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Abstract

Architectures relying on continuous authentication

require a secure way to challenge the user’s identity without

trusting that the Continuous Authentication Subsystem

(CAS) has not been compromised, i.e., that the response

to the layer which manages service/application access

is not fake. In this paper, we introduce the CALIPER

protocol, in which a separate Continuous Access Verifi-

cation Entity (CAVE) directly challenges the user’s iden-

tity in a continuous authentication regime. Instead of

simply returning authentication probabilities or confidence

scores, CALIPER’s CAS uses live hard and soft biometric

samples from the user to extract a cryptographic private

key embedded in a challenge posed by the CAVE. The

CAS then uses this key to sign a response to the CAVE.

CALIPER supports multiple modalities, key lengths, and

security levels and can be applied in two scenarios: One

where the CAS must authenticate its user to a CAVE running

on a remote server (device-server) for access to remote

application data, and another where the CAS must authenti-

cate its user to a locally running trusted computing module

(TCM) for access to local application data (device-TCM).

We further demonstrate that CALIPER can leverage device

hardware resources to enable privacy and security even

when the device’s kernel is compromised, and we show how

this authentication protocol can even be expanded to obfus-

cate direct kernel object manipulation (DKOM) malwares.

1. Introduction

Two fundamental problems exist with conventional pass-

word, token, and biometric authentication schemes. The

first problem is one of infrequent authentication. Assuming

that a legitimate user performed the initial authentication,

there is no validation mechanism to ensure that the same

user that logged in is the same user using the device minutes

or hours later. Such authentication schemes guarantee only

that the current user of the device possessed a password,

biometric, or security token at the time of login. This guar-

antee does nothing to address post-login risk: If Bob steals

Alice’s phone while Alice is still logged on to her bank

account, Bob can do catastrophic harm to Alice, regardless

of how many questions the bank asked or the number of

factors of authentication used during the initial login.

The second problem is one of remote trust. Remote

services must trust the authentication subsystem: They have

no independent way to challenge a user’s identity. If Bob

steals Alice’s authentication credentials, Bob will still be

authenticated by Alice’s bank, since the bank can only

establish the veracity or lack thereof of the login credentials.

Bob can continue to login until Alice or the bank notice

and/or change Alice’s password. Note that device authenti-

cation methods by themselves, in which the user authenti-

cates to the device and the device authenticates to a remote

entity still do not solve the remote trust problem. Even

under the idealized fictional assumption of perfect device

authentication, i.e., the remote entity only knows that the

actual device’s user authentication module “said” that the

user was valid. It has no independent way to challenge the

user. If Bob has stolen Alice’s device and password, he

poses a security risk, even under this naive fictional assump-

tion of perfect device authentication.

These two shortcomings in conventional authentication

schemes can allow an adversary to gain access to the device

post-login, which at the very least compromises the session.

Further, they may allow an adversary to steal or spoof login

credentials for later use at the adversary’s discretion, poten-

tially compromising confidentiality, integrity, and avail-

ability of all data to which the legitimate user of the device

has access.

Recent advances in continuous authentication offer

promising solutions to the infrequent authentication

problem. In continuous authentication, a device continu-

ously obtains hard and soft biometrics in a manner trans-

parent to the user so that local or remote services may
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continuously determine whether to maintain the user’s

authentication credentials as legitimate or to de-authenticate

the user. Moreover, continuous authentication offers the

appeal of enhancing user experience by reducing explicit

password prompts. To our knowledge, however, continuous

authentication architectures to date focus solely on authen-

tication confidence. This does not address the remote trust

problem: Even if authentication subsystems use biometrics

that provide strong authentication confidence, it is insuffi-

cient for the continuous authentication layers to return the

probabilities of valid users, because other local layers or

remote services then have to trust that the response was not

fake. Whether the client device is physically compromised

via theft or remotely compromised via malware, an adver-

sary need only change one bit to defeat such weak security.

To overcome the limitations of conventional authenti-

cation systems, we present a protocol to harden contin-

uous authentication implementations against scenarios in

which the local or remote Continuous Access Verification

Entity (CAVE) cannot trust that the Continuous Authen-

tication Subsystem (CAS) client has not been compro-

mised by theft or malware on the device. Henceforth, we

refer to this authentication protocol CALIPER – Contin-

uous Authentication Layered with Integrated PKI Encoding

Recognition. CALIPER is a continuous authentication

protocol, where continuous hard (e.g., face, speech) and

soft (e.g., keystroke data, application data, resource usage

data) biometric data are collected using existing device I/O

API infrastructure and are then transformed into an inter-

mediate classifier / feature space representation for use as

basic blocks in a biocryptographic ensemble. Unlike tradi-

tional biometric verification schemes or other continuous

authentication approaches, the result is a system that lever-

ages a PKI encoding to support challenge-response key

exchange so that other local or remote services do not

have to trust only the output of the continuous authenti-

cation subsystem (CAS); Instead they can challenge the

CAS directly about a given user and even use biocryotpo-

graphics [21] to exchange/manage public keys. The contri-

butions of this paper are as follows:

1. We introduce CALIPER, the first authentication

protocol that addresses both infrequent authenti-

cation and remote trust problems with conven-

tional authentication schemes. CALIPER general-

izes password-combined, one-time, single-modality

remote vaulted verification (VV) protocols to a

continuous, multiple-modality, biocryptographic key

exchange/renewal protocol. CALIPER’s basic blocks

are not dependent on any one classifier type or even

a machine learning classifier in the traditional sense,

which allows CALIPER to form challenges based on

CAS device specifications too, becoming a unified 3-

factor authentication protocol.

2. We present different scenarios for applying CALIPER

as an access control protocol: a device-server scenario,

where a CAS residing on a client device must authenti-

cate its user to a CAVE running on a remote server, and

a device-TCM scenario, where a CAS must authenti-

cate a user to a CAVE resident on a trusted computing

module (TCM), e.g., a TPM, SIM card, or GPU

running on the same local device, in order to run an

application.

3. Although CALIPER is an authentication protocol,

its flexibility allows us to apply it to other prob-

lems in computer security. We demonstrate how the

protocol can be used to maintain security even in

the event of OS kernel compromise, and even obfus-

cate attacks through Address Space Layout Person-

alization (ASLP), a novel approach to address space

layout randomization (ASLR), whose security does

not depend on an intact kernel.

2. Background

The CALIPER protocol combines the concepts of

continuous authentication and biocryptographic challenge-

response. The earliest work on continuous authentication

systems dates back to the early 1990’s, in which Leggett et

al. proposed using keystroke characteristics as a “dynamic

identity verifier” to overcome the static nature of session

passwords: “Normally, the user is asked for the password

at log-in time and the system assumes that the user is the

same person until log-off time” [17]. The term contin-

uous authentication in the biometric sense dates back to

1995, again applied to keyboard dynamics [23]. Since then,

various research has been published on applying continuous

authentication across many modalities, e.g., [4, 7, 8, 9, 16,

18, 14].

Recently, continuous authentication has gained

increased interest in the mobile domain, largely due

to the explosion of the mobile device market, the increasing

number of sensors available on mobile devices, the

increasing need for mobile security, and the increased accu-

racy and decreased processing costs of applying machine

learning algorithms. Large companies are now actively

pursuing continuous authentication frameworks for mobile

devices, for example, Google Inc. recently announced

Project Abacus [1], a fused multi-modal continuous

authentication framework for Android devices. However,

no continuous authentication framework to date to our

knowledge addresses the problem of CAS compromise on

the local device, but instead, these frameworks implicitly

trust that the CAS has not been compromised and that there

is not, e.g., a rootkit hooking CAS binaries. We contend

that this implicit trust is the weak link in the security

of most proposed, prototyped, and fielded continuous
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authentication systems.

CALIPER guarantees security and privacy via an exten-

sion of the Vaulted Verification protocol proposed by Wilber

et al. in [25]. VV was originally proposed as an exten-

sion of fuzzy vaults [15] to address the numerous secu-

rity problems with fuzzy vaults and fuzzy extractors [6]

that were reported by Scheirer et al. in [22]. These

problems include template privacy/security vulnerabilities

in the event of server compromise, man-in-the-middle

attacks, replay attacks, blended substitution attacks, and

non-revocability of biometric models/tokens [22]. Johnson

presents over 60 pages of analysis on the security of the VV

protocol in [13]. This analysis indicates that the protocol,

under proper implementation, is secure against such attacks.

The VV protocol is a client-server protocol that can be

summarized as follows: During enrollment, the client takes

real biometric samples and generates chaff samples. Models

for both real and chaff are created and (real, chaff) model

pairs, each pair encrypted with the client key, all pairs

encrypted with the server key, along with corresponding

ground truth, are sent to the server. The client then securely

wipes all data from memory. During authentication, the

server generates a random key with which it changes the

order of each (real, chaff) pair depending on whether the

corresponding key element is 1 or 0 respectively. The server

then sends a challenge to the client, consisting of pairs

swapped according to the key. Upon receiving the pairs, the

client, using live biometric samples in conjunction with the

challenge models, responds with a guess of the key. Upon

receiving the client’s guess, the server checks against the

actual key. If enough bits are correct for the security policy

in question, the server authenticates the client. VV also uses

nonces to protect against replay attacks.

There have been several variations of the VV protocol

over the years, including extensions to iris [26], finger-

print [2], and voice [12, 11, 10] biometrics. The latter exten-

sions incorporated public key cryptography, and reduced

communication overhead by using index tables. All of these

protocols, however, use VV strictly as a one-time, single

modality remote authentication mechanism to be combined

with password authentication. Therefore, none of them can

be incorporated into continuous authentication solutions,

which necessarily must support multiple modalities [24],

for sufficient authentication capability and a usable experi-

ence in the event of failover of one or more modality types.

This claim is not merely theoretical: commercial develop-

ment efforts [1] have leveraged several modalities in their

continuous authentication algorithms. CALIPER extends

previous VV efforts to a continuous, multiple-modality,

biocryptographic key exchange/renewal protocol.

Related to but not to be confused with the remote trust

authentication problem discussed in Sec. 1 is the problem

of remote entrusting [20, 3, 5], a more general computer

security problem in which an application running on an

untrusted device requests resources from a remote entity.

Solving the remote trust authentication problem does not

solve the remote entrusting problem, because establishing

that a user is authentic does not ensure that the device has

not been compromised by malware. If a rootkit has hooked

the device while a legitimately authenticated user is viewing

sensitive data, that sensitive data can still be compromised

at no fault of the user authentication subsystem. Remote

entrusting is an extremely difficult problem to solve because

of the problems presented by modern malwares, especially

those which hijack control flow of either legitimate applica-

tions or the kernel itself [19]. Solving the remote entrusting

problem is well beyond the scope of this paper, if it is

even possible to begin with. We can, however, mitigate the

problem by extending CALIPER beyond an access control

protocol. We present this extension in Sec. 4.2.

3. Protocol

In this section we discuss the mechanics of the

CALIPER protocol. The notation used in this protocol is

summarized in Table 1. The protocol has two stages: enroll-

ment and verification. We present the enrollment stage in

Sec. 3.1 and the verification stage in Sec.3.2.

Symbol Definition

(Kpu,Kpr) Public and private key pair generated by the

CAS.

C(Kpr) Kpr under an ECC encoding.

K̂ C(Kpr)⊕R

Kperm Permutation key used by the server to generate

challenges.

TM Model table resident on CAS.

TC Client table residing on the CAS.

TS Server table residing on the CAVE.

h1 Hash index into TM .

h2 Hash index into TC .

h3 Hash of retrieved Kpr , shift amounts, and n2
sent as a response to the CAVE.

n1 Nonce 1.

n2 Nonce 2.

R A random pad.

UID User identifier.

MID Modality identifier.

H hash(TS ,Kpu,UID).

N Number of choices per row (≥ 2) in TS .

M Number of rows in TS . Same as the number of

challenges available at a particular time.

i Column index in TS ; i ∈ {1, . . . , N}.

C Challenge.

RE Response.

Table 1: Notation used in the CALIPER protocol.
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Continuous Authentication   

Verification Entity

Continuous Authentication Subsystem

Figure 1: Communication and processing tasks on the CAS and the CAVE in rough time sequence order during enrollment. The presence

of multiple numbers indicates that multiple tasks occur at approximately the same time. Dashed arrows indicate communication between

the CAS and the CAVE. White space designates times when a device is idle. Note that communication between CAS and CAVE is protected

by an encrypted channel.

3.1. Enrollment

The enrollment portion of the CALIPER protocol is

depicted in communication and processing steps in Fig. 1.

Enrollment proceeds as follows: The CAS continuously

polls different sensors and OS resources for data from a

subset of modalities, extracting feature vectors and gener-

ating an ensemble of classifiers for both real and chaff

samples. The classifier ensemble is then stored in a model

table (TM ), in which each element is a classifier, keyed on

its own hash. The CAS then generates a (public, private)

key pair (Kpr,Kpu), followed by an ECC representation

C(Kpr). A random pad, R, of the same length as C(Kpr),

is then generated and a masked key, K̂ = C(Kpr) ⊕ R,

is created. K̂ is then partitioned into chunks and a client

table (TC) is created. Each entry in TC consists of a hash

index (h1) into TM , which is a direct hash of each classi-

fier; an index i, which assumes values between 1 and N ,

the number of possible answers allowed to the CAS at veri-

fication time for this key fragment; K̂i , which corresponds

to the key if i corresponds to the actual answer (real sample)

and a random number otherwise (chaff sample); and finally

the modality identifier (MID).

Each row of TC is keyed on h2, a hash of its contents.

An M -row server table (TS) is then created, with each

row containing an entry for a real classifier of a different

modality and N − 1 chaff entries, where N is the number

of choices per row, greater than or equal to 2. Each entry in

TS contains h2, the hash index into TC , the column index,

i, and the associated segment of the random pad, Ri, used

to retrieve the key if the column indexes a real model and

another random number otherwise. Note that TS may have

variable-length columns, but for simplicity of discussion we

treat them as fixed-length. After TC and TS are generated,

K̂i,C(Kpr), and Kpr are wiped from the client’s memory.

The CAS then encrypts TS , along with the public key

that was generated by the CAS, the UID, and n1 with

the CAVE’s public key and sends them to the CAVE. The

CAS deletes its copy of TS . The CAVE then decrypts the

incoming message, extracts TS , concatenates TS with n1,

encrypts the pair with its public key, hashes this encrypted

pair, stores the hash, sends the result back to the CAS along

with n1 over an encrypted channel, and securely wipes its

own copy of the server table from memory. The CAS then

verifies n1 to ensure that the encrypted TS corresponds to

the same communication session and stores the encrypted

TS . This concludes enrollment.

3.2. Verification

The verification portion of the CALIPER protocol is

depicted in communication and processing steps in Fig. 2.

When the CAS first requests access from the CAVE or

when the continuous authentication protocol requires a new

session key, the CAS sends the CAVE a request for access,

which includes the encrypted copy of the server table.

The CAVE hashes this message and compares the gener-

ated hash against its previously stored hash to ensure that

the contents of the server table have not changed. The

CAVE then decrypts the message using its private key,

and constructs a challenge for the CAS by first selecting

a random subset of rows from the server table, then creating

a vector of random integers the length of this permuted

subset of rows. Each element of this vector assumes a value

between 0 and N − 1, where N is the length of the corre-

sponding row in the server table. The subset and permu-

tation of rows are then circularly shifted by their corre-
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Figure 2: The layout of index-table resources in CAS and CAVE memory. Related elements across tables are connected with solid lines.

For ease of visualization, we show a rectangular server table with M challenges with N choices per challenge. In the server table, indices

are made explicit on h2, i (the choice), and R. We show only one entry of the client table, omitting indices on h1 and h2. We index K̂

by i = 1 to denote the explicit correspondence with RM1 in the server table. The layout depicted in this diagram is before the challenges

in the server table have been circularly shifted; otherwise the correspondences would likely be broken. Note also that the correspondences

across tables are only hashes/indices. The CAVE sees no biometric/behavioral data; not even the type of modality. The CAS stores only

model files with no associated ground truth. Also, the CAVE’s session resource need not store user information, device information, or

even names of applications. Thus, CALIPER not only provides strong security but also significantly enhances privacy.

sponding random element, and, with the exception of the

original index, sent to the CAS. A challenge nonce n2 is

included in this message to protect against replay attacks.

When the CAS receives the challenge, it begins

constructing the response, element by element, by first

indexing into TC and retrieving appropriate values by which

to index into TM . The CAS then indexes into TM to retrieve

the corresponding challenge classifiers. By submitting live

biometric/behavioral samples to each of the retrieved classi-

fiers, the CAS can determine which models were generated

using real data. This also allows the CAS to guess the shifts

that were applied by the CAVE. The CAS can then retrieve

fragments of the encoded key by XORing the encoded key

fragments from TC with the associated random pad from

the challenge, i.e., C(Kpr)i = K̂i ⊕Ri. Provided that the

CAS successfully retrieves enough codeword fragments, it

can run error correction on C(Kpr) to recover Kpr. It

can then piece together the permutation key Kperm that

was used by the server, and sign a response via the hash

h3 = hash(Kpr,Kperm, n2). When the CAVE decrypts

the message and successfully verifies the hash it authen-

ticates the CAS device’s user. The CAS client can also

include a message with a vector of its original guesses on

the permutations. Depending on the number of guesses that

the client got correct, the challenge unit can adjust the time

intervals / key lengths required between subsequent authen-

tications.

3.3. Implementation Considerations

Several of the security enhancements that CALIPER

provides over IVV are non-trivial to quantify: First, the

extension to multiple modalities makes spoofing CALIPER

more difficult than spoofing a single-modality IVV scheme.

Depending on the implementation, it might be desirable for

the CAVE to be able to alternate the ratios/types of modal-

ities used, which requires placing the MID in the server

table. A second way CALIPER enhances security over

conventional IVV is that it generalizes the IVV basic block

to any classifier type, thus allowing more bits of security

to be generated faster than under a single modality regime.

Previous single modality VV schemes treat the basic block

as an entity consisting of one homogeneous model type.

CALIPER’s basic blocks can consist of any type of

model on which training/classification can be performed

in a reasonable amount of time. For the face modality,

for example, basic blocks might consist of support vector

machines, while for the voice modality, basic blocks might

consist of Gaussian mixture models. Interestingly, a

basic block need not even correspond to a model in the

conventional machine learning sense; in some cases simple

comparisons of values may suffice. Let us say that we

wanted another way to verify the device itself beyond

conventional device authentication protocols. By using

hashes of disk blocks as basic blocks in the model tables,

along with the logical block addresses (LBAs) associated

with the hashes, classification reduces to indexing disk

blocks, hashing them, and performing equality checks to

determine which hashes correspond to the actual storage

layout of the device. Leveraging multiple modalities and

supplementing with simple comparison-style blocks allows

CALIPER to have more bits of security on-demand than

single modality schemes, and provides an third factor

of authentication (something the user has) over the IVV

protocol. Of course, some balance of modalities is neces-
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Figure 3: Communication and processing tasks on the CAS and the CAVE in rough time sequence order during verification. Dashed

arrows indicate communication between the CAS and the CAVE. Times during which a device is idle are indicated by white space. Note

that communication between CAS and CAVE is protected by an encrypted channel.

sary to provide secure authentication.

We would also like to point out that, in implementa-

tion, the security of the protocol assumes that a separate

(Kpu,Kpr) pair is used at each verification step. Otherwise

malware on the device could simply snoop Kpr, thus obvi-

ating challenge-response.

4. Applications

CALIPER offers a secure continuous authentication

model which can be mixed across many devices of hetero-

geneous architectures. Several such scenarios are discussed

in Sec. 4.1. The protocol can also be extended as a software

security feature to mitigate the spread of malware even if it

has compromised a device’s kernel. An antimalware appli-

cation is proposed in Sec. 4.2.

4.1. Cross­Device Authentication

Since the CAVE possesses no information about the

underlying biometrics or CAS implementation, it does not

require specialized biometric sensors/behavioral modules.

CAVE implementations may therefore exist on a wide array

of different device types. Moreover, adding new modalities,

e.g., integrating support for wearable technology sensors,

does not require any change to the protocol or the CAVE

architecture; only CAS client changes are required. Conse-

quently, there is no fixed requirement on the types of CAS

device hardware that may be supported, although main-

taining minimal subsets of modalities might be desirable

from a security perspective.

The literature on previous variations of Vaulted Veri-

fication summarized in Sec. 2 constrained discussions of

authentication to a context where the transfer of sensitive

information occurs between a client device and a server.

Especially for mobile devices, this type of a device-server

model provides minimal security guarantees because it does

not protect data cached on the device itself. Mobile email

clients, for example, only authenticate with a server in order

to download new emails. Once the emails have been down-

loaded, no security layer between the device and the server

can protect the contents of these emails – encrypting cached

data and using the server as a trusted central authentica-

tion authority is not feasible from a usability perspective

due to the loss of access when offline. Thus, in addi-

tion to device-server verification, a solution in which the

user authenticates to the device itself is needed. However,

if the device has been compromised by spoofing, phys-

ical theft and subsequent rooting, or by malware, then any

continuous authentication layer sharing the same memory

space runs the risk of compromise. Instead, a device-TCM

scheme is needed, in which the CAS and the CAVE run

in two disjoint address spaces – the CAS runs in the stan-

dard device address space and the CAVE runs in the address

space of a trusted computing module (TCM), which by

design is very difficult to compromise.

One way to accomplish address space separation is to

move the CAVE into the OS kernel itself. Although this

increases the cost of the attack, this does not remove the

vulnerability to malwares which compromise the kernel,

e.g., DKOM rootkits [19]. A better approach is to use a

physically different memory space as the TCM than that of

the CPU, with a much different processing architecture, so

that the CAVE resides on its own separate hardware. For

workstations and laptops, such a memory separation could

be accomplished by moving the CAVE onto a Trusted Plat-

form Module (TPM). For smart phones, subscriber iden-
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B. DEVICE-TCM SCENARIO

A. DEVICE-SERVER SCENARIO

CAS

CAVE

CAS CAVE

Figure 4: Examples of and device-server and device-TCM

instances of the CALIPER protocol. Solid green lines indicate

CAS devices, while solid red lines indicate CAVE devices. Dashed

green and red lines indicate CAS- and CAVE-specific hardware

within a device. In the device-server scenario, the CAS layer,

running on a mobile phone in this example, authenticates the user

to a remote banking server’s CAVE in order to process a trans-

action. The CAVE runs on a remote server and challenges the

CAS residing on the user’s phone about the user’s identity. In the

device-TCM scenario, both the CAS and the CAVE run on the

phone. The CAS runs on the same CPU as the banking applica-

tion, and authenticates the user to the CAVE, which runs on a SIM

card. In this scenario, the SIM card manages access to local appli-

cation data by the CPU.

tity modules (SIM cards) could be used instead. Both

TPMs and SIM cards are equipped with cryptographic

modules and support permutation, indexing, and compar-

ison operations necessary to perform CAVE functionalities.

Graphical Processing Units (GPUs) also have their own

memory spaces as well as programming models which are

sufficiently general to support CAVE functionality, while

lacking sufficient generalization to easily support most

malwares.

Schematics of device-server and device-TCM variations

of CALIPER are shown in Fig. 4 in the context of a

mobile online banking application. Note that device-TCM

and device-server applications should not be thought of as

disjoint contexts since they often occur simultaneously. For

example, the banking application running on a smart phone

in Fig. 4 might leverage a CAVE running on a SIM card

to verify the user, while making network connections to a

bank which uses its server resident CAVE to verify the user

against the same CAS.

4.2. Remote Entrusting

In Sec. 4.1, we discussed how CALIPER addresses

local and remote authentication problems. However,

CALIPER can also be applied to address more general

remote entrusting issues. In this section, we present a novel

application in which CALIPER can be applied to provide

enhanced protection against malware.

One method most modern operating systems use to attain

robustness to attacks is to randomize the address space

layout at load time. This technique is commonly referred

to as address space layout randomization or ASLR. The

objective of ASLR is to make attacks more difficult by

removing the attacker’s ability to know the memory address

space layout apriori: It is difficult to write code to hijack

control flow if the address of the hook point is unknown,

especially in a large 64-bit address space. Unfortunately,

the utility of ASLR assumes a trusted device kernel. If the

device’s kernel is compromised, then ASLR can be disabled

or modified to yield a deterministic address space layout,

e.g., by hooking the random number generator.

To this end, we introduce address space layout personal-

ization (ASLP), a concept which is in some ways similar to

ASLR, but is far less vulnerable to kernel compromise. In

ASLP, compilation and linking of executables is done on the

vendor’s server on which the CAVE resides. Randomization

of code segments is keyed by the CAVE’s challenge. When

the CAS client attempts to load the application, the only

way to correctly address segments is to answer the CAVE’s

challenges via live biometric/usage samples and recover the

key. This significantly raises the bar for the attacker, since

segment ordering is now user-specific and generic malware

cannot hook the application by simply disabling ASLR. If

the randomization of ASLP is disabled, then the applica-

tion will simply fail to load. Of course, there is a chance

that a rootkit can glean information about the load order by

snooping on the address space at load time, but the address

space layout for one or more particular instances is not

particularly useful for a malicious code author: each user

of each application has his/her own unique address space

layout. Also, in the event of a security breach, the server

can re-deploy code to the client, this time randomized with a

different CALIPER key. The knowledge of a given address

space layout is only applicable to a single CALIPER key for

a single user.

5. Discussion

While it might seem grandiose to claim that the

CALIPER protocol can operate using the constrained

computational resources of a SIM card as a CAVE, it is

important to realize that most of CALIPER’s processing and

storage is performed on the CAS, which we assume has at

least the computational and storage capacities of modern

smartphones. The CAVE must support primitive arithmetic

and cryptographic operations as most modern SIM cards

do. It must also be able to store the server table. The

exact server table size is implementation dependent, but for

a feasibility assessment, let us assume that we have a 128

KB SIM card for our CAVE. Let us further assume that we

are using SHA-256 digests (32 bytes each) as our hashes,
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that each row in our server table has four choices, only one

of which is correct, and that Kpr and Kpu are 2048 bit RSA

keys. Then C(Kpr), and hence R take 2048 bits if we move

the error correcting symbols to the CAS for compactness,

which can easily be done without compromising security.

Finally, let us assume that the server table has 4 choices per

row in each of 128 rows per key. The server then requires

256 bytes for Kpu, 32 bytes for the UIDhash, and 140 bytes

(4 × 2 for R, 4 × 1 for i, and 4 × 32 for h2) for each row

in the server table. Under the 128 KB SIM card assump-

tion, the CAVE has enough storage capacity for the CAS to

reconstruct seven 2048 bit public keys.

Continuous authentication is in its early stages, so we

acknowledge that this feasibility analysis, although it might

seem reasonable at face value, may or may not be appro-

priate, depending on the application in question. According

to the security analysis in [13] our example is secure in

comparison to conventional password authentication stan-

dards (in terms of bits of security) for a single modality.

Research suggests that multiple modalities serve to enhance

security [24], although how well they do so is still an

open research question. As continuous authentication tech-

nologies, e.g., [1], are fielded, it will be interesting to

see what constitutes a good balance of modalities. Some

modalities have been documented to yield higher authen-

tication accuracies than others, but the amount of inde-

pendent information that each modality adds, conditioned

on the presence of others for particular authentication plat-

forms has yet to be researched, as does the impact of missed

detections and missing modalities on the tradeoff between

authentication performance and usability. The biometrics

and behavioral data used in the CALIPER protocol need

not be entirely available on-demand, although the extent

of temporal evidence accumulation that can practically be

accommodated depends on the tradeoff between security

and usability. If the CAS consistently makes substantial

errors in its guesses, then ramping up security by reducing

the lengths of time windows for sensor data acquisition, and

perhaps even requiring active authentication – i.e., explicit

prompts for user input – may be a reasonable security

failover. We leave these topics for future research.

While CALIPER adds a significant improvement to the

security of all proposed and fielded continuous authen-

tication technologies that we are aware of, it does

not eliminate all security vulnerabilities. As with any

biometric/biocryptographic protocol, the security of the

protocol is compromised if the biometrics are compro-

mised at the time of enrollment. If the device is root-

compromised after enrollment, it is still extremely diffi-

cult for an attacker to access local or remote data while

the device is not in use. When the device is used while

in a root-compromised state, however, no biometric-based

system can protect users in the long run without a re-keyed

protocol because an attacker can eventually gather the data

to construct a complete biometric profile of the user. While

this is not required to recover Kpr alone, the vulnera-

bility of Kpr is partially ameliorated by challenge-response:

For multiple attempts, the key alone is insufficient and the

CAVE would still be able to reject the attacker. Another

option would be to move generation and retrieval of Kpr

to the CAVE. This protects Kpr from immediate compro-

mise and potential key-inversion attacks by malware on the

CAS, but eventually, after multiple legitimate authentica-

tions on behalf of the user, a malware could intercept raw

sensor data to develop a more complete biometric profile

and thus answer the challenges. Thus, as a measure of intru-

sion detection, it is critical that a CAVE occasionally send a

challenge that is expected to fail and check that no valid key

is returned before the attacker has a chance to compromise

the biometric/behavioral data. A compromised kernel is

generally non-trivial for any authentication system. This is

one of the reasons why we extended the CALIPER protocol

as a remote entrusting mechanism to help protect the CAS’s

kernel (cf. Sec. 4.2).
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