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Abstract

We present an approach where a robot patrols a fixed

path through an environment, autonomously locating sus-

picious or anomalous objects. To learn, the robot patrols

this environment building a dictionary describing what is

present. The dictionary is built by clustering features from

a deep neural network. The objects present vary depending

on the scene, which means that an object that is anoma-

lous in one scene may be completely normal in another. To

reason about this, the robot uses a computational cognitive

model to learn the dictionary elements that are typically

found in each scene. Once the dictionary and model has

been built, the robot can patrol the environment matching

objects against the dictionary, and querying the model to

find the most likely objects present and to determine which

objects (if any) are anomalous. We demonstrate our ap-

proach by patrolling two indoor and one outdoor environ-

ments.

1. Introduction

Surveillance systems are a common way of providing se-

curity in a variety of environments. A typical surveillance

system consists of multiple cameras providing visual cov-

erage of an environment to a human operator monitoring

video feeds. The goal of the system is to identify anoma-

lous objects: the appearance of low-probability objects with

respect to a model of normality for the environment (see

Figure 1 for examples of anomalous objects). For example,

seeing a toaster in the kitchen is not unusual, but seeing the

same toaster in the hallway is. These systems require that

the human sustains vigilance on the surveillance task over

long periods of time, which has been shown to lead to avoid-

able errors and oversights [27, 12]. Automated surveillance

systems mitigate this problem by providing automatic de-

tection and tracking of unusual objects and people, and then

alerting the human operator [10, 29].

We approach automated surveillance using a mobile plat-

form (i.e., a mobile robot patrolling an environment). Al-

Hallway

Normal Open Door

Cubicles

Normal Red backpack

Outside

Normal Parked cars
Figure 1. Example of normal environment (left) and anomalies

(right).

though our work is applicable for either a static or mobile

platform, a mobile platform provides more flexibility for

the areas that we wish observe. Our mobile robot learns
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about about the environments in an unsupervised manner,

simply by observing what is present. This approach allows

the robot to learn what is normal and what is not normal

for environments, without a human expert having to specify

such distinctions a priori.

Our mobile robot analyzes the environment using image

patches extracted using a fixed sized grid, which has been

shifted by a small amount in order to ensure that there are

small overlaps. Each patch is processed by a deep network,

with the sole purpose of using the features from the network

(i.e., fully connected layer) to describe the patch. This rep-

resentation incorporates both color and shape. Further, it

has been trained in a way that makes it robust to changes

in illumination, scaling, translation, and object size. Ad-

ditionally, the features are a compact representation of the

observed region, making this more feasible to be used on a

computationally limited robot feasible.

During initial training, the robot patrols the environment

in order to build up a dictionary of the things that normally

appear in each environment. In practice, this can be an

enormous amount of data: the robot typically captures at

least 10,000 images during each patrolling session, result-

ing in over 1.5 million patches. We seek a clustering ap-

proach that does not require setting the number of clusters

beforehand, and that can also append to an existing dictio-

nary when new training data is acquired. We accomplish

this using a streaming variant to k-means clustering, where

a new cluster is formed whenever it exceeds a predefined

distance to existing clusters.

In parallel, we query the PlacesCNN [32] to get the ap-

propriate label for the robot’s current location. Then, given

the robot’s area and the dictionary of features, we build up

a model of those features are common to the different ar-

eas. Our model of normality uses context from the compu-

tational cognitive architecture, ACT-R/E [30]. Context in

ACT-R/E takes the form of associations between concepts

(here, locations within the environment and the dictionary

of features). During training, as the robot learns about new

areas in an environment, or sees new objects in a known

area, the strengths of the associations between the involved

areas and features are created and strengthened: if a fea-

ture is very typical for an area, then the association between

them will be strongly weighted; if the feature is atypical for

an area, then the association between them will be absent or

weakly weighted.

Once we have constructed models of normality for var-

ious locations, the system is ready for anomaly detection.

During runtime, the robot matches the deep features ob-

served with the dictionary, and queries the PlacesCNN to

determine its current scene. Then, it checks the cognitive

model to determine the strengths between the observed fea-

tures and its current location. A strong association indicates

an in-context, non-anomalous object, and a weak or absent

Capture Image

Determine Environment Deep Features

Compare to Normal

Anomalous?

Figure 2. Overview of our approach

association indicates an out-of-context, anomalous object.

In our experiments, we patrol through 3 different types

of indoor and outdoor environments training over 3 differ-

ent days. A fourth day is collected to evaluate, and during

this evaluation , we see a true positive rate of 91.43% and a

false positive rate of 8.7% on anomalies that were inserted

into the environment. Anomalies generally are things that

were intentionally changed by adding objects to the envi-

ronment or significantly modifying one of the objects in the

environment. We are able to automatically detect the vast

majority of the changes, while keeping the false positive

rate low, which can provide a useful cue to help maintain

the vigilance of a human operator. Also of note is that one

of the strengths of this approach is that it is agnostic to a

particular location, provided that it has been given a suffi-

cient amount of time, and that it works equally well with

static or mobile cameras.

2. Related Work

Related work on automated surveillance can be broadly

split into techniques that target static versus mobile cam-

eras, as well as techniques that learn in a supervised vs. un-

supervised fashion.

2.1. Surveillance on Static Platforms

Most of the work on automated surveillance comes from

the computer vision community and uses supervised learn-

ing on static cameras. Such approaches typically either fo-

cus on detecting anomalies at the pixel-level, and or at the

region-level. Due to its algorithmic simplicity, image dif-

ferencing is a common method for anomaly detection at

the pixel-level [5, 7]. The procedure computes the pixel-

by-pixel difference between a reference image and the cur-

rent image, and then compares the difference to a thresh-

old to determine if the pixel has changed. Image differenc-

ing depends on a data-dependent threshold that is sensitive

to lighting and perspective changes, making it difficult and

error-prone when implemented on a mobile platform.

Background modeling expands upon this work by build-
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ing a model across multiple images rather than the pair-wise

comparison of image differencing. The most common tech-

nique is to use a Gaussian mixture model to model changes

in intensity across individual pixels [17, 33]. These ap-

proaches, however, still typically fail with moving cameras

(such as those mounted on a robot) and environments with

complicated patterns.

Region-based techniques, in contrast, are more robust to

noise since they model changes across regions in an im-

age sequence. Li et al. [18] look for anomalies using dy-

namic textures[8], using this approach to look for event-

level anomalies in crowded pedestrian scenes. The authors

define anomalies in terms of both appearance and motion.

One of the strengths of this approach is the definition of

anomalies, which as the authors state, should be consid-

ered in the context of the immediate surrounding environ-

ment. In this approach, they specifically target anomalies

learned from objects moving in a scene from a single, un-

changing viewpoint. We build on this approach by consid-

ering anomalies from fixed objects, and we do so using an

approach that will also permit a camera to move through

different scenes.

A large body of work has looked at anomaly detection

from the perspective of motion: an anomaly is defined as

motion that is different from the expected motion for the

scene. Researchers either look at tracking motion anoma-

lies in time [4, 26, 31], or using spatio-temporal gradients

such as optical flow [1] and Markov Random Fields [15].

Mahadevan et al. [20] take a different approach by focusing

on representation rather than using a global statistical repre-

sentation. Minematsu et al. [21] develop a motion model of

the sensor and use the model to find regions not described

by the model. Our approach does not currently consider

motion; however, we could do so in a straight-forward man-

ner by using Minematsu et al.’s techniques to extract motion

features and incorporate them into our approach.

Object level anomalies have been considered in the past,

in the context of objects that are atypical for a certain ob-

ject class (e.g., a car made of wood or a chain that is shaped

like a boat) [24]. They reason that attributes are the most

sensible way to describe abnormalities, since it is difficult

to build a model for unexpected. They describe objects us-

ing shape and color attributes, then locate anomalous ob-

jects using a support vector machine. There are several key

distinctions between our works. First, they do not take con-

text into account, where this is one of the key features of

our approach (i.e., a car parked in the front yard would

be unusual). Second, they examine the image as a whole,

whereas we only analyze parts of the image in an effort to

find regions that are anomalous. Finally, supervised learn-

ing of anomalies in such a complicated environment would

be infeasible.

In addition to the supervised techniques, there are sev-

eral recent approaches to surveillance using static cameras

that use unsupervised learning techniques [2]. Unsuper-

vised learning offers a way for an automated surveillance

system to adapt to changes in environment or to change the

state of objects with an environment [25].

2.2. Surveillance on Mobile Platforms

Robotics researchers have looked at anomaly detection

in the context of patrolling robots performing surveillance.

For training, the robot is tele-operated through the environ-

ment, collecting data at regular intervals. During patrol, the

robot determines the closest data in the training set to is cur-

rent data, and then uses a statistical technique to detect any

changes. While most of the robotics literature focuses on

detecting anomalies in 3D point clouds (e.g., [13, 3]), some

work focuses on a pure-vision solution. Kato et al. use

GIST features to detect anomalies [14], while Chakravarty

et al. use stereo correspondences to detect anomalies and

a particle filter to track anomalies in time [6]. Both these

approaches store the training images, and then use a lo-

calization technique to determine which training image is

closest to the current view. Anomalies are determined by

comparing the training image from the database with the

current image. Due to the storage of training images, nei-

ther approach scales to large environments. Soibam et al.

[28] perform a quantitative comparison of anomaly detec-

tion algorithms running on a patrol bot. They manually

spatio-temporally align images from the training run with

images from the testing run before running anomaly detec-

tion. Clearly, the manual alignment step introduces a sig-

nificant overhead and precludes autonomous operation.

Most similar to our approach, Neto and Nehmzow con-

struct a model of a normal environment, and then compare

images to the model to determine if anomalies are present

[22]. They construct a neural network using salient regions

of the image described as local color statistics. The de-

pendence solely on RGB color statistics, however, suggests

their technique is not scalable beyond the presented engi-

neered experimental environment, and would fail in real-

world environments with real-world anomalies.

3. Methodology

We assume that a robot is continuously patrolling an en-

vironment, roughly following the same path through the en-

vironment. During the patrol, the robot is processing im-

ages, looking for anything that is different for the current

environment. Our approach starts by constructing a model

of normality for different environments. We define normal

using a dictionary of deep features building using an unsu-

pervised learning technique referred to as streaming cluster-

ing. Next, a cognitive context model associates the elements

of this dictionary with different scenes. An anomaly is de-

tected when the features are not strongly associated with the
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normal model for a given scene.

We start by tele-operating the robot through various en-

vironments, and then constructing the individual normality

models off-line. However, our approach is also able to learn

this model incrementally and on-line, having the robot con-

terminously construct/update models of normality. The fol-

lowing discussion assumes construction of the models are

off-line, but a similar approach would work for on-line con-

struction.

3.1. Building a Dictionary of Deep Features

Given a single image, the robot first extracts patches

from the image using a grid of size NxN , with a step size

is N/2 to ensure a small overlap between grid cells. The

appropriate size of N typically depends on the environment

and the types of anomalies that will be detected. We found,

however, that our approach worked well for a range of val-

ues of N since we typically see the objects and anomalies at

various scales during normal interaction in the environment.

The appearance of each patch is represented with deep

features, using the “AlexNet” architecture [16], which was

fully trained using ImageNet data. The representation of

each patch comes from the last fully connected layer (fc7)

from AlexNet, which has 4096 features, typically quite

sparse. AlexNet has shown a great ability to generalize to

other datasets, including the well-known and challenging

Pascal VOC dataset [19]. These features also generalize

well to other domains, such as has been shown in [23].

The robot will be given a number of images at a rapid

frame rate, which would make traditional clustering tech-

niques infeasible to organize the data. Instead, we rely on

an online version of clustering, which has been previously

referred to as streaming clustering [9]. This applies in sit-

uations when clustering is needed, but due to time, space,

or other limitations, the data can only be seen once. In this

case, streaming clustering builds clusters as it processes the

data. When a new patch (v) is seen, it is compared to the

clusters representing known shapes (c). If it is sufficiently

closer to an existing cluster, it is labeled appropriately. If

it is not similar to an existing cluster (using Euclidean dis-

tance), a new cluster is created.

Using this approach, the dictionary is built incrementally

as the robot interacts with the environment. New deep fea-

tures are added to each dictionary as they are seen. Some

examples of clusters created in this manner are in figures 4

and 5. It interesting to note that when possible, streaming

clustering re-uses symbols from indoor scenes to outdoor.

Some examples here are potted plants, carpets, lighting and

wall. While it’s quite obvious why a plant would be re-used,

most of the others were likely kept due to to their ability to

describe something in the outdoor scene as well. For ex-

ample, in the case of the solid colors, it also matches the

appearance of the walls outside of the building

3.2. Learning Scene Context

The contextual learning component of our approach

takes place within the computational cognitive architec-

ture ACT-R/E [30]. As part of the architecture, ACT-R/E

learns rich associations between concepts in memory that

are learned incrementally over time. Here, context takes

the form of associations between related concepts that are

learned incrementally over time. The strengths of the asso-

ciations are Bayesian-esque: as concepts are thought about

with one another, their association is strengthened; if the

concepts are thought about without the other, however, then

their association is weakened. The exact equations for the

associations’ strengths can be found in [11].

We use these associations, and their strengths, to repre-

sent what one is typically expected to see in an environment.

During training, the context model “saw” the deep features

of each patch of each image, and was provided with the lo-

cation (a) from the Places CNN for that image. With each

datapoint (k), the context model incrementally learned what

normal was for each scene type by updating its associations

(cka) as described above. Ultimately, after training, features

that are typical for a scene have very strong associations

with that scene; features that are atypical for a scene have

absent, or very weak, associations with it.

3.3. Detecting Anomalies

During evaluation, the robot must match up the patches

observed with the scene. The spareness of the data can lead

to an issue where a data point may be close to several differ-

ent dictionary elements. In this case, the correct assignment

may be difficult to make without any further scene infor-

mation. Scene information gives us prior information on

the types of clusters that we will see (e.g., a kitchen may

have a ’coffee pot’ cluster; an office may have a ’telephone’

cluster). Therefore, each observed patch is weighted by the

association strengths (cka) for dictionary element k in scene

a.

pk = exp(−dk/σ) (1)

k(a) = argmink(pkcka) (2)

Where dk is the distance to cluster K, and σ is a param-

eter that can be estimated from the expected distribution of

the data. The robot detects an anomaly when k(a) falls be-

low a threshold when given scene a from the PlacesCNN.

4. Experimental Results

Our experiments sought to show how our technique ap-

plies to a wide variety of environments. To that end, we

drove our robot through three unique environments: hall-

way, cubicles, and outdoors. Figure 3 shows example im-

ages from each environment. The hallway environment is a
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Environment Number of Images

Hallway 13206

Cubicles 8827

Outside 11669
Table 1. Number of images collected during training for each en-

vironment.

typical office style hallway with two side corridors and mul-

tiple doors, both open and closed. The cubicle environment

consists of multiple cubicles, chairs, and tables along with

multiple reception areas, a kitchenette, and a copy room.

The outdoor environment contains mainly concrete and the

outside of a building.

We mounted a Carnegie Robotics S7 camera at

1024x1024 resolution at 15 FPS atop a Pioneer 3AT mobile

robot. The S7 camera projects a circular image on a square

field; so we crop a centered middle square of 750x750 pix-

els. Data collection was performed by tele-operating the

robot multiple times through each environment. Training

data consisted of six runs through each environment spread

over three days. Table 1 shows the number of images col-

lected per environment. Learning continues over all 3 days

due to natural variations in the environment, as well as

some variation in the path taken by the robot. Interestingly,

the robot continued to learn over all 3 days, although the

amount learned decreased over time. The PlacesCNN iden-

tified 47 different scenes which build up 11,203 associations

between the scenes and the deep features dictionary.

The computational cognitive model learned about 47 dif-

ferent environments during training, building associations

between all of the learned objects. Figure 4 shows some of

the patches from an indoor environment, and figure 5 shows

some of the patches from an outdoor environment. Interest-

ingly, there is overlap between the patches most strongly

associated with indoor and outdoor environments. In some

cases, the computational cognitive model is learning ba-

sic concepts like vertical lines, horizontal lines, and center-

surround. In other cases, (such as the wall color), the out-

side of the building is also lightly colored. The strength of

the cognitive model comes from the amount of weight is

placed on each of these patches, which in this figure is rep-

resented by the order of in which they appear in the figure

(top to bottom, left to right).

To evaluate accuracy of anomaly detection, the goal was

to determine how well our approach handles different types

of anomalies. Some anomalies are obvious (e.g., a back-

pack in the hallway, a car parked illegally) while others

are subtle (e.g., a moved trashcan, additional poster on the

wall). Our testing data consists of two runs through each

environment.

In the experimental results, we extract features from

100x100 grid cells, using a step-size of 50 pixels, resulting

in a total of 169 evaluated patches per image. An anomaly is

Environment FPR TPR

Office 1 11.82% 100%

Office 2 13.25% 87.5%

Hallway 1 4.27% 87.5%

Hallway 2 4.35% 88.9%

Outside 1 8.42% 93.33%

Outside 2 12.28% 88.24%

8.7% 91.43%
Table 2. Accuracy of the approach at a selected threshold.

considered to be correctly detected if it has at least one grid

cell that exceeds the given threshold for an anomaly. Like-

wise, a false positive is whenever a grid cell activates when

it is not on an anomaly. Such an experiment can be diffi-

cult to perform in an active office environment, since there

are always small, subtle changes. In some cases, anomalies

were detected, but since they were not one of the inserted

anomalies, they are considered nuisances and are false pos-

itives. Some examples are office plants that were moved,

chairs that were at a different orientation, trash bags that

were placed differently, and paper towels that were left on a

counter.

Figure 6 shows the ROC curve, and Figure 7 shows some

common detection and failure modes. Results at a selected

threshold are shown in table 4. The algorithm performs well

on true positives, but not surprisingly struggles on non-rigid

objects like sweatshirts. It is possible that evaluating this

from different angles and perhaps different scales would in-

crease the performance. Many of the false positives, par-

ticularly in the office environment, were at a distance. This

was because of the increasing complexity when considering

a lot of objects together, it is possible that we can eliminate

this by looking only at the immediately surrounding region.

Finally, some of the biggest issues were related to lighting,

due the auto-gain and auto-white balance of the camera.

When near windows, or moving into and out of shadows,

the picture changed dramatically. In all of the cases, the

performance on the environment with constant light (hall-

way) is the highest.

5. Discussion

Detecting anomalies in practical environments can be

highly challenging for a number of reasons. It is difficult

to define normal, especially since normality changes from

environment to environment. Also, it is difficult to train

hand crafted object detectors to find anomalies, since by

their very nature they are not typical for the environment.

The proposed approach simultaneously solves both of

these problems using a computational cognitive model to

learn normality, and unsupervised learning of deep features

to build a model of the objects that appear in each environ-

ment.

23



Figure 3. Example images from each experimental environment. The top row is hallway, the middle row is cubicles, and the bottom row is

outdoors.

Figure 4. The patches from the deep features dictionary most

strongly related to to an indoor scene. These are in order of de-

creasing association strength from left to right, top to bottom.

Figure 5. The patches from the deep features dictionary most

strongly related to an outdoor scene. These are in order of de-

creasing association strength from left to right, top to bottom.

The strength of this approach is the ability to learn about

a lot of different objects and environments. In our results,

we did this over a 3 day period, where the approach learned

about almost 1600 items in 47 different environments. This

model was queried during the evaluation mode, both to

identify the most likely objects in the environment, as well

as to find anomalies. Through repeated exposure of the

same environment, it is likely that the accuracy would con-

tinue to increase. Although we did not incorporate a map

into our approach, it is possible that this could further im-

prove accuracy.

Detecting anomalous objects can be difficult. Some of

the limitations in the model were objects that moved on a

regular basis which were identified as anomalies. Some ex-

amples include chairs, trash cans, and plants moved for wa-

tering. Although they could be classified as an anomaly,

most operators would identify this as more of a nuisance.

Higher level reasoning is needed in such cases to identify

the likely cause of the change and to rule out such nui-

sances.

For the purposes of this work, we considered a fixed

sized grid with the intention of moving the robot closer and

farther from the environment, which eliminates the need for

multiple scales. In practice, it may be useful to consider

bounding boxes of different sizes, possibly by incorporat-
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Figure 6. ROC curve showing the performance of the algorithm in

the test environment.

ing superpixels or selective search.
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