
Deep Secure Encoding for Face Template Protection

Rohit Kumar Pandey Yingbo Zhou Bhargava Urala Kota Venu Govindaraju

University at Buffalo, SUNY

{rpandey, yingbozh, buralako, govind}@buffalo.edu

Abstract

In this paper we present a framework for secure iden-

tification using deep neural networks, and apply it to the

task of template protection for face password authentica-

tion. We use deep convolutional neural networks (CNNs) to

learn a mapping from face images to maximum entropy bi-

nary (MEB) codes. The mapping is robust enough to tackle

the problem of exact matching, yielding the same code for

new samples of a user as the code assigned during training.

These codes are then hashed using any hash function that

follows the random oracle model (like SHA-512) to gen-

erate protected face templates. The algorithm makes no

unrealistic assumptions and offers high template security,

cancelability, and matching performance comparable to the

state-of-the-art. The efficacy of the approach is shown on

CMU-PIE, Extended Yale B, and Multi-PIE face databases.

We achieve high (∼ 95%) genuine accept rates (GAR) at

zero false accept rate (FAR) while maintaining a high level

of template security.

1. Introduction

Authentication on the basis of “who we are" instead of

“something we possess" or “something we remember", of-

fers convenience and often, stronger system security. Tem-

plate protection is one of the important factors related to

making biometric passwords as widespread as text based

ones. In general biometrics based passwords offer lower

template protection in comparison to text passwords due to

difficulties in exact matching. Given the sensitive nature

of biometric data, algorithms that provide the same level of

template security without compromising on matching accu-

racy would be ideal.

A typical password authentication system would use a

sample of the user’s password to extract and store a tem-

plate from it. It is desirable that this template is stored in a

protected and cancelable manner for the purpose of system

security. During authentication, a new template is extracted

from the presented password and matched to the stored tem-

plate. Depending on the matching score, access is granted

or denied. In the case of text based passwords, a one way

non-invertible transform (i.e. a hash) of it is stored as the

template. During verification, a password is entered and its

hash value is calculated. The hash is compared with the

stored hash and if the two strings matched exactly, their

hashes would match as well, and access would be granted.

In such a scenario, the stored hash reveals no information

about the original password (protection) and also, if the

password is compromised, it can be changed and a new

password can be registered (cancelability).

This kind of security would be ideal for biometric based

authentication as well but, unlike text passwords, biometric

modalities lack two important aspects. 1) They rarely match

exactly between different readings, and 2) they cannot be

changed if compromised. Thus, the objective of cancelable

biometrics approaches is to extract template from biometric

modalities that are 1) protected i.e. given the template, it

should be infeasible to extract any information about the

original modality, and 2) cancelable i.e. if compromised, it

should be possible to extract a new template from the same

modality.

1.1. Contribution

We tackle these objectives by using a deep convolutional

neural network (CNN) to learn a robust mapping of face

classes to maximum entropy binary (MEB) codes. The

mapping is robust enough to tackle the problem of exact

matching, yielding the same code for new samples of a user

as the code assigned during training. This exact matching

enables us to store a hash of the code as the template of

the user. The hash function used could be any function

that follows the random oracle model, and in our case we

choose SHA-512 since it is the current standard for string

based passwords, and offers strong security. Once hashed,

the template has no correlation with the code assigned to

the user. Furthermore, the codes assigned to users are bit-

wise randomly generated and thus, possess maximum en-

tropy, and have no correlation with the original biometric

modality (the user’s face). These properties make attacks

on the template very difficult, leaving brute force attacks in

the code domain and complex dictionary attacks in the in-

9

put domain as the only feasible options. Cancelability is

achieved by changing the codes assigned to users and re-

learning the mapping.

Exploiting the large learning capacity of the CNN with

powerful regularization, we also achieve matching perfor-

mance comparable with the state-of-the-art on PIE, Ex-

tended Yale B and Multi-PIE databases. Note that, in this

work, we focus on the use-case of using faces as passwords

and thus, validate our results on data collected in controlled

environments.

1.2. Related Work

A variety of template protection algorithms have been

applied to faces. Schemes that used cryptosystem based ap-

proaches include Fuzzy commitment schemes by Ao and

Li [1], Lu et al. [11] and Van Der Veen et al. [24], and

fuzzy vault by Wu and Qiu [25]. In general, the fuzzy com-

mitment schemes suffered from limited error correcting ca-

pacity or short keys. In Fuzzy vault schemes the data is

stored in the open between chaff points, and this also causes

an overhead in storage space. Some quantization schemes

were used by Sutcu et al. [17, 18] to generate somewhat

stable keys. There were also several works that combine

the face data with user specific keys. These include com-

bination with a password by Chen and Chandran [2], user

specific token binding by Ngo et al. [12, 22, 23], biomet-

ric salting by Savvides et al. [14], and user specific random

projection schemes by Teoh and Yuang [21] and Kim and

Toh [9]. Hybrid approaches that combine transform based

cancelability with cryptosystem based security like [5] have

also been proposed but give out user specific information

to generate the template creating possibilities of masquer-

ade attacks. Pandey and Govindraju [13] proposed a secu-

rity centric scheme that used features extracted from local

regions of the face to obtain exact matching and thus, bene-

fited from the security of hash functions. Although more se-

cure, the matching accuracy of the scheme suffered and the

feature space being hashed was not uniformly distributed.

On the image recognition side, deep CNN based algo-

rithms like Facenet [15] and Deepface [19] have shown ex-

ceptional performance holding the current state-of-the-art

results for face recognition. There is also some recent work

that seeks to map data to binary codes using deep neural

networks like [3]. Although mapping to binary codes (or

learning hash functions) in this manner may seem similar

to our approach, these methods are fundamentally different

from what we are trying to achieve. Algorithms such as

[3] seek to learn a natural binary representation of the data

and thus, the binary codes they map to are correlated to the

data distribution. Our MEB codes have no correlation to

the original data distribution. This adds to template secu-

rity, but also makes it a more challenging problem since the

mapping function we seek to learn is more complex.

Figure 1. Overview of the algorithm.

2. Algorithm

In this section of the paper we describe the individual

components of our architecture in more detail. An overview

of the algorithm is shown in Figure 1.

2.1. Convolutional Neural Networks

Convolutional neural networks (CNNs) [10] are biolog-

ically inspired models, which contain three basic compo-

nents: convolution, pooling and fully connected layers. In

the convolution layer one tries to learn a filter bank given

input feature maps. The input of a convolution layer is a 3D

tensor with d number of 2D feature maps of size n1 × n2.

Let xijk denote the component at row j and column k in

the ith feature map, and we use x
(l)
i to denote the complete

ith feature map at layer l. If one wants to learn hf set of

filters of size f1 × f2, the output x(l+1) for the next layer

will still be a 3D tensor with hf number of 2D feature maps

of size (n1 − f1 + 1)× (n2 − f2 + 1). More formally, the

convolution layer computes the following:

x
(l+1)
j = s(

∑

i

F
(l)
ij ∗ x

(l)
i + b

(l)
j) (1)

where F
(l)
ij denotes the filter that connects feature map xi to

output map x
(l)
j at layer l, b

(l)
j is the bias for the jth output

feature map, s(·) is some element-wise non-linearity func-

tion and ∗ denotes the discrete 2D convolution.

The pooling (or subsample) layer takes a 3D feature map

and tries to down-sample/summarize the content with less

spatial resolution. Pooling is commonly done for every

feature map independently and with non-overlapping win-

dows. An intuition of such operation is to have some built

in invariance against small translations as well as reduce the

spatial resolution and thus save computation for the upper

layers. For average (mean) pooling, the output will be the

average value inside the pooling window, and for max pool-

ing the output will be the maximum value inside the pooling

window.

The fully connected layer connects all the input units

from the lower layer l to all the output units in the next layer

10

l + 1. In more detail, the next layer output is calculated by:

x(l+1) = s(W (l)x(l) + b(l)) (2)

where x(l) is the vectorized input from layer l, W (l) and b(l)

are the parameters of the fully connected layers at layer l.

A CNN is commonly composed of several stacks of con-

volution and pooling layers followed by a few fully con-

nected layers. The last layer is normally associated with

some loss to provide training signals, and the training for

CNN can be done by doing gradient descent on the param-

eters with respect to the loss. For example, in classification

the last layer is normally a softmax layer and cross entropy

loss is calculated against the 1 of K representation of the

class labels. In more detail, let x(L) = Wx(L−1) + b be

the pre-activation of the last layer, t denotes the final output

and tk the kth component of t, and y denote the target 1 of

K vector and yk the kth dimension of that vector, then

tk =
exp{x

(L)
k }

∑
j exp{x

(L)
j }

(3)

L(t,y) =
∑

j

yj log tj (4)

where L is the loss function.

2.2. Maximum Entropy Binary Codes

Our first step of training is to assign unique codes to each

user to be enrolled. Note that these codes are internally used

for training during enrollment, and are not supplied to the

user or retained in an unprotected form after training. From

a template security point of view, these codes should ide-

ally possess two properties. First, they should posses high

entropy. Since a hash of these codes is the final protected

template, the higher the entropy of the codes, the larger the

search space for a brute force attack would be. In order to

make brute force attacks in the code domain infeasible, we

use binary codes with a minimum dimensionality K = 256
and experiment with values up to K = 1024. The second

desirable property of the codes is that they should not be

correlated with the original biometric modality. Any corre-

lation between the biometric samples and the secure codes

can be exploited by an attacker to reduce the search space

during a brute force attack. One example to illustrate this

can be to think of binary features extracted from faces. Even

though the dimensionality of the feature vector may be high,

given the feature extraction algorithm and type of data, the

number of possible values the vector can take is severely

reduced. In order to prevent such reduction of entropy, the

codes we used are bit-wise randomly generated and have no

correlation with the original biometric samples. This makes

the space to be hashed uniformly distributed. More pre-

cisely, let ci ∼ B(1, 0.5) be the binary variable for each

bit of the code, where B(1, 0.5) is the maximum entropy

Bernoulli distribution, and the resultant MEB code with K

independent bits is thus C = [c1, c2, . . . , cK]. We denote

the code for user u by Cu.

2.3. Learning the Mapping

In order to learn a robust mapping of a user’s face sam-

ples to the codes, we make some modifications to the CNN

training procedure. The 1 of K encoding of the class labels

is replaced by the MEB codes Cu assigned to each user.

Since we now want several bits of the network output to be

one instead of a single bit, we use sigmoid activation instead

of softmax. In more detail:

tk =
1

1 + exp{−x
(L)
j }

(5)

L(t,C) =
∑

j

{cj log tj + (1− cj) log(1− tj)} (6)

where tk is the kth output from the last layer and L is the

binary cross entropy loss.

2.3.1 Data Augmentation

Deep learning algorithms generally require a large number

of training samples whereas, training samples are generally

limited in the case of biometric data. In order to magnify

the number of training samples per user, we perform the

following data augmentation. For each training sample of

size m × m we extract all possible crops of size n × n.

Each crop is also flipped along its vertical axis yielding a

total of 2 × (m − n + 1) × (m − n + 1) crops. The crops

are then re-sized back to m × m and used for training the

CNN.

2.3.2 Regularization

The large learning capacity of deep neural networks comes

with the inherent risk of over-fitting. The number of pa-

rameters in the network are often enough to memorize the

entire training set, and the performance of such a network

does not generalize to new data. In addition to general con-

cerns, mapping to MEB codes is equivalent to learning a

highly complex function, where each dimension of the func-

tion output can be regarded as an arbitrary binary partition

of the classes. This further increases the risk of over-fitting

and powerful regularization techniques need be employed

to achieve good matching performance.

We apply dropout [8] on all fully connected layers with

0.5 probability of discarding one hidden activation. Dropout

is a very effective regularizer and can also be regarded as

training an ensemble of an exponential number of neural

networks that share the same parameters, therefore reducing

the variance of the resulting model.

11

2.4. Protected Template

Even though MEB codes assigned to each user have no

correlation with the original samples, another step of tak-

ing a hash of the code is required to generate the protected

template. Given the parameters of the network, it is not pos-

sible to entirely recover the original samples from the code

(due to the max pooling operation in the forward pass of the

network) but, some information is leaked. Using a hash di-

gest of the code as the final protected template prevents any

information leakage. The hash function used can be any

function that follows the random oracle model. For our ex-

periments we utilized SHA-512, yielding the final protected

template Tu = SHA512(Cu).

During verification, a new sample of the enrolled user is

fed through the network to get the network output yout =
t. We then binarize this output via a simple threshold-

ing operation yielding the code for the sample sout =
[s1, s2, . . . , sK], where si = 1(ti > 0.5) and 1(·) is the

indicator function. At this point, the SHA-512 hash of the

code, Hout = SHA512(sout) could be taken and com-

pared with the stored hash Tu for the user. Due to the

exact matching nature of the framework, this would yield

a matching score of true/false nature. This is not ideal for

a biometric based authentication system since it is desirable

to obtain a tunable score in order to adjust the false accept

(FAR) and false reject rates (FRR). In order to obtain an ad-

justable score, several crops and their flipped counterparts

are taken for the new sample (in the manner described in

Section 2.3.1) and Hout is calculated for each one, yielding

a set of hashes H. We define the final matching score as

the number of Houts in H that match the stored template,

scaled by the cardinality of H. Thus, the score for matching

against user u is given by,

score =

∑
Hi∈H

1(Hi = Tu)

|H|
(7)

Now the score can be set to achieve the desired value of

FAR/FRR. Note that, the framework provides the flexibility

to work in both verification and identification modes. For

identification H can be matched against templates of all the

users stored in the database.

3. Experiments

We now describe the databases, evaluation protocols,

and specifics of the parameters used for experimental eval-

uation.

3.1. Databases

In this study we tackle the problem of using faces as

passwords and thus, choose face databases that have been

collected in controlled environments for experimentation.

We use evaluation protocols including variations in light-

ing, session and pose that would be typical to applications

like face unlock since a reasonable degree of user compli-

ance is expected.

The CMU PIE [16] database consists of 41,368 images

of 68 people under 13 different poses, 43 different illumina-

tion conditions, and with 4 different expressions. We use 5

poses (c27, c05, c29, c09 and c07) and all illumination vari-

ations for our experiments. 10 images are randomly chosen

for training and the rest are used for testing.

The extended Yale Face Database B [6] contains 2432

images of 38 subjects with frontal pose and under different

illumination variations. We use the cropped version of the

database for our experiments. Again, we use 10 randomly

selected images for training and the rest for testing.

The CMU Multi-PIE [7] face database contains more

than 750,000 images of 337 people recorded in 4 different

sessions, 15 view points and 19 illumination conditions. We

use this database to highlight the algorithm’s robustness to

changes in session and lighting conditions. We chose two

sessions (3 and 4) which have the most number of com-

mon users (198) between them. 10 randomly chosen frontal

faces from session 3 are used for enrollment and all frontal

faces from session 4 are used for testing.

3.2. Evaluation Metrics

We use the genuine accept rate (GAR) at 0 false accept

rate (FAR) as the evaluation metric. We also report the equal

error rate (EER) as an alternative operating point for the

system. Since the train-test splits we use are randomly gen-

erated, we report the mean and standard deviation of the

results for 10 different random splits.

3.3. Experimental Parameters

We use the same training procedure for all databases.

The CNN architecture that we used is as follows: two con-

volutional layers of 32 filters of size 7 × 7 and 64 filters of

size 7×7, each followed by max pooling layers of size 2×2.

The convolutional and pooling layers are followed by two

fully connected layers of size 2000 each, and finally the out-

put. We use rectifier activation function s(x) = max(x, 0)
for all layers, and apply dropout with 0.5 probability of dis-

carding activations to both fully connected layers.

MEB codes of dimensionality K = 256, 1024 are as-

signed to each user. All training images are re-sized to

m × m = 64 × 64 and roughly aligned using eye center

locations. For augmentation we use n× n = 57× 57 crops

yielding 64 crops per image. Each crop is also illumina-

tion normalized using the algorithm in [20]. We train the

network by minimizing the cross-entropy loss against user

codes for 20 epochs using mini-batch stochastic gradient

descent with a batch size of 200. 5 of the training samples

are initially used for validation to determine the mentioned

12

Figure 2. GAR and FAR with respect to matching score at K=256

for PIE (top), Yale (mid) and Multi-PIE (bottom) databases.

training parameters. Once the network is trained, the SHA-

512 hashes of the codes are stored as the protected templates

and the original codes are purged. During verification, crops

are extracted from the new sample, pre-processed, and fed

through the trained network. Finally, the SHA-512 hash of

each crop is calculated and matched to the stored template,

yielding the matching score in Equation 7.

3.4. Results

The results of our experiments are shown in Table 1. We

report the mean and standard deviation of GAR at zero FAR,

Table 1. Verification results obtained from various datasets.
Database K GAR@0FAR EER

PIE
256 93.22± 2.61% 1.39± 0.20%
1024 90.13± 4.30% 1.14± 0.14%

Yale
256 96.74± 1.35% 0.93± 0.18%
1024 96.49± 2.30% 0.71± 0.17%

Multi-PIE
256 95.93± 0.55% 1.92± 0.27%
1024 97.12± 0.45% 0.90± 0.13%

Table 2. Performance comparison with other algorithms on PIE

dataset.
Method K GAR@1FAR EER

Hybrid Approach [5] 210 90.61% 6.81%
BDA [4] 76 96.38% −

MEB Encoding 1024 97.59% 1.14%

and EER for the 10 different train-test splits at code dimen-

sions, K = 256, 1024. We achieve GARs up to ∼ 90% on

PIE, ∼ 96% on Yale, and ∼ 97% on Multi-PIE with up to

K = 1024 at the strict operating point of zero FAR. During

experimentation we observed that our results were stable

with respect to K, making the parameter selectable purely

on the basis of desired template security. In order to get an

idea of the system performance with respect to the operat-

ing point, we also show the GAR and FAR of the system

with respect to the matching score for K = 256 in Figure

2. It is noteworthy that the system has very low FAR values

even at low matching scores due to the strict exact matching

requirements.

A comparison of our results to other face template pro-

tection algorithms on the PIE database is shown in Table 2.

We compare GAR at an FAR of 1% as this is the reported

operating point in [4]. For security level, we compare our

code dimensionality parameter (K) to the equivalent param-

eter in the shown approaches. In absence of algorithm pa-

rameters, this is a good measure of the security level against

brute force attacks. In terms of matching performance we

outperform [5], which offers acceptable security level, and

are comparable to [4], which offers lower security to brute

force attacks.

4. Security Analysis

We analyze the security of the system in a stolen tem-

plate scenario. We assume that the attacker has possession

of the templates, and knowledge of the template generation

algorithm. Given the templates, the attacker’s goal is to ex-

tract information about the original biometric of the users.

Since the hash function used to generate the templates is a

one way transformation function, no information about the

MEB codes can be extracted from the protected templates.

Thus, the only way in which the attacker can get the codes

is by brute forcing through all possible values the codes can

take, hash each one, and compare them to the templates. We

13

now analyze the search space for such brute force attacks.

In absence of the CNN parameters, the search space for

brute force attacks would be 2K where K is the number

of dimensions of the MEB code. This is because the MEB

codes are bit-wise randomly generated and uncorrelated to

the original biometric data. Since we use a minimum of k =
256, the search space would be of the order of 2256 or larger,

making brute force attacks computationally infeasible.

We now analyze an attack given the CNN parameters.

With the CNN parameters, it would make sense to generate

attacks in the input domain of the network and try to exploit

the FAR of the system. Brute forcing through all possi-

ble values in the input domain would yield a search space

much larger than 2K . Thus, in a practical scenario, attack-

ers would most likely perform a dictionary attack using a

large set of faces that is available to them. Even though it is

not straighforward to analyze the reduction of the attacker’s

search space due to the knowledge of the system parame-

ters, the FAR of the system under the aforementioned attack

scenario is arguably a good indicator of the template secu-

rity. The genuine and imposter score distributions when all

other users other than the genuine are treated as imposter are

shown in Figure 3. It can be seen that the imposter scores

are always zero, indicating that there are no false accepts in

this scenario. The genuine and imposter distributions un-

der a dictionary attack using an attacker database consisting

of all frontal images of the Multi-PIE database and genuine

database consisting of the smaller Yale database is shown

in Figure 4. Again, it can be seen that there are no false

accepts indicating that the model does not easily accept ex-

ternal faces even when they are preprocessed in the same

manner as the enrolled ones. Separately, we also use a large

number of random noise samples as an attack to verify that

the CNN does not trivially learn how to map large portions

of the input space to the learned codes. Here too we see that

there are no false accepts verifying our intuition. Hence,

even though it is not straighforward to quantify the reduc-

tion in the search space of codes due to knowledge of the

CNN parameters, we empirically show that false accepts

are difficult due to the strict exact matching requirements

of the system.

It is worth noting that even if a MEB code is obtained by

the attacker, reconstructing the original biometric in an ex-

act manner is not possible due to the pooling and dropout

operations in the CNN. Furthermore, knowledge of one

code reveals no information about the others since they are

uncorrelated. Thus, if a security breach is detected, it is

safe to use a new set of MEB codes to generate another set

of templates.

5. Conclusion and Future Work

We presented a template protection algorithm which

achieves template security by using MEB codes to address

Figure 3. Genuine and imposter distributions from PIE (top), Yale

(mid) and Multi-PIE (bottom) databases.

the issue of uniformity, and relying on the strength of stan-

dard hash functions. We achieved high (∼ 95%) GARs at

the strict operating point of zero FAR and showed that the

exceptional performance of deep CNNs can be utilized to

minimize loss of matching accuracy in template protection

algorithms. The current work deals with the problem of us-

ing faces as passwords in controlled environments, and we

plan to extend our results to faces in uncontrolled environ-

ments, other biometric modalities, and broader applications

like Microsoft Windows picture passwords.

14

Figure 4. Genuine and imposter distributions under a dictionary

attack in the input space.

References

[1] M. Ao and S. Z. Li. Near infrared face based biometric

key binding. In Advances in Biometrics, pages 376–385.

Springer, 2009.

[2] B. Chen and V. Chandran. Biometric based cryptographic

key generation from faces. In Digital Image Computing

Techniques and Applications, 9th Biennial Conference of the

Australian Pattern Recognition Society on, pages 394–401.

IEEE, 2007.

[3] V. Erin Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou. Deep

hashing for compact binary codes learning. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2475–2483, 2015.

[4] Y. C. Feng and P. C. Yuen. Binary discriminant analysis for

generating binary face template. Information Forensics and

Security, IEEE Transactions on, 7(2):613–624, 2012.

[5] Y. C. Feng, P. C. Yuen, and A. K. Jain. A hybrid approach

for generating secure and discriminating face template. In-

formation Forensics and Security, IEEE Transactions on,

5(1):103–117, 2010.

[6] A. Georghiades, P. Belhumeur, and D. Kriegman. From few

to many: Illumination cone models for face recognition un-

der variable lighting and pose. IEEE Trans. Pattern Anal.

Mach. Intelligence, 23(6):643–660, 2001.

[7] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker.

Multi-pie. Image and Vision Computing, 28(5):807–813,

2010.

[8] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and

R. R. Salakhutdinov. Improving neural networks by pre-

venting co-adaptation of feature detectors. arXiv preprint

arXiv:1207.0580, 2012.

[9] Y. Kim and K.-A. Toh. A method to enhance face biometric

security. In Biometrics: Theory, Applications, and Systems,

2007. BTAS 2007. First IEEE International Conference on,

pages 1–6. IEEE, 2007.

[10] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. In Proceed-

ings of the IEEE, pages 2278–2324, 1998.

[11] H. Lu, K. Martin, F. Bui, K. Plataniotis, and D. Hatz-

inakos. Face recognition with biometric encryption for

privacy-enhancing self-exclusion. In Digital Signal Pro-

cessing, 2009 16th International Conference on, pages 1–8.

IEEE, 2009.

[12] D. C. Ngo, A. B. Teoh, and A. Goh. Biometric hash: high-

confidence face recognition. Circuits and Systems for Video

Technology, IEEE Transactions on, 16(6):771–775, 2006.

[13] R. K. Pandey and V. Govindaraju. Secure face template gen-

eration via local region hashing. In Biometrics (ICB), 2015

International Conference on, pages 1–6. IEEE, 2015.

[14] M. Savvides, B. V. Kumar, and P. K. Khosla. Cancelable bio-

metric filters for face recognition. In ICPR 2004, volume 3,

pages 922–925. IEEE, 2004.

[15] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A uni-

fied embedding for face recognition and clustering. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 815–823, 2015.

[16] T. Sim, S. Baker, and M. Bsat. The cmu pose, illumina-

tion, and expression (pie) database. In Automatic Face and

Gesture Recognition, 2002. Proceedings. Fifth IEEE Inter-

national Conference on, pages 46–51. IEEE, 2002.

[17] Y. Sutcu, Q. Li, and N. Memon. Protecting biometric

templates with sketch: Theory and practice. Information

Forensics and Security, IEEE Transactions on, 2(3):503–

512, 2007.

[18] Y. Sutcu, H. T. Sencar, and N. Memon. A secure biometric

authentication scheme based on robust hashing. In Proceed-

ings of the 7th workshop on Multimedia and security, pages

111–116. ACM, 2005.

[19] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface:

Closing the gap to human-level performance in face verifica-

tion. In Computer Vision and Pattern Recognition (CVPR),

2014 IEEE Conference on, pages 1701–1708. IEEE, 2014.

[20] X. Tan and B. Triggs. Enhanced local texture feature sets for

face recognition under difficult lighting conditions. Image

Processing, IEEE Transactions on, 19(6):1635–1650, 2010.

[21] A. Teoh and C. T. Yuang. Cancelable biometrics realiza-

tion with multispace random projections. Systems, Man,

and Cybernetics, Part B: Cybernetics, IEEE Transactions on,

37(5):1096–1106, 2007.

[22] A. B. Teoh, A. Goh, and D. C. Ngo. Random multispace

quantization as an analytic mechanism for biohashing of bio-

metric and random identity inputs. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 28(12):1892–

1901, 2006.

[23] A. B. Teoh, D. C. Ngo, and A. Goh. Personalised crypto-

graphic key generation based on facehashing. Computers &

Security, 23(7):606–614, 2004.

[24] M. Van Der Veen, T. Kevenaar, G.-J. Schrijen, T. H. Akker-

mans, F. Zuo, et al. Face biometrics with renewable tem-

plates. In Proceedings of SPIE, volume 6072, page 60720J,

2006.

[25] Y. Wu and B. Qiu. Transforming a pattern identifier into bio-

metric key generators. In ICME 2010, pages 78–82. IEEE,

2010.

15

