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Abstract
We propose a Gaussian Conditional Random Field

(GCRF) approach to modeling the non-stationary distor-

tions that are introduced from changing facial expressions

during acquisition. While previous work employed a Gaus-

sian Markov Random Field (GMRF) to perform deforma-

tion tolerant matching of periocular images, we show that

the approach is not well-suited for facial images, which can

contain significantly larger and more complex deformations

across the image. Like the GMRF, the GCRF tries to find the

maximum scoring assignment between a match pair in the

presence of non-stationary deformations. However, unlike

the GMRF, the GCRF directly computes the posterior prob-

ability that the observed deformation is consistent with the

distortions exhibited in other authentic match pairs. The

difference is the inclusion of a derived mapping between

an input comparison and output deformation score. We

evaluate performance on the CMU Multi-PIE facial dataset

across all sessions and expressions, finding that the GCRF

is significantly more effective at capturing naturally occur-

ring large deformations than the previous GMRF approach.

1. Introduction

Using facial features as a biometric modality is one of
the most common forms of user identification. Consid-
erable efforts have been made toward the advancement of
face biometrics. This is partly due to the remarkable abil-
ity of humans to recognize faces [28], as well as the ease
of acquisition (non-invasive and less controlled than iris
or fingerprint) combined with an increasing availability of
cameras/video for acquisition [26, 39, 40]. However, even
in controlled acquisition, matching facial images with dis-
tortions is a challenging problem [11, 21, 18, 19]. Facial
expressions introduce non-stationary image movements in
both facial [4, 15] and ocular images [1] that notably affect
matching performance.

Probabilistic Deformation Models (PDMs) are a tech-
nique proposed by Thornton et al. [34] to simultaneously
estimate the non-linear deformation in iris images caused
by the expansion and contraction of the pupil and match iris
images using a Gaussian Markov Random Field (GMRF).

In controlled acquisition environments the PDM method
works well and all images patches are treated equally. That
is, the model assumptions make no explicit distinction in
varying discrimination ability across the biometric image.
As the method was originally intended for iris recognition,
where the rich texture of the iris is segmented from the eye,
there was no specific need to account for varying discrim-
ination outside of removing artifacts from improper seg-
mentation. In [29], the approach was adapted for perioc-
ular recognition, referred to as a Periocular PDM (PPDM),
by extending the model to leverage the varying discrimina-
tion ability across the pair of images being matched. PPDM
demonstrated that the original PDM method could be used
across different biometric domains and demonstrated the
benefits of deformation modeling of the ocular region in en-
vironments where iris recognition can fail.

In this work we further extend PDM to facial biometrics,
which can contain significantly larger and more complex
distortions (e.g., due to facial expressions) across the im-
age. To accomplish this we derive a Gaussian Conditional
Random Field (GCRF) to model these deformations. Like
the PPDM GMRF, the GCRF finds the maximum scoring
assignment between the probe and gallery in the presence of
non-stationary deformations. Unlike the GMRF, the GCRF
builds a log-linear model to directly obtain the posterior.
Similar to [29] we develop a method for efficient training
which does not require Bayesian inference.

Previous works [20, 7] have employed CRFs for face
recognition, however to the authors’ best knowledge, no one
has studied the use of a GCRF for face recognition. What
makes a Gaussian graphical model special is its ability to
compactly represent the structure and parameterization of
the model within the precision matrix [25]. Accordingly,
most work [36, 35, 38, 37, 23, 30, 5] concerning GCRFs
(or related models, e.g., Partial Gaussian Graphical Models
[38]) comes from structure learning due to the compact rep-
resentation of the graph within the precision matrix. A few
[33, 22, 6] have investigated the use of a GCRF for predic-
tion using a pre-defined graph structure. The first to do so
was Tappen et al. [33], where the authors define a GCRF as
a weighted set of linear convolution kernels to perform im-
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age denoising. The model is then trained using a gradient-
based approach to minimize the difference (or cost) between
the predicted result and ground truth for a given set of pa-
rameters (the authors remark on the reduced computation
compared to maximizing the likelihood).

Djuric et al. [6] and Radosavljevic et al. [22] however
train their GCRF predictive models by finding parameters
that maximize the conditional log-likelihood via gradient
descent. When performing structure prediction, Wytock
and Kolter [36] observe that gradient-descent methods for
maximum likelihood estimation (MLE) are often slow to
converge and may perform poorly due to ill-conditioned
matrices. They instead use alternating direction method of
multipliers (ADMM) and later in [35] derive a Newton co-
ordinate descent approach. Similar to [35], we employ a
Newton coordinate descent optimization to learn GCRF pa-
rameters, however we also take a note from Chiquet et al.
[5] by including additional information to account for the
structure among the predictors.

We demonstrate the efficacy of this approach on the
CMU Multi-PIE (Pose, Illumination, and Expression) [12]
facial dataset with verification rate (VR), equal error rate
(EER), and rank-1 identification rate (ID) as measures
of system performance. The use of the Multi-PIE face
dataset is ideal for measuring performance in the presence
of large distortions (e.g., users with a scream expression
are matched against the same users with a neutral expres-
sion), and thus is an appropriate benchmark for measuring
the model’s ability to capture naturally occurring extreme
image deformations.

2. PPDM Gaussian Markov Random Field

The PPDM technique first divides a given probe image,
I, and gallery image, G, into N rectangular patches. The
corresponding probe and gallery patches are then matched
via template matching to obtain a patch similarity, S(·),
at the location of best match (local x − y spatial transla-
tion) which serve as inputs to the graphical model. For the
i−th patch pair the relative spatial translation is denoted by
{(∆xi,∆yi)}, and is used to define the deformation for the
image pair as a vector d = [△x1,∆y1, · · · , △xN ,∆yN ]

T .
For an authentic match pair the underlying latent deforma-
tion, d̂, is computed using maximum-a-posteriori (MAP)
estimation to determine the most likely deformation vector
between the two images:

d̂ = argmax
d

P (d|G, I) = argmax
d

P (I|G,d)P (d)

≈ argmax
d

{

P (S (I,G;d)) · exp
(

−
1

2
d
TΣ−1

d
d

)

}

(1)

where the likelihood P (I|G,d) is modeled by a distribu-
tion over the patch similarity scores P (S (I,G;d)) and
the prior probability distribution, P (d), is modeled as a

GMRF, with mean 0 (after accounting for a global relative
shift between the probe and gallery) and covariance ma-
trix Σd ∈ R

2N×2N . For GMRFs [25] the graph connec-
tions are encoded by the structure of the precision matrix
Σ−1

d
, where the GMRF properties ensure that Σ−1

dij
= 0 for

non-neighboring di and dj . More details on PPDM can be
found within [29].

3. PPDM Gaussian Conditional Random Field

We now derive a Gaussian Conditional Random Field
(GCRF) for the deformation model. The PPDM GMRF
formulation operates under the assumption that authentic
deformations follow a multivariate Gaussian distribution,
and given favorable deformation estimates, can appropri-
ately generate a model for valid patch translations. How-
ever, as the deformation estimates degrade due to noise, oc-
clusion, etc., the ability of the GMRF to properly classify
authentic deformation also degrades. Thus, to adapt to more
challenging match scenarios, we want to learn a predictive
model that determines the probability of authentic deforma-
tion given an input image comparison, without having to
directly model the inputs themselves.

Since their introduction by Lafferty et al. [16] the CRFs
have become a popular choice for modeling over a MRF
as they do not require the representation of the dependen-
cies between the input variables. This stems from the CRF
modeling the conditional probability distribution, while a
MRF models the joint probability distribution. Like the
previously described PPDM GMRF, the GCRF tries to find
the maximum scoring assignment given that the probe im-
age matches the gallery template in the presence of non-
stationary deformations (represented as local patch transla-
tions). However, unlike the GMRF, the GCRF builds a log-
linear model to directly obtain the posterior, P (d|G, I) =
P (δ|Υ) (we use the variable Υ to refer to the output from
the matching between the probe, I, and gallery, G, images,
and δ as the deformation score). The difference is that in
the GMRF we’re learning the statistics of the distribution to
properly represent authentic deformation (approximated by
spatial translations, i.e., ∆xi and ∆yi), while in the GCRF,
we’re learning how to separate authentic and impostor de-
formations. In both cases we’re computing the latent defor-
mation (how authentic/consistent the observed x and y val-
ues for each node are with previously seen deformations),
but in the GCRF this value is a single score at each node,
represented as δ, while in the GMRF it’s a score per x and
y at each node, represented as d.

We assume a multivariate Gaussian distribution between
our inputs, Υ ∈ R

2N (i.e., ∆xi and ∆yi ∀i), and outputs,
δ ∈ R

N (the deformation score value for each node), with
mean µ =

[

µT
Υ
, µT

δ

]

, covariance Σ, and precision matrix Ω:

Ω =

[

ΣΥ ΣΥδ

ΣT
Υδ

Σδ

]

−1

=

[

ΩΥ ΩΥδ

ΩT
Υδ

Ωδ

]

(2)
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where Ωδ ∈ R
N×N contains a structure similar to Σ−1

d
in

the GMRF, directly encoding the conditional dependency
relationships of Υ and δ as proven in [17] and [25]. The
distribution is as follows:

(3)P (δ|Υ) =
1

ZδΥ(Υ)
exp

(

−
1

2
δ
TΩδδ −ΥTΩΥδδ

)

with Ωδ =
(

Σδ − ΣT
Υδ

Σ−1

Υ
ΣΥδ

)−1

directly parameter-
izing the conditional independence relationships of the
graph,1 while the term ΩΥδ = −Σ−1

Υ
ΣΥδΩδ ∈ R

2N×N

maps the inputs (image comparison) to the outputs (proba-
bility of authentic deformation). Finally, the partition func-
tion ZδΥ(Υ) ensures that the distribution over the latent de-
formations, δ, integrates to one, making the result a proper
probability distribution:

ZδΥ(Υ) =

∫

exp

(

−
1

2
δ
TΩδδ −ΥTΩΥδδ

)

∂δ

=
(2π)

λN
2

|Ωδ|
1/2

exp

(

1

2
ΥTΩΥδΩ

−1

δ
ΩT

ΥδΥ

)

(4)

Sohn and Kim [30] as well as Yuan and Zhang [38]
demonstrated that the GCRF can be equivalently expressed
as a multivariate regression model in which:

δi = ΥiB+ ǫi ǫi∼N (0,R) for i = 1, · · · , N (5)

where B = Σ−1

Υ
ΣΥδ = −ΩΥδΩ

−1

δ
is the matrix of re-

gression coefficients and ǫi is the vector for Gaussian dis-
tributed noise with covariance R = Ω−1

δ
. This result

demonstrates that the GCRF is effectively learning a direct
mapping (shown here as B) between the input image com-
parisons, Υ, and the output deformation scores, δ. However
we cannot estimate the regression coefficients, B, using an
ordinary least squares (OLS) solution due to the precondi-
tion that each input variable is independent (i.e., B and ǫ are
uncorrelated, formal proof in [14]).

3.1. Training

Similar to the PPDM GMRF in [29], we derive a method
of parameter estimation which does not require Bayesian
inference. Due to a static graph structure, the GMRF could
be trained efficiently by manipulating a Graphical LASSO
formulation [10] to impose the specific graph structure as
the sparsity constraints when solving the maximum likeli-
hood estimation (MLE) problem. Unfortunately, the GCRF
is not only learning the parameter values needed to build
the sparse precision matrix, Ωδ , but also requires values for
the dense matrix, ΩΥδ , representing the correspondence be-
tween an input comparison and output deformation score.

Using Equation 3, the optimization problem for finding
Ωδ and ΩΥδ that maximizes the likelihood of the deforma-
tions that occur in authentic match pairs is as follows (via
minimizing the negative log-likelihood, L (Ωδ,ΩΥδ)):

1We can easily return to the GMRF formulation if ΣΥδ → 0.

(6)
min

Ωδ ,ΩΥδ

−
1

2
ln (|Ωδ|) +

1

2
tr(ΩδŜδ) + tr(ΩΥδŜδΥ)

+
1

2
tr(ΩΥδΩ

−1

δ
ΩT

ΥδŜΥ)

where Ŝ =

[

ŜΥ ŜΥδ

ŜδΥ Ŝδ

]

is the empirical covariance ma-

trix. While the problem is convex (formal proof in [38] -
Proposition 1), it was shown by Wytock and Kolter [36]
that the partition function term, ΩΥδΩ

−1

δ
ΩT

Υδ
ŜΥ, poses sig-

nificant challenges to optimization methods like gradient-
descent (where the resulting Ωδ may not be full rank). Thus,
instead of a gradient-descent approach we employ a New-
ton coordinate descent optimization similar to [35] to learn
GCRF parameters, while taking into account any strong cor-
relations that may exist within the data (training deforma-
tion vectors).

Chiquet et al. [5] show that a GCRF LASSO estimation
suffers from an inability to distinguish the non-zero coeffi-
cients of ΩΥδ when strong correlations exist between the
responses described by Ωδ . Their regularization scheme
instead uses a generalized Elastic-Net [41] formulation of
Equation 6 to account for structure among the predictors
during optimization. That is, while the ℓ1 penalty imposed
by LASSO encourages sparsity, this limit on included vari-
ables often results in a failure to include groups by only se-
lecting one variable from the group and ignoring others. To
remove the limitation of the number of selected variables
and encourage groups, the Elastic-Net procedure adds an
additional ‘smoothing’ quadratic penalty to the minimiza-
tion problem. Consequently, when using the multivariate
regression relationship in Equation 5, the resulting ‘smooth-
ing’ operation stems from the quadratic BT

LB in the same
fashion as the partition function term in Equation 6, where
L ∈ R

2N×2N is the Laplacian matrix (defined as the adja-
cency matrix2 subtracted from the degree matrix3) encoding
the structure of the predictors (x and y).

Since including component structural information is best
applied when large pairwise correlations are present in the
training data, we weight the Laplacian such that L̂ = ζL

where ζ is determined via cross-validation during training.
Thus, by optimizing over L (Ωδ,ΩΥδ) from Equation 6 we
can formulate the problem as:

(7)
min

Ωδ ,ΩΥδ

−
1

2
ln (|Ωδ|) +

1

2
tr(ΩδŜδ) + tr(ΩΥδŜδΥ)

+
1

2
tr(ΩT

Υδ(ŜΥ + L̂)ΩΥδΩ
−1

δ
)

which is jointly convex in (ΩΥδ,Ωδ) when the number of
training samples ≥ N and (ŜΥ + L̂) ≻ 0 (formal proof
in [38] and [5]). Using Equation 7 we can use a Newton

2The adjacency matrix a symmetric matrix where the non-diagonal en-
tries are zero if no edge exists between the corresponding nodes.

3The degree matrix is a diagonal matrix with the number of neighbors
for each node along the diagonal.
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Figure 1. Illustration of the camera setup to acquire images of
varying pose, expression, and lighting. Cameras (red circles),
flashes (blue boxes) and their labels are shown surrounding the
subject at 15◦ intervals. Illustration is based on that in [8].

coordinate descent approach similar to [35] (who in turn
mirrors [13]) for determining Ωδ and ΩΥδ .

3.2. Inference

Just as in the case of the PPDM GMRF in [29], given
the Bayesian model and observations (i.e., the outputs from
template matching) our objective is to estimate the poste-
rior probability distribution. For the GMRF, Iterated Con-
ditional Modes (ICM) was used due to its considerable
speed advantages despite its sensitivity to the initial esti-
mate [31]. However, while the GCRF intuitively general-
izes the GMRF (such that inference ‘hardness’4 is not nec-
essarily different for one or the other), we found that ICM
was not as effective in determining proper posteriors. Thus
we instead employ Gaussian Belief Propagation (GaBP)
[3, 27], which uses the special properties of Gaussian dis-
tributions (e.g., the product of two Gaussian distributions
is, up to a constant factor, also Gaussian) to simplify the
traditional Belief Propagation (BP) algorithm. From each
output from template matching, Ck, we extract the peak
value, Ŝk, and location, Υk = [xk, yk]

T , and run GaBP
inference until convergence or the maximum number of it-
erations is reached. The final match score, M, is then com-
puted as the normalized inner product between the resulting
marginal posterior distributions (or ‘beliefs’, ϕ) from infer-
ence and output peak score values from template matching:

(8)M =
1

N
〈C, ϕ〉

4. Experiments

While PPDM in [29] was developed for deformation es-
timation over the ocular region, using a GCRF we extend
the model to facial images. To evaluate the performance
of the MRF and CRF architectures against large in-plane
deformations (i.e., from facial expressions), we include ex-
periments on the CMU Multi-PIE (Pose, Illumination, and
Expression) [12] face image dataset.

The CMU Mult-PIE dataset contains full face images
(640×480 pixels) obtained from 15 cameras surrounding

4It was shown in [24] that approximate inference in MRFs is NP-hard.

Subset # Images # Subjects
# Samples

per Subject

Session 1 1494 249 6

Session 2 1827 203 9

Session 3 2070 230 9

Session 4 2151 239 9

Single Pose 2514 337 2 - 11

Total 7542 337 6 - 33

Table 1. CMU Multi-PIE face dataset information.

each of the 337 separate subjects. The design of the set is
such that multiple images are captured from users over the
aforementioned challenges. Of the 15 cameras (pose vari-
ation), 13 were spaced over 15◦ intervals at head height
and the remaining 2 were located above the subject for a
surveillance view (see Fig. 1). Over 6 months, images of
the subjects were acquired in 4 separate sessions. During
each of the sessions, subjects held a neutral expression as
well as one or two additional expressions (for a total of 6
expressions across the dataset). Since we are specifically
interested in performance over large in-plane deformations
(i.e., expression), we only consider images from the first
acquisition (no flash) over poses: -15◦, 0◦, +15◦. In the
experiments we evaluate the face images at each pose, col-
lecting images over all expressions and sessions. A total
of 7542 images are collected (2514 total images per pose,
see Table 1 for statistics per session) with at least 264 users
attending 2 or more sessions. Since the images contain a
considerable amount of information outside of the face, we
use annotations provided by [9] to crop each face as shown
in Fig. 2. We then pre-process each image by the histogram
normalization developed by Tan and Triggs [32] along with
resizing to 128×128 pixels for computational efficiency.

Each method is evaluated in a 1 : 1 image-to-image
matching scenario using 5-fold cross validation. The verifi-
cation rates (VRs), computed as 1 - the False Reject Rate
(FRR) at 0.001 False Acceptance Rate (FAR), equal er-
ror rates (EERs), and rank-1 identification rates (IDs) are
computed from the concatenated scores from the associated
folds, excluding self-comparisons. Numerical results are
provided in Table 2 with Fig. 3 showing ROCs and CMCs.

5. Results

From the results in Table 2, we see that for each pose
there is a distinct decrease in EER along with an increase in
VR and rank-1 IDs. Table 3 shows where the GCRF is bet-
ter than the GMRF. Specifically we compare authentic and
impostor match score errors, i.e., false negatives (FN) and
false positives (FP). Using the match score threshold which
determines the EER, the Tables 3a and 3b first display the
number of match pairs where only the GCRF produces an
error compared with the number of match pairs where only

the GMRF produces an error. For example; within Table
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Camera ‘14_0’ (-15◦) ‘05_1’ (0◦) ‘05_0’ (+15◦)

Annotated

Original

Cropped

Face

(a) Annotations used to crop each facial region.

Session 1

Neutral Smile

Session 2

Neutral Surprise Squint

Session 3

Neutral Smile Disgust

Session 4

Neutral Scream Neutral

(b) Expressions from each session.

Figure 2. Sample images from the CMU Multi-PIE dataset. (a) We crop the facial regions using the annotations provided by [9], where the
cropped image width and height values are determined from the available label locations with an additional 25 pixels extracted from both
sides of the facial image and an additional 40 pixels extracted from the top of the facial image. (b) Examples of the cropped expressions
from each session.

GMRF GCRF

VR EER ID VR EER ID

-15◦ 51.15% 19.84% 73.64% 56.44% 14.64% 75.86%

0◦ 49.09% 21.33% 72.28% 56.49% 15.96% 74.80%

+15◦ 47.72% 20.85% 70.46% 55.51% 16.00% 74.80%

Table 2. System performance using a GMRF and GCRF deforma-
tion model on each evaluated pose of the CMU Multi-PIE dataset.

3a, from the -15◦ pose, there are 148 match pairs where the
GCRF produces a FN, but with the GMRF they are correctly
classified as true positives (TPs), and 362 match pairs which
are FNs when using the GMRF, but correctly are classified
as TPs when using the GCRF. Then in the neighboring ta-
ble we include the compared expressions (over all sessions)
that primarily compose each score cluster. Since the results
from each pose were largely similar we averaged the size of
the set between the three poses for a more concise synopsis.

By using the values shown in the tables we tallied the to-
tal number of separate errors for each pose (e.g., for -15◦

the GCRF has 90996 errors and the GMRF has 155926
errors) and computed the statistical significance of the
GCRF’s improved performance when compared to chance.
Recall that while a p−value is not to be treated as a proba-
bility per-se, the value does indicate a level of confidence in
the result. If the null hypothesis (no difference between the
two algorithms) were true and the p−value indicates other-
wise, then the data used to produce the p−value would be
highly irregular. That is, the algorithm specific error clus-
ters would need to be extremely abnormal (such as an error
with the algorithm score assignment) to provide a p−value
that demonstrates a likely difference between the two al-

gorithm’s performance, if in actuality there is none. The
resulting p−values from a McNemar test [2] indicated that
improvement from the GCRF on each pose is significant
with p < 0.0001, demonstrating that the GCRF deforma-
tion model is effective at reducing the EER by making fewer
errors on both authentic and impostor match comparisons.

Specifically, in authentic comparisons the GCRF is im-
proving performance through properly recognizing a sub-
ject in the presence of large distortions (i.e., scream vs neu-
tral and scream vs smile), while instances where the GMRF
outperforms the GCRF are predominantly from compar-
isons with less deformation between the match pair (e.g.,
disgust vs neutral and smile vs neutral). Fig. 4 shows qual-
itatively what Table 3 shows quantitatively, displaying spe-
cific examples when the GCRF is outperforming the GMRF
by the widest margin. From Fig. 4, it is clear that the GCRF
is improving on challenging matches.

6. Conclusion

We derived a Gaussian Conditional Random Field
(GCRF) for modeling the deformation that an authentic bio-
metric sample may undergo between acquisitions. As a
discriminative method, the GCRF trains a direct mapping
between an input comparison and output score, and thus
removes the need to model the dependencies between the
output peak values from template matching. After evaluat-
ing performance on the CMU Multi-PIE facial dataset, we
showed that the GCRF is significantly more effective than
the previous Gaussian Markov Random Field (GMRF) ap-
proach in its ability to capture naturally occurring large in-
plane deformations. In future work, we intend to explore
the use of GCRFs with a non-static graph structure.
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(c) +15◦

Figure 3. GMRF vs GCRF ROC (top) and CMC (bottom) curves for each evaluated pose of the CMU Multi-PIE dataset.

GCRF FN vs GMRF FN

# of Samples Change

-15◦ 148 vs 362 2.45×

0◦ 166 vs 386 2.33×

+15◦ 178 vs 372 2.09×

Score Cluster Compared Expressions % of Set

GCRF TP

(GMRF FN)

Scream vs Neutral ∼48%

Surprise vs Neutral ∼11%

Scream vs Smile ∼11%

GMRF TP

(GCRF FN)

Disgust vs Neutral ∼34%

Smile vs Neutral ∼20%

Disgust vs Smile ∼4%

(a) False negatives (FN) from authentic match score clusters.

GCRF FP vs GMRF FP

# of Samples Change

-15◦ 90848 vs 155564 1.71×

0◦ 98072 vs 165738 1.69×

+15◦ 99288 vs 160340 1.61×

Score Cluster Compared Expressions % of Set

GCRF TN

(GMRF FP)

Neutral vs Neutral ∼41%

Smile vs Neutral ∼18%

Smile vs Smile ∼6%

GMRF TN

(GCRF FP)

Neutral vs Neutral ∼17%

Smile vs Neutral ∼14%

Scream vs Neutral ∼12%

(b) False positives (FP) from impostor match score clusters.

Table 3. Comparing GCRF and GMRF false negatives (FN) and false positives (FP) from authentic and impostor score clusters, respectively,
along with the expressions of the images primarily composing each set.
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