
Mobile Device Based Outdoor Navigation With On-line Learning Neural
Network: a Comparison with Convolutional Neural Network

Zejia Zheng
Michigan State University

428 South Shaw Lane, East Lansing
zhengzej@msu.edu

Juyang Weng
Michigan State University

428 South Shaw Lane, East Lansing
weng@cse.msu.edu

Abstract

Outdoor navigation is challenging with its dynamic envi-

ronments and huge appearance variances. Traditional au-

tonomous navigation systems construct 3D driving scenes

to recognize open and occupied voxels by using laser range

scanners, which are not available on mobile devices. Exist-

ing image-based navigationmethods, on the other hand, are

costly in computation and thus cannot be deployed onto a

mobile device. To overcome these difficulties, we present an

on-line learning neural network for real-time outdoor navi-

gation using only the computational resources available on

a standard android mobile device (i.e. camera, GPS, and

no cloud back-end). The network is trained to recognize

the most relevant object in current navigation setting and

make corresponding decisions (i.e. adjust direction, avoid

obstacles, and follow GPS). The network is compared with

state of the art image classifier, the Convolutional Neural

Network, in various aspects (i.e. network size, number of

updates, convergence speed and final performance). Com-

parisons show that our network requires a minimal number

of updates and converges significantly faster to better per-

formance. The network successfully navigated in regular

long-duration testing in novel settings and blindfolded test-

ing under sunny and cloudy weather conditions.

1. Introduction
In this paper, we describe the design and learning system

for our outdoor navigation application based on the Devel-
opmental Network (DN). The goal for this application is to
help visually impaired people walk around using the mobile
phone built-in camera and GPS. Although there are many
existing algorithms for outdoor robotic navigation, these
algorithms are often dependent on proximity sensors such
as radars which are not available in current mobile devices
[12, 7]. Visual based approaches proposed in [2, 9], on the
other hand, are costly in computation, which makes real-

time training and testing with no cloud back-end support
impossible. Developing a mobile device based navigation
application requires careful engineering of a complex sys-
tem which leverages action accuracy to balance the trade-
offs imposed by the limited computational resources of a
mobile device.

In contrast with other outdoor navigation systems which
often have their own motors to carry out precise movements
[7, 12], our mobile phone based application provides only
rough instructions to the human user (i.e. left, slightly left,
right, slightly right, forward, and stop). Instructions in our
application are more similar to labels in image classifica-
tion problem than detailed movement instructions (e.g. turn
right 32 degrees versus turn right). Thus it is natural for one
to resort to current state of the art image classifier Convolu-
tional Neural Network (CNN). However, a closer look into
the architecture reveals that the CNN, although giving sat-
isfactory final performance, is not the best choice for real-
time navigation. Detailed analysis is presented in next sec-
tion.

2. Comparison with Convolutional Neural Net-
work

Convolutional Neural Network (CNN) [6] is one of the
leading image classification architectures for hierarchical
feature extraction. CNNs have been reported to have state
of the art performance on many image recognition and clas-
sification tasks, including hand written digit recognition [5],
house number recognition [10], traffic sign classification
[1], and 1000 class ImageNet dataset classification and lo-
calization [4, 11].

Although CNNs are proven effective in batch image clas-
sification and feature extraction, the architecture and learn-
ing mechanism suffers from the following drawbacks in
mobile device based outdoor navigation:

1. Inconsistent on-line learning performance. Outdoor
navigation settings are dynamic with meandering side-
walks and numerous obstacles. On-line learning,

11

Figure 1. Sample outdoor navigation settings. The samples show
the environment in which we train and test our outdoor navigation
application. The application faces dynamic environment with un-
predictable obstacles and pedestrians. The application also needs
to handle different lighting conditions.

Figure 2. Blindfold testing. The user is completely reliant on the
audio output of the navigation application during blindfold testing.
A Go-Pro camera is mounted at eye-level of the user to record
the environment and the output of the application for performance
analysis. Refresh rate of the application is 5-8 frames per second.
Audio instruction is broadcast to the user every 1.5 seconds. The
application uses Google Directions API, Google Maps API and
Google Location Service to grab the GPS input.

which allows the network to learn unfamiliar environ-
ments on the fly with few training samples, appears
to be a more sensible option. However, CNN, trained
with stochastic gradient descent (SGD), goes through
many (usually hundreds of) iterations of fine-tuning
before it reaches satisfactory performance. The slow
convergence speed is also demonstrated in our experi-
ment results presented in Fig.7(b).
Hebbian learning (implemented as Lobe Component
Analysis [14] in our network), on the other hand, uses
input examples to initialize weights and find the fine-
tuning direction. Convergence speed of a hebbian
learning based network is usually much faster than gra-
dient based network of the same size, making it a bet-
ter learning mechanism for on-line learning scenarios.
Comparison of convergence speed is shown in Fig.7(b)
and Sec.4.1.

2. Computationally costly update on resource limited
mobile device. Unlike other neural network based ap-
plications (e.g. voice recognition and image classifica-
tion) which often have cloud backends, real-time nav-
igation requires fast computation and immediate re-
sponse, making it impractical to wait for network com-

munications to finish. Thus the computation and learn-
ing process must be solely carried out on the mobile
device. To update its network weights, CNN relies on
error-back propagation to find out the partial derivative
of the error function with regard to each weight. The
tuning process uses too many resources on a mobile
device, making it impractical for the real-time naviga-
tion task.

In contrast, competitive learning (modeled as top-k
competition in our network) only updates a small por-
tion of the entire network. Neuronswith the highest fir-
ing values, meaning that their stored patterns are most
relevant to the current input, inhibit firing in the other
‘irrelevant’ neurons. Weight fine-tuning takes place in
only these firing neurons, which is usually set to be
a small portion of the entire network, saving compu-
tational resources and preserving the stored pattern in
the other inhibited neurons.

Based on these two observations, we present our hebbian
learning neural network with top-k competition for mobile
device based outdoor navigation. The network is proven
to be able to perform at around 95% action accuracy in in-
door environments [15] and this is our first set toward real-
world outdoor navigation. As presented in Table 1, our DN
uses hebbian learning to achieve stable performance at early
stages of training (1-2 epochs), which makes the network
an ideal candidate for on-line learning. Top-k competition
minimizes the number of weight updates for each learning
sample, speeding up the computation to real-time response
(5-8 frames per second) for outdoor navigation. With the
help of top-down recognition information at training stage,
the final action accuracy of DN is 2% higher compared to
the action accuracy of CNN. The detailed discussion of per-
formance evaluation is presented in Sec.4.1.

Although the Developmental Network draws its inspira-
tion from Hebbian learning and shares similarity with Ko-
honen’s network (also know as self-organizing map) [3],
there are major conceptual and architectural differences be-
tween a DN and an SOM (i.e. self-organizing map). While
SOM uses purely bottom-up input to perform clustering
without supervision, top-down connections in DN extract
motor discriminative features as shown in the work of Lu-
ciw and Weng [8]. Top-down connections from motors al-
low the network to generate context based attention (e.g.
when turning right the neurons focusing on the right half
of the input would be more likely to fire). When ex-
panded along the time axis, the top-down connections can
be viewed as a recurrent connection from motors for the
network to generate one-step predictions according to the
current firing patterns in both hidden area and the motor
area.

12

Table 1. Comparison between CNN GPS Recog and DN Full ar-
chitectures.

CNN GPS Recog DN Full

Num. of weights 276500
weight sharing

1309232
local weights

Num. of neurons 46986 3900
Num. of updated
weights per sample 276500 3081

Learning mechanism SGD Hebbian

Convergence speed slow
450 epochs

fast
1-2 epochs

Online learning no yes
Best performance
(error action rate) 24.70% 22.80%

3. Developmental Network for outdoor naviga-
tion

3.1. Developmental Network (DN)
A Developmental Network has three areas: a sensory

area denoted asX , a hidden area denoted as Y , and a motor
area denoted as Z . Neurons, located in the hidden area on
a two-dimensional grid, accept global or partial input from
their receptive fields. The connection between the hidden
area and the motor area is bidirectional.

DN, an on-line learning system, constantly updates its Y
area from the input in X and Z area. The Z area serves as
additional input when the motors are supervised. When the
agent is in testing phase, then Z area serves as area where
the agent performs movement corresponding to the firing
pattern in Z .

Firing of neurons in the network goes through the fol-
lowing stages:

1. Similarity measure. At this stage, each neuron com-
pares its received input with its stored pattern and uses
the calculated similarity as the neuron’s firing value.
The preresponse of the bottom-up response in each
neuron is calculated as follows:

r̂u,i = 〈
xt

||xt||
,

wu,i

||wu,i||
〉 (1)

where xt is the sensory input vector from X area
at time t, and wu,i is the corresponding bottom-up
weight of neuron i. The brackets indicate inner prod-
uct of two unit vectors. ru,i is then calculated from r̂u,i
by prescreening, modeled as top-k competition. Simi-
larly, zt is be used to calculate the top-down response
rd,i for each neuron by replacing the xt and wu,i in
Eq. (1) with zt andwt,i.

2. Inhibition and competition. Neurons are then compet-
ing to fire. Top-k competition is used as a simulation of

global dynamic inhibition among neurons. After each
neuron i computes its bottom-up response value, ru,i,
and top-down response value, rd,i, the neuron’s prere-
sponse value is set to be the average of the two values:

ri =
1

2
(ru,i + rd,i) (2)

The final neuron response in the Y area is given by
top-k competition. The k neurons with the highest pre-
response value will fire with the adjusted responses,
while other neurons will be suppressed. To adjust the
response values based on their ranking:

r′i =

{

ri · (ri − rk+1)/(r1 − rk+1) rk+1 ≤ r ≤ r1

0 otherwise

where r1 is the highest response value; rk+1 is the k+
1th highest response value, ri is the original response
and r′i is the adjusted response. In our experiment, we
set k = 3 for each Y layer.

3. Learning and updating. Hebbian learning takes place
in firing neurons. The input which triggers firing in
winning neuron is remembered as an incremental av-
erage to the existing weight vector. If a neuron wins in
the multistep lateral competition described above (its
firing rate is larger than zero), its bottom-up weight
and top-down weight would be updated using the fol-
lowing Hebbian learning rule:

wu,i ← β1wu,i + β2r
′

ixt

where β1 and β2 determine retention and learning rate
of the neuron, respectively:

β1 =
mi − 1− µ(mi)

mi

, β2 =
1 + µ(mi)

mi

(3)

with β1 + β2 ≡ 1, mi is the neuron’s firing age (i.e.
mi = 1 in the beginning of training, and increments
by one each time the neuron wins lateral competition),
and µ(mi) is the corresponding learning rate:

µ(mi) =

⎧

⎪

⎨

⎪

⎩

0, ifmi < t1

c(mi − t1)/(t2 − t1), if t1 < mi < t2

c+ (mi − t2)/γ, mi > t2
(4)

We used typical value t1 = 10, t2 = 103, c = 1 and
γ = 104 in the experiment.

3.2. DN with multiple concept zones
In this paper, our outdoor navigation DN Full uses one

sensory area and four motor areas, as shown in Fig.3.

13

Camera

Hidden area

forward stop
left slightly left
right slightly right

Motor

action

ZM

GPS

ZG

forward

arrive

left

right

neuron

bottom-up connection top-down connection

range of connection

Object

recognition

ZR

obstacle

ofroad

crossroad

Attention

location

ZA

upper left

lower left

upper right

lower right

middle free

nothing

Figure 3. DN used for outdoor navigation. The hidden layer con-
tains three sub-layers with neurons of different receptive field sizes
(15 pixels,19 pixels and 21 pixels). The GPS motor zone ZG is
always supervised by the mobile phone GPS, thus the bottom up
connection to that zone is not used in computation (dashed). Detail
about the network is presented in Table 2. DN No Recog shares
the same architecture as this DN (denoted as DN Full) in the hid-
den layer and the input layer. The difference is that DN No Recog
does not have concept zone ZR and ZA.

One sensory area (X) and four motor areas (ZM for mo-
tor action, ZG for GPS input, ZR for object recognition,
and ZA for attention of the agent) are used in the navigation
experiment presented in Sec.4. The network also has four
sets of top-down weights for each of the motor concepts.
The top-down response calculated in Eq. (2) would then be
calculated as:

rd,i =
1

4
(rMd,i + rGd,i + rRd,i + rAd,i) (5)

To show that object recognition modules (ZR and ZA)
are needed to improve the performance of DN, we re-
moved the two concepts zones related with object recogni-
tion and constructed DN No Recog. DN No Recog would
thus have two motor areas (ZM and ZG). Eq. (5) changes
accordingly.

Worthy of notice is that the recognition concepts (i.e. ZR

and ZA) are not supervised during testing. This means the
top down response would not contain rRd,i and rAd,i when the
network is in validation or testing mode.

3.3. Hardware platform
The mobile device we used in the experiments is a HTC

One M8 with a 2GB Ram and a Quad-core 2.3 GHz Krait
400 CPU. To facilitate training and testing, a Moga Pro
Bluetooth controller was paired with the application to feed
in supervised motor information and track the number of
errors made. The mobile device is equipped with a 4MP
autofocus camera, which serves our purposes well. The
phone also has a Adreno 330 GPU installed, which makes
computation parallelization with OpenCL possible for fu-
ture extension. Currently all code is written in JAVA with

Table 2. Navigation experiment network detail
Zone Number of neurons Detail

X 38x38 matrix, real value reshaped to 1x1444
and normalized

Y
layer 1: 20x20x3 neurons
layer 2: 18x18x3 neurons
layer 3: 24x24x3 neurons

receptive field size 19
receptive field size 21
receptive field size 15

ZM 6 neurons 6 motor actions
ZG 4 neurons 4 GPS inputs
ZR 4 neurons 4 obstacle categories
ZA 6 neurons 6 attention regions

Android SDK. The captured image is resized into a 38 by 38
grayscale image using OpenCV4Android. The current up-
date speed is 5-8 frames per second in learning and testing
mode depending on the status of the mobile device.

4. Experiment
The goal for this application is to help people navigate

in outdoor environments. So far we have performed experi-
ments by walking around the university campus. While our
application is designed to learn on-line and in real-time, the
performance of the network is compared with other visual
recognition methods using collected batch data as is shown
in the next subsection.

The outdoor navigation for the agent is simplified into
nine different general settings, shown in Fig.5.

4.1. Batch training and performance validation
To validate the performance of our network and make

comparisons, 4109 training samples are collected at differ-
ent times around the university campus for batch training
and testing. The data collection process consists of 4 dif-
ferent sessions with 2 lighting conditions: mid-afternoon
when direct sunlight causes sharp contrast of shadows on
the road, and late afternoon when the contrast is not as ob-
vious. One training sample consists of an input image, the
GPS signal at that time, the correct action, the most relevant
object that needs to be recognized, and the location of that
object in the input image (i.e. attention). The first two con-
cepts were recorded in real-time using the paired controller
and the application interface. The latter two concepts (i.e.
type and attention) can also be specified using the interface
by stopping the recording session and selecting the specific
items. In the experiments these two concepts were manually
labeled after we collected the data.

4-fold cross validation was performed after data was col-
lected and labeled. The tested network was trained for
10 epochs, with performance evaluated at the end of each
epoch.

To make comparisons, the performance of our network
without the object recognition concept zones is also re-

14

...
...










5
5

5
5








































Figure 4. CNN GPS Recog architecture for outdoor navigation. The three subsidiary signals are concatenated into one feature vector,
which is then combined with the high level feature vector generated by two rounds of convolution and max-pooling over the input image.
A two layer fully connected neural network is then deployed on top of the feature vector to generate the final output action. This architecture
can be trained using stochastic gradient descent (SGD) and error-back propagation. We compare the performance of this architecture with
our Developmental Network in Sec.4.1. The CNN GPS network shares the same architecture as the CNN GPS Recog in convolution and
pooling parameters, but there are no available type and attention information for CNN GPS during training.

GPS: Forward
Action: Forward

GPS: Right
Action: Right

GPS: Forward
Action: SLLeft

GPS: Forward
Action: SLLeft

 or Stop

GPS: Left
Action: Left

GPS: Forward
Action: SLRight

GPS: Right
Action: SLLeft

GPS: Left
Action: SLRight

Figure 5. Navigation settings faced by the application. The agent
needs to learn the corresponding actions on-line in real-time with-
out prior knowledge of the environment. Regardless of the situa-
tion, GPS input of arrive corresponds to an action of stop, which is
not plotted in the figure. DN Full is also required to learn the most
relevant object in the current setting. SLLeft is short for slightly
left. SLRight is short for slightly right.

ported, as shown in Fig.7(a). Please note that our DN al-
ready demonstrated performance close to its best perfor-
mance among the 10 epochs after only 1 epoch of train-
ing. This speed of convergence is significantly faster com-
pared to typical gradient decent based methods like Convo-
lutional Neural Networks as shown in Fig.7(b). Both the
CNN GPS and CNN GPS Recog reach performance com-
parable to DNs at about the 400th epoch.

The additional recognition information helps the net-
work to generalize learned concepts to unfamiliar environ-

training data collection route
blind folded testing route
regular testing route

Figure 6. Campus map of Michigan State University. Data collec-
tion routes, blindfold testing routes and regular testing routes are
marked in this figure. There is no overlap in these routes.

ments, boosting the performance by almost 4 percent. The
additional information does not help the CNN to gain bet-
ter performance. This can be explained by the fact that
CNN relies on the calculated errors to fine tune the inter-
nal weights, and the error is only calculated from the action
of the agent. The recognition information is not affecting
the formation of convolutional layers, and the recognition
information is not affecting testing results since no such
information is available during testing. However, in DN,
recognition information is utilized as the top-down input
from motor concept. The neurons with better recognition
results are more likely to fire and win in the top-k compe-

15

tition. Information in those concept zones helps to select
the most appropriate neuron to learn the current input, thus
increasing the performance by almost 4 percent.

Another thing to notice is an inconsistent action in cross
validation does not necessarily mean a wrong action in real
world environment. The network is designed to able to re-
cover itself from the wrong facing directions and return to
the correct position. Thus in real world testing, we report
performance in two categories: inconsistent with the super-
visor’s intention, and definite errors. Errors are defined as
hitting the obstacle, stuck in stop action, or step off road.

4.2. Autonomous navigation in novel settings

In this experiment the network is put in real-world out-
door environments and its performance is tested. 1516 ac-
tions were tested around the university campus. We made
sure to choose testing routes different from the training
routes where batch training data was collected as described
in Sec.4.1. The testing routes and the training routes are
shown in Fig.6. Testing was carried out in real-time with
the user checking the correctness of output at each step,
which takes about 1.5 sec per step. The user would then
carry out the action instructed by the application and move
on to the next step. If the output action is different from the
intention of the user, then the count indicating this differ-
ence (the Diff count) would increment by 1. If the result of
the output action leads to a collision into obstacles, or step-
ping off the road, or missing the arrive point, or if the user
is stuck in stop output at the wrong location, then the Error
count would increase by 1.

To check the influence of sunlight and shadows, the ex-
periment was carried out in 2 different sessions within four
days. Results of this testing is presented in Table 3. Session
1 was carried out in mid-afternoon when the degree of con-
trast between shadow and bright surfaces was at its peak.
Session 2 was performed at late afternoon when the con-
trast was not as sharp. The results show that our network
gives almost perfect performance at the testing routes. All
of the errors observed in the testing scenarios occurred in
session 1 testing, when the strong shadows were recognized
as obstacles by the network. Testing outputs are presented
in Fig.8.

It can be seen from the samples in Fig.8 and Table 3 that
the biggest challenge for the current network is the shadows
on the ground. In session 2 testing when the shadows are
less observable, the network gives flawless action accuracy,
with no errors observed in the 736 actions tested. Because
only grayscale images are used in the internal computation,
the shadow can be easily mistaken as obstacles blocking the
path. One solution is to add shadows as another recognition
type in the recognition motor, and use RGB images instead
of grayscale images for our network.

1 2 3 4 5 6 7 8 9 10
20%

30%

40%

50%

60%

70%

80%

Epochs

Er
ro

r a
ct

io
n

ra
te

CNN_GPS
CNN_GPS_Recog
DN_No_Recog
DN_Full

(a) Error action rate of 10 epochs of training.

0 100 200 300 400 500
20%

25%

30%

35%

40%

45%

50%

55%

60%

65%

70%

Epochs

Er
ro

r a
ct

io
n

ra
te

CNN_GPS_Recog
CNN_GPS
DN_Full
DN_No_Recog

(b) Error action rate of 500 epochs of training.

Figure 7. Error action rates of four network architectures. Heb-
bian learning based networks like DN Full and DN No Recog
approach their best performance after only one epoch of
training. The SGD based architectures like CNN GPS and
CNN GPS Recog only reaches comparable performance after 400
epochs of fine-tuning. With the help of type information and lo-
cation information, DN Full learns to recognize the most relevant
objects in the current setting, thus achieving better performance
compared to other architectures. However, CNN GPS Recog
achieves slightly better performance at the beginning of training
compared to CNN GPS. Type information and location informa-
tion does not seem to be helpful in the process of gradient descent.
Detailed discussion is presented in Sec.4.1.

4.3. Autonomous navigation with user blindfolded

The real-world testing described in Sec.4.2 was per-
formed with the user carrying out the output action with
the ability to see the environment and adjust his movement.
In this testing we blindfold the user and change the output
of the application to audio output. The instructions gener-
ated by the application is broadcasted to the user every 1.5
second. Three blindfolded test sessions at different places
around the campus were performed. Routes of these three

16

Error samples

Diff samples

Correct samples

Label: Forward
GPS: Forward
Output: Stop

Label: Forward
GPS: Forward
Output: Stop

Label: Forward
GPS: Forward
Output: Stop

Label: Forward
GPS: Forward
Output: Stop

Label: Forward
GPS: Forward
Output: SLLeft

Label: Forward
GPS: Forward
Output: SLRight

Label: Forward
GPS: Forward
Output: SLLeft

Label: Forward
GPS: Forward
Output: SLRight

Label: SLRight
GPS: Forward
Output: SLRight

Label: Forward
GPS: Forward
Output: Forward

Label: SLRight
GPS: Forward
Output: SLRight

Label: Right
GPS: Right
Output: Right

Figure 8. Testing samples from regular testing session. Sharp contrast caused by over-casting shadows was the biggest challenge to the
performance of the network. The observed errors are all caused by shadows with sharp contrast and irregular shapes. Sec.4.2 discusses
how this issue can be resolved. Diff is short for different from supervisor’s intention.

Table 3. Real-time testing result with DN Full. SLLeft is short for slightly left, and SLRight is short for slightly right.

Summary Session 1
14:00-15:30 (2 days)

Session 2
18:30-20:00 (2 days)

Total Actions Total Diff Total Error Actions Diff Error Total Actions Diff Error
Right 155 6 (3.87%) 1 (0.65%) 84 4 1 71 2 0

SLRight 172 18 (10.47%) 1 (0.58%) 82 16 1 90 2 0
Forward 788 124 (15.74%) 11 (1.40%) 438 72 11 350 52 0
SLLeft 214 24 (11.21%) 0 (0.00%) 103 16 0 111 8 0
Left 128 10 (7.81%) 0 (0.00%) 73 10 0 55 0 0
Stop 59 6 (10.17%) 0 (0.00%) 0 0 0 59 6 0
Total 1516 188 (12.40%) 13 (0.86%) 780 118 13 736 70 0

blindfolded tests are presented in Fig.6. Because the user
cannot check the output at real-time and evaluate the cor-
rectness of movement at each step, accuracy of the output is
not precisely evaluated.

Detailed description about this navigation experiment is
presented in Table 4. The agent failed at the second blind-
folded session, leading the user into a glass door at the li-
brary entrance. Glass door was a novel obstacle which is
not included in the training set. This failure shows that the
network would fail to recognize untrained objects, which
means (1) incremental learning is important for real-world

applications, and (2) novel object detection and learning
mechanism is needed for a full-fledged commercial prod-
uct.

Demonstration video of this process is available at:
https://youtu.be/2XK69kAkFcQ?list=PLVs0MJh9CrcF
-rqzfYAluiZtfs y6mvD0. Note that when copying and past-
ing the url address from pdf to browser, the dash and under-
score need to be added manually. Full length recording of
the demonstration is available upon request.

17

Table 4. Blindfold testing detail
Steps Detail Description Weather condition End Result

425

Forward on shadowed road ->Turn right ->
Avoid pedestrians ->Go over bridge ->Bikes
and pedestrians ->Avoid bushes ->Fork
road ->Bushes ->Trees ->Garage building ->
Shadows ->Destination

Sunny with
shadows Success

217
Forward on open settings ->Turn left ->Fork
road ->Cross road ->Poster signs ->Litter
bin ->Building entrance

Cloudy with
no obvious shadows

Failed
at building
entrance

480
Forward on shadowed road ->Turn right ->
Turn right ->Avoid Pedestrians ->Avoid
lamp posts ->Tilt to right ->Destination

Sunny with
shadows Success

4.4. Real-time training
Our network learns on-line with all the computa-

tion carried out on the phone with no cloud back-end.
A demonstration of on-line learning can be found at
https://youtu.be/2XK69kAkFcQ?list=PLVs0MJh9CrcF
-rqzfYAluiZtfs y6mvD0. Note that for debugging purposes,
we are using supervised GPS instead of phone built-in au-
tomated GPS in the real-time training video.

5. Discussion
We have described an outdoor navigation application for

mobile devices based on the on-line learning object recogni-
tion neural network. The network operates in real time in a
dynamically varying outdoor environment. All learning and
computation takes place on the mobile device in less than
0.2 sec per frame with no cloud backend. Hebbian learning
helps the network to converge at a significantly faster speed
compared to stochastic gradient descent approach. Top-k
competition minimizes the number of updates required per
learning sample and thus boosts the refresh rate of our ap-
plication.

There are several limitations to our current experiment.
Testing of our network was performed under only sunny or
cloudy weathers. We have not tested or trained the net-
work in rainy weathers. However, with enough neural re-
sources (number of neurons, and more epochs of learning)
and training samples, our network will be able to demon-
strate success in other weather conditions. The navigation
action tested was limited to obstacle avoidance and direc-
tion correction. To perform complicated action sequences
requires detailed design in motor zones. DN has already
been proven to be capable of simulating the behavior of a
Finite Automaton error free, given enough computational
resources [13]. Thus our network should be able to han-
dle sequential movements, but this goes beyond the scope
of this paper. Furthermore, the input image was resized
to a much smaller size so that the computation can be car-
ried out in real time. However, this may leads to loss in
available information and downgrade the performance. We
are currently moving costly computation to OpenCL paral-
lelization to exploit the computational power of the mobile
device.

References
[1] D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column

deep neural networks for image classification. In Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE Confer-

ence on, pages 3642–3649. IEEE, 2012.
[2] J. D. Crisman and C. E. Thorpe. Scarf: A color vision system

that tracks roads and intersections. Robotics and Automation,
IEEE Transactions on, 9(1):49–58, 1993.

[3] T. Kohonen. The self-organizing map. Neurocomputing,
21(1):1–6, 1998.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012.

[5] B. B. Le Cun, J. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel. Handwritten digit recogni-
tion with a back-propagation network. In Advances in neural
information processing systems. Citeseer, 1990.

[6] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

[7] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held,
S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, et al.
Towards fully autonomous driving: Systems and algorithms.
In Intelligent Vehicles Symposium (IV), 2011 IEEE, pages
163–168. IEEE, 2011.

[8] M. Luciw and J. Weng. Top–down connections in self-
organizing hebbian networks: Topographic class grouping.
Autonomous Mental Development, IEEE Transactions on,
2(3):248–261, 2010.

[9] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a
neural network. Technical report, DTIC Document, 1989.

[10] P. Sermanet, S. Chintala, and Y. LeCun. Convolutional neu-
ral networks applied to house numbers digit classification. In
Pattern Recognition (ICPR), 2012 21st International Confer-

ence on, pages 3288–3291. IEEE, 2012.
[11] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,

and Y. LeCun. Overfeat: Integrated recognition, localization
and detection using convolutional networks. arXiv preprint
arXiv:1312.6229, 2013.

[12] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner,
M. Clark, J. Dolan, D. Duggins, T. Galatali, C. Geyer, et al.
Autonomous driving in urban environments: Boss and the
urban challenge. Journal of Field Robotics, 25(8):425–466,
2008.

[13] J. Weng. Natural and Artificial Intelligence: Introduction to
Computational Brain-Mind. BMI Press, East Lansing, MI,
2012.

[14] J. Weng andM. Luciw. Dually optimal neuronal layers: Lobe
component analysis. IEEE Transactions on Autonomous

Mental Development, 1(1):68–85, 2009.
[15] Z. Zheng, X. He, and J. Weng. Approaching camera-based

real-world navigation using object recognition. Procedia

Computer Science, 53:428–436, 2015.

18

