal of Visual Communication and Image Representation,

33:247–254, 2015.

[33] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1–9, 2015.

[34] G. Tzimiropoulos and M. Pantic. Optimization problems for

fast aam fitting in-the-wild. In Proceedings of the IEEE In-

ternational Conference on Computer Vision, pages 593–600,

2013.

[35] N. Wang, S. Li, A. Gupta, and D.-Y. Yeung. Transferring rich

feature hierarchies for robust visual tracking. arXiv preprint

arXiv:1501.04587, 2015.

[36] P. J. Werbos. Backpropagation through time: what it does

and how to do it. Proceedings of the IEEE, 78(10):1550–

1560, 1990.

[37] M. D. Zeiler and R. Fergus. Visualizing and understanding

convolutional networks. In Proc. ECCV 2014, 2014.

92


