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Abstract

Real-world biometrics recognition problems often have

two unknowns: the person be recognized, as well as a hid-

den unknown - missing data. If we choose to ignore data

that is occasionally missing, we sacrifice accuracy. In this

paper, we present a novel technique to address the problem

of handling missing data in biometrics systems without hav-

ing to make implicit assumptions on the distribution of the

underlying data. We introduce the concept of “operational

adaptation” for biometric systems and formalize the prob-

lem. We present a solution for handling missing data based

on refactoring on Support Vector Machines for large scale

face recognition tasks. We also develop a general approach

to estimating SVM refactoring risk. We present experiments

on large-scale face recognition based on describable visual

attributes on LFW dataset. Our approach consistently out-

performs state-of-the-art methods designed to handle miss-

ing data.

1 Introduction
Biometrics systems have been widely adopted in various

walks of life, thanks to significant progress in various sub-

fields in the past decade. Cheap sensors, models learned

with large amounts of data, an abundance of processing

power have all led to development and deployment of bio-

metrics systems beyond the narrow scope of research labs

[15]. Biometric recognition in unconstrained settings im-

poses little restrictions on the data acquisition and process-

ing procedure. Biometric recognition in the open world

leads to multiple challenges. Failing assumptions, fail-

ing code, or missing inputs can then lead to missing data

in higher-level feature descriptions. Matching models (es-

pecially learned-models) with missing data is challenging.

How to build recognition system that operates in the face

of these “unknowns” is the fundamental problem that we

address in this paper.
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Figure 1. A system for describable visual attributes for faces based

on [30] and extended for open-set recognition is shown above. In

the image, green text is a positive attribute, red text is negative

attributes and blue color signifies unknown/missing attribute. In

the above images, the left image shows how bad lighting/feature-

detection led to “UNKNOWN” labels for Asian, While attributes.

The example on the right shows occlusion leading to the no beard

attribute being labeled “UNKNOWN”. Handling such unknowns

at run-time, in a learning-based system, poses considerable opera-

tional challenges. This paper is about what the system should do

when it knows that it does not know about some features.

In recent years, describable visual attributes have

emerged as a powerful low-level feature representation for

a wide range of face recognition applications [26, 18]. Ku-

mar et al. [18] demonstrated a system to automatically

train several attribute classifiers for faces, such as “brown

hair”, “mustache,” “blonde”, “pointy nose”, “thin eye-

brows”, “wearing lipstick” etc. Attribute classifiers take

an image as input and return a real-valued score represent-

ing the presence of the given attribute in the image. These

real-valued scores can then be used in a full-fledged face

recognition system for identification/retrieval [26]. While

the system designed by Kumar et al. was primarily for a

closed set face verification task, more recently, Wilber et al.

[30] have proposed open set extensions for such systems.

As noted by Scheirer et al. [28] “when a recognition system

is trained and is operational, there are finite set of known

objects in scenes with myriad unknown objects, combina-

tions and configurations - labeling something new, novel

or unknown should always be a valid outcome”. In open-

set systems, a specific face attribute is named unknown if

the system is either unable to classify with sufficient confi-
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dence or is presented with an image/feature that it has not

seen before. Such open set “unknown” labeling thus leads

to known missing status for the respective attribute (see

Fig 1). Systems designed to handle open set recognition

have demonstrated excellent performance on many biomet-

rics and computer vision systems in wild [30, 2, 6, 31].

This paper introduces and addresses a novel and practi-

cal problem, Operational Adaptation, where given only a

previously trained operational system and a test instance xt

with some described difference from the normal instances,

the system must adapt to the constraints of data to make

predictions and to provide estimates of the risk of adapta-

tion. While there is a growing body of work in the areas

of domain adaptation and transfer learning that work to-

wards adapting classifiers during the training phase, such

approaches are not practical for a machine that may take

days or weeks to train. In this work, we focus our attention

on the more common and prevalent missing data problem,

what [12, 19] calls the “nightmare at test time,” where at

test time the operational data is corrupted or missing. This

is a nightmare because it cannot be avoided. We contend

there are two important subproblems within the nightmare.

The first is the obvious one, making decisions using partial

data. The second, and generally overlookedproblem, is es-

timating how scared we should be using that partial data.

Intuitively, many users would assume that losing 70% of

features yields a nearly useless classifier, while losing only

one feature is probably not bad. However, even one missing

feature can lead to horrible performance if that is a critical

feature, while the 70% missing may have little impact.

There are multiple contributions of this work. We

formally define the problem of operational adaptation

and present a novel solution for handling missing data

with SVMs based on SVM re-factoring with bias re-

optimization. Our solution offers superior results to many

state-of-the-art approaches both in terms of accuracy and

storage space. Further, we develop a general approach to

estimating SVM Refactoring Risk. Our risk estimation pro-

cess provides the associated risk when performing predic-

tions with missing data. We show the proposed adaptation

risk estimation is a better predictor of success/failure [25]

than percent missing data. We use describable visual at-

tribute representation on large scale face verification tasks

for our experiments. The proposed approach consistently

performs Labelled Faces in the Wild [13] and other machine

learning datasets such as USPS [14] and MNIST [20]. Our

new method is the first step toward addressing an important

problem for operational use of machine learning for large

scale biometrics recognition systems.

2 Related Work
Handling missing data in biometrics is an important prob-

lem and has been addressed by multiple researchers in the

past. Ding et al. [9] performed a detailed study comparing

multiple imputation methods for score fusion in biometrics.

Poh et al. [23] proposed a framework for addressing ker-

nel based multi-modal biometric fusion using neutral point

substitution. Other notable works in the domain of handling

missing data for biometric score fusion are by Fatukasi et

al. [10] and Damer et al. [8]. Our work differs from these

works in multiple aspects. Ding et al. showed promising re-

sults for score fusion with generative models with relatively

lower feature dimensions. In our work, we focus mainly on

large-scale discriminative models such as SVMs. Further,

the problem of interest of this work is run-time [19] adapta-

tion of learned models for verification/recognition systems,

unlike the works of Fatukasi et al., Poh et al. and Damer et

al. where the focus is primarily on fusion rules for biometric

score fusion.

Researchers in machine learning and statistics commu-

nities [21, 5, 24] have also addressed the problem of learn-

ing from missing data. Chechik et al. [5] proposed a max-

margin learning framework that is based on geometric inter-

pretation of the margin and aims to maximize the margin of

each sample in its own relevant subspace. The work of [24]

presents a comprehensive evaluation framework comparing

imputation based methods and reduced feature models. Re-

duced feature models are constructed for each type of miss-

ing pattern separately making the problem computationally

extremely expensive. Such methods are unsuitable for bio-

metrics where feature dimensionality tends to be very high

as it requires storing reduced model for every permutation

of missing feature space1.

3 Operational Adaptation
Given a training set {DS = xi, yi ∈ X x Y : {+1,−1}},

where X is the input space and Y is a finite training set.

The learning problem is to find a function f : X → Y that

obtains high predictive accuracy. In this work, we focus

our attention on run-time adaptation of a pre-trained clas-

sifier to new operational domains, in the presence of lim-

ited data and model parameters. We assume existence of a

Source Domain DS and a family of Operational Domains

Doj 6= DS . We assume the training set DS ∈ R
n and each

test sample belongs to an operational domain Doj , where

Doj ∈ R
kj where, in general, kj ≤ n. Let Mj be an op-

erator such that Mj : DS → Doj , i.e. it map items in the

source domain to the operational domain. While the defini-

tion of operational adaptation can be more general, in this

work, we focus on problems where the operational domain

Do has missing features compared to source domain DS , in

which case, M projects away dimensions associated with

missing features. For operational adaptation, we enforce

1e.g. for LBP like features where feature dimensionality is around 200

features, total number of reduced models that need to be stored would be
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that, during operational time, we have access only to the

operational data OD, which includes the learned prediction

function f and its associated parameters (θ1..θf ). In terms

of SVMs, one could view f, b, type of kernel, α and the

support vectors as the operational data OD.

Definition 1 Operational Adaptation: Given a learned pre-

diction function f(θ1, ..θf ) over some source (training) do-

main DS defined by operational data OD, an operational

domain Do, a transformation operator M relating DS to

Do, and test point x ∈ Do, the problem of Operational

Adaptation is:

1. to obtain adapted prediction function fo() and an ef-

fective prediction function over the operational do-

main Do

2. obtain an associated operational adaptation risk mea-

sure Ro : (fo(), x) → [0, 1], which estimates the like-

lihood of failure of the prediction function fo.

In this paper, we focus on the difference between source

domain DS and operational domain Do as difference in di-

mensionality, in particular in the remainder, we presume

that M is linear projection. However, the idea of opera-

tional adaptation applies to any problem which satisfies the

constraints mentioned in definition 1, e.g. the general defi-

nition includes operational domains that involve linear basis

transformations or even non-linear remapping. In this par-

ticular definition, while we presume that M is given, a more

general form may involve estimating M .

3.1 SVM Refactoring and Run Time Bias Es-

timation

The primary intuition behind SVM classification is to map

the data into a high dimensional space and find a max-

margin separating hyperplane for efficient classification. In

this section, we present a methodology to modify support

vector machines and introduce the idea of operationally

adapted instance specific bias. The estimation for bias in

operational domain is based on modifying the independent

variables in the dual of objective function of SVM to mini-

mize the classification error over support vectors. Our SVM

refactoring method is computationally efficient compared

to reduced model methods, and more accurate than zero or

mean imputations. The proposed method for bias estima-

tion at prediction time is termed as Run Time Bias Estima-

tion (RTBE). The intuition behind this method is explained

in detail in Fig 2

We assume that we are given a set of training vectors

xi ∈ R
n, i = 1, ..m in two classes, and a vector of labels

y such that yi ∈ {1,−1}. The learning of such a classifier

reduces to the constrained optimization problem as follows

[3]:

min
w,b,ξ

P(w, b, ξ) =
1

2
w2 + C

m
∑

i=1

ξi (1)
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Figure 2. With Bias re-factoring, the data and the bias vec-

tor are both projected and distances are computed in the lower-

dimensional subspace. For this example, presume 3D features

with the original margin plane in 3D with bias b. Classic imputa-

tion by zero, if Z is missing, computes distances in the X-Y plane

but keeping the original bias sets a much higher threshold as shown

in the dashed red line. When features are missing, the Projection

of the Bias decomposed vector is like using a lower-dimensional

margin for decision making. If the Z feature is missing, Pz project

the data and the bias vector the X-Y plane, effectively using the

Red margin, but if y is missing, Py projects into the X-Z plane

effectively using the blue margin. The approach of this paper, run

time bias estimation (RTBE), adjust the bias from the margin to

the original plane to appropriate the projection subspace.

subject to
{

yi(w
⊺φ(xi) + b) ≥ 1− ξi, ∀i ξi ≥ 0, ∀i

(2)

where training data is mapped to a higher dimensional space

by the kernel function φ(.), and C is a penalty parameter

on the training error (trade-off between accuracy and model

complexity), ξi are the slack variables used when training

instances are not linearly separable and b is the classifier

bias [22]. In the formulation of SVM in equation 1, the

term w defines the orientation of hyperplane with respect to

origin of the feature space (Rn) and the bias term b defines

the distance of the hyperplane from the origin[3].

The dual of the problem in equation 1 is given as

max F(α) =

m
∑

i=1

αi −
1

2

m
∑

i,j=1

yiαiyjαjφ(xi, xj) (3)

subject to
{

∀i, 0 ≤ αi ≤ C
∑

yiαi = 0 (4)

where K(xi, xj) = φ(xi)
⊺φ(xj) is matrix of kernel val-

ues. Using positive Lagrange coefficients α + i ≥ 0, the

Lagrangian of the dual problem is given as

L(w, b, ξ, α) =
1

2
w2 + C

m
∑

i=1

ξi −

m
∑

i=1

αi(yi(w
⊺φ(xi) + b)− 1 + ξi)(5)
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which leads to the formal dual objective function F(α) as:

F(α) = min
w,b,ξ

L(w, b, ξ,α) subject to ∀i, ξi ≥ 0 (6)

The optimization of the dual objective function directly pro-

duces α∗, yielding w.

Let α∗ = (α∗

1
..α∗

m) be a solution of the dual problem

of equation 6 where α∗ satisfies the dual constraints. The

vector α∗ is generally sparse, with many zero elements. Let

v be the number of non-zero elements α∗, let s = [si], i =
1 . . . v, the support vectors, be a remaining of the training

points xj associated with the non-zero elements of α∗. The

operational data OD for the SVM is thus {w,α, s,y, b,K}
and M . Given these, the optimal value of b can be obtained

via 1-dimensional optimization over the decision function

(i.e. the primal problem) using the training data [3].

Let us now derive our approach to SVM refactoring,

an operational adaptation approach that provides both im-

proved classification as well as risk estimation. Our chal-

lenge is to define a solution in the reduced dimensional

space using only operational data. A plausible solution for

operational adaptation would be to treat the support vectors

as a training set, project them into the operational domain

and train a new optimal SVM solution. While plausible, our

results show that this approach does not provide acceptable

rate of classification on test data, e.g. in Figure 3, it is eval-

uated on the USPS dataset where it is only slightly better

than zero imputation. On some other examples, it did much

worse than zero imputation.

Thus, we seek an approach that will reuse more of

learned structure than just the knowledge of the support vec-

tors, in particular, to adapt the optimal weights. If we revisit

the dual of objective function in equation 6, we note that

re-optimizing values of α, ξ or w for the operational do-

main would require projection of all the training data which

would violate the definition of operational adaptation. Thus,

the only reasonable perturbation/optimization that can be

performed is re-optimization of the bias term b.

Letting ℓ(x, y) be the loss function for estimate x given

label y, and let Ln be the empirical loss, over full support

vectors s using original SVM f in R
n. Then we first define

our refactored projected error as:

ε(f̂(·; b)) =
1

v

v
∑

j=1

ℓ(

v
∑

i=1

αiyiφ(Msi,Msj)+ b), yj) (7)

And using this we define our refactor risk as:

Rr(f̂(·; b), s) = 1−
min

(

1− Ln, 1− ε(f̂(·; b))
)

1− Ln

(8)

where we normalize by 1 − Ln, so the refactor risk is

relative risk compared to the original loss. We include the

min() because noise or irrelevant variables may result in the

projected support vectors having lower empirical risk than

the original dimensional version. In the paper, we generally

exclusively used 0-1 error, thus 1−Ln is average accuracy.

The changes to use absolute, square, or other loss functions
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Figure 3. The above figure contains test classification accuracy for

each digit in USPS dataset when 30% features were deleted from

test samples. The results were obtained by training SVM with

RBF kernel. The methods shown correspond to nature of test set.

a) All Features Present : All the features were present during test

time. b) Zero Imputation: 30% features were removed at test time

and missing features were imputed with zero. c) Training with

support vectors only: 30% features were removed from test sam-

ples. Corresponding features were removed from Support Vec-

tors and a new model with these support vectors was trained. Re-

sults shown are classification results obtained with this new trained

model d) RTBE: 30% features were removed at test time. SVM

bias was re-optimized using our approach and classification re-

sults were obtained using optimized bias for operational domain

Do.

should be minimal because we are only measuring the loss

on the projected support vectors.

3.2 Adaptation Risk Estimation

Since the classification accuracy depends on dimensions of

the missing features and the technique used to reclassify

data in the reduced dimensions, we refer to our re-factored

risk model as the Adaptation Risk Estimator (eqn 8).

It applies to any reduced dimensional model f̂ for dealing

with the partial data, not just re-factored SVM with factored

bias. In particular, if the projection matrix M0 (transforma-

tion operator M between DS and Do) is N x N and fills in

“missing” data with zero, then the model is zero imputation

and we can estimate the risk of using zero-imputation. It

equally applies to mean-imputation.

Intuitively, our risk model is conservative as it uses dif-

ficult examples to estimate risk of failure. The actual per-

formance can be much better if the example is far from the

boundary, suggesting better risk estimators could be devel-

oped. In case of classifiers like decision trees or random

forests [4], where only thresholds of tree splits are retained,

operational adaptation could be achieved by retaining an

“operational validation set” at run-time. Note the set of sup-

port vectors is an extremely biased and correlated set and

hence it might violate the assumptions of statistical tests for
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Figure 4. Effect of Varying SVM Bias b on classification accuracy on test set and associated refactor risk. It can be observed that when our

refactor risk is minimum, maximum classification accuracy over test is obtained (Test Accuracy was scaled between 0 - 1 to fit this plot).

Our objective is to obtain value of SVM bias b for which refactor risk is minimum. In the above experiment, 30% features were removed

for each dataset during testing phase. The datasets shown are (from L-R) USPS [14], MNIST [20] and Attributes on LFW [13]

distributional shifting such as those considered in [7].

Returning to the re-optimization bias bo for the refac-

tored machine. Note that our refactor risk estimation applies

to any machine f , and in particular we explicitly called out

that it is a function of the underlying bias b. Using this, our

refactored approach, we will seek a new operational bias bo
for equation 7, which is obtained from the 1-D optimization

problem minimizing refactor risk:

bo = argmin
b

Rr(fo(·; b), s) (9)

i.e., the re-optimization of the bias is performed based on

minimization of risk over the support vectors projected into

R
k. If using 0-1 loss, as we have in the paper, the loss

function is non-convex, however explicit 1-D optimization

is still very efficient. We also note that, in practice, for op-

erational adaptation with just missing variables, the com-

putations of both the classification fo and optimization of

bo can replace the matrix multiplication by M , which is

mostly zeros, with a selection operation that simply selects

the relevant dimensions. With that, the cost to optimize bo
is dominated by estimating risk at the values of b associated

with the v projected support vector locations. In our exper-

iments, we found that minimizing refactor risk was in fact

a good predictor of performance on test-set. To show this

relationship, we plot results of varying bias for a particular

operational domain and noting the associated refactor risk

and test set classification accuracy 4. However, it should

be noted that this experiment is done to show the relation-

ship between refactor risk and test accuracy and during op-

timization process, we do not assume any knowledge about

test set apart from the test-sample under consideration.

4 Experiments
In this section, we evaluate the proposed algorithm for SVM

based re-factoring (i.e. Run Time Bias Estimation - RTBE)

on USPS [14], MNIST [20] and Labelled Faces in the Wild

[13] datasets (Fig 5). USPS and MNIST are leading hand-

writing recognition datasets and results proposed on those

Figure 5. Left are example images from MNIST [20], and right are

from and LFW [13].

can be compared against a wide variety of methods across

different disciplines (e.g. biometrics, computer vision, ma-

chine learning, statistics etc.). The feature dimensionality

considered for all datasets is high to show the suitability

of the proposed methods on large-scale recognition tasks.

USPS dataset [14] contains 9298 handwritten digits (0 - 9)

(7291 for training and 2007 for testing) collected from mail

envelopes in Buffalo. Each image is represented as a 256

dimensional feature vector. The MNIST database consists

of 60,000 training samples and 10000 testing samples for

digits between (0-9). The digits are size-normalized and

centered in a fixed-size image. The size of each image is

28 x 28 leading to a feature vector of size 784. Scaled pixel

values are provided for performing supervised classification

task.

LFW face dataset [13] is designed for large scale face

verification task and contains 13233 images of 5749 in-

dividuals. View 1 of LFW is used for building models,

feature selection and finding optimal operating parameters.

View 2 consists of 6000 pairs of face images on which

performance is to be reported. The 6000 pairs are fur-

ther divided in 10 splits to allow 10-fold cross-validation.

Overall classification performance is reported on View 2

by using only the signs of the outputs and counting the

number of errors in classification. We use describable vi-

sual attributes [18] on LFW dataset for face verification

task. Attribute classifiers are created by using describable

visual traits such as gender, race, hair color etc. These

visual traits are used to construct classifiers CK . These

5



classifiers are then used to detect presence/absence of at-

tribute in a given face image and a score is assigned to it.

Each image in LFW dataset is thus represented as a vec-

tor C(Ii) = 〈C1(Ii), C2(Ii)..CK(Ii)〉 (where K is total

number of attributes/traits). To decide if the image belongs

to the same person, these classifier scores are compared

{C(Ii), C(Ij)}. Verification classifier for a pair of images

is given as v(Ii, Ij) = (|Ci − Cj |, (Ci.Cj),
1

2
(Ci + Cj)).

These classifier scores are used as input features for face

verification task.

We systematically delete features from testing as per-

centages of total features present for each dataset. Each

set of missing features leads to a new operational domain

Do. We consider percentage of missing features in range

of 10%, 20%, 30%, 40% and 50%. The process is kept

similar for all three datasets. For each dataset, we trained

SVM with linear and RBF kernel essentially training model

in R
n (where n = { 256, 146 and 784} for USPS, Attributes

and MNIST respectively). During test phase, for zero im-

putation method, all the missing features are substituted by

zero and classification is carried out. With RTBE approach,

we detect the missing features, project the Support Vectors

in corresponding operational domain and obtain new opti-

mal bias bo by minimizing refactor risk over support vectors

(operational data). As a baseline, we also obtain results on

respective datasets without deleting any features. It is obvi-

ous that the performance of the system would be best when

all the features are present. We observe that the proposed

approach of RTBE consistently outperforms zero imputa-

tion across multiple datasets. We also note that rate of per-

formance degradation for RTBE is lower compared to zero

imputation. For USPS and MNIST dataset, the performance

obtained with RTBE continues to remain stable even under

extreme cases (e.g. 40% and 50% missing data).

4.1 Comparison with Other Methods for

Handling Missing Data

The state of the art for handling missing data for USPS

dataset is multi-class Gaussian Process [29] yielding 94.2%

(error of 5.8 %) at 25% features missing (64 pixels out of

256). In the same work, authors noted Zero imputation re-

sulted in classification accuracy of 94.15 (5.85% Error) and

mean imputation yielded 93.92 (6.08% error). On the same

dataset with similar train/test protocol, our method of RTBE

achieves overall classification accuracy of 95.11 % (4.89 %

error) using linear kernel and 98.26 % (error 1.76 %) using

RBF kernel ( a 69.65 % reduction of error over the state of

the art). Chechik et al. [5] reported their results on MNIST

dataset by considering classification on digits ‘5’ and ‘6’.

They remove a square patch randomly from the image and

report a performance of 95% using their geometric margin

method (similar performance is reported for their averaged

norm method in the same study). Our approach on RTBE

Alg/Dataset MNIST Pima USPS

Zero 95± .5 66± 4 -

Mean 94± .7 65± 4 93.92

EM [11] 95± .04 65± 3 -

Avg W [5] 95± .5 64± 5 -

Geom.Margin [5] 95± .5 66± 5 -

Guass.Process [29] - - 94.2

RTBE (this paper) 96.6± .5 64± 4 98.26

Table 1. Comparison with other methods [5], with best algo-

rithm in bold if more than 1 std.dev. above others. For MNIST

and PIMA the data randomly dropped 90% of the features and

Geom.Margin were the state of the art algorithm. For USPS , 25%

of data missing and Guassian processess were the state of the art.

We include Pima as an example where all tested algorithms, in-

cluding the new RTBE approach, are not statstically different.

yields 96.6% on similar problem of classifying ‘5’ and ‘6’.

To the best of our knowledge, no study has been done on

handling missing data on attributes on LFW [18]. Compar-

ison with few other approaches obtained from [5] is shown

in Table 1

4.2 Risk Estimation for Missing Data

To evaluate the effectiveness of the Adaptation Risk Esti-

mation, we use the meta-recognition evaluation paradigm,

MRET (Meta-Recognition Error Trade-off Curves), pro-

posed in [27, 25], which considers how often the risk es-

timator correctly predicts the failure/success of the underly-

ing classifier. We consider two risk estimation approaches:

percentage of missing features (wrt to total features) and

the risk estimator from Eq. 8. For risk estimation with per-

centage of missing features, we drop features in steps (e.g.

10%, 20% etc.) and at each step we predict success/failure.

When using refactor risk R(fo) as a risk estimator ( from

Eq. 8), the range of refactor risk is divided into steps and

at each step success and failure is computed using formu-

lae from 10. For each of the risk estimators we consider

both zero-imputation and the SVM refactoring via bias fac-

toring. One can threshold the risk estimator and predict any

instance below threshold to be successfully classified and

predict failure for those above it.

In particular, we define

C1 = # instance when the risk estimator is below threshold

yet the adapted SVM misclassifies

C2 = # instance when the risk estimator is above threshold

yet the adapted SVM correctly classifies

C3 = # instance when the risk estimator is below threshold

and the adapted SVM correctly classifies

C4 = # instance when the risk estimator is above threshold

yet the adapted SVM misclassifies

Finally, we calculate the Meta-Recognition False Accept

Rate (MRFAR), the rate at which thresholded risk estima-
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Figure 6. The above figure shows results on the three image datasets used for recognition: USPS, MNIST and LFW. The top row corre-

sponds to results with SVM with linear kernel and bottom row corresponds to SVM with RBF kernel. Classification accuracy (Y - axis)

is plotted as a function of percentage of missing features (X - Axis). It can be observed that RTBE consistently performs better than

imputation with zero when features are missing. The difference is especially large when the percentage of missing features increases

tor incorrectly predicts success, and the Meta-Recognition

Miss Detection Rate (MRMDR), the rate at which the

thresholded risk estimator incorrectly predicts failure, as

MRFAR =
|C1|

|C1|+ |C4|
, MRMDR =

|C2|

|C2|+ |C3|
(10)

and then vary our threshold to compute the curves shown

in Fig. 7. The resulting MRET curves show the proposed

adaptation risk estimator is superior, and is more effective

when combined with our novel SVM re-factoring. At oper-

ation time, just as one uses a traditional DET or ROC curve

to set verification system parameters, the threshold on the

risk parameter R(fo) on MRET curve can be used to tune

the rejection for an acceptable risk due to missing data. The

results of this experiments2 are shown in Fig 7.

5 Discussion and Conclusion
We noted that support vectors are an extremely biased and

correlated set, and hence it might violate the assumptions

of statistical tests for distributional shifting [7]. Detailed

analysis of such correlation is an important future work.

In streaming settings (incremental SVMs) for face recog-

nition [1], the operational data available is always chang-

ing as support vectors are continuously updated. Handling

missing data in such settings is another important aspect of

2We obtained similar results on USPS and MNIST dataset, but are not

shown here

Figure 7. Meta-recognition comparison curve for evaluation adap-

tation risk estimators on partial data. Meta-recognition False ac-

cept rate (Y axis, Eq. 10) is the fraction of time the risk was low

but the SVM classification failed, and the Meta-recognition miss

detection rate (X axis) is the fraction of time the risk was high yet

the SVM corrected classified the partial data. The ideal location

is the lower-left. The plot shows the adaptation risk estimator for

SVM refactoring (RTBE) is better than risk estimation for zero-

imputation.

operational adaptation. Some other problems such as adapt-

7



ing pre-trained classifiers for face-detection [17, 16] can be

viewed as operational adaptation problems.

This paper provides theory and a novel solution for han-

dling missing data in large-scale recognition problems. It

adapts the solution at testing time, with virtually no loss

in computational speed/efficiency, but significant improve-

ments in accuracy compared to the state of the art. Further,

it does not require a-priori knowledge of missing features.

SVM refactoring with bias factoring performed consistently

well on leading datasets compared to current de-facto meth-

ods, and when only modest data was missing, significantly

outperformed the competition. Our method is suitable for

large scale recognition tasks for many applications in com-

puter vision like object recognition, feature tracking, action

recognition, etc. that use supervised learning in the form of

SVMs when features are missing. The second significant

contribution of the is a technique for estimating the risk as-

sociated with classification with missing data, using only

the data in the operational SVM. Our approach reclassifies

the SVM in the reduced space and estimates the associated

risk. Experiments show this risk measure is a better estima-

tor of expected performance on the reduced dataset than just

using the fraction of data missing. Finally, we show that the

concept of operational adaptation is broader and applies to

multiple areas beyond the domain of handling missing data.
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