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Abstract

Most fingerprint recognition systems use minutiae infor-

mation, which is an unordered collection of minutiae lo-

cations and orientations. Template protection algorithms

such as fuzzy commitment and other modern cryptographic

alternatives based on homomorphic encryption require a

fixed size binary template. However, such a template is

not directly applicable to fingerprint minutiae representa-

tion which by its nature is of variable size. In this study, we

introduce a novel method to represent a minutiae set with

a rotation invariant fixed-length vector. We represent each

minutia according to its geometric relation with neighbors

and use Gaussian mixture model (GMM) to model its fea-

ture distribution. A two-class linear SVM is used to cre-

ate a model template for the enrollment fingerprint sample,

which discriminates impressions of the same finger from

other fingers. We evaluated the verification performance

of our method on the FVC2002DB1 database.

1. Introduction

Biometric recognition systems enable fast, reliable, and

secure electronic authentication, however, their large scale

deployment in real world applications causes privacy and

security concerns [10, 23, 24]. In the literature, sev-

eral biometric template protection methods have been pro-

posed [11] (e.g., fuzzy commitment scheme [15] and bio-

hashing [13]) to overcome these concerns by securing bio-

metric templates (e.g., face and fingerprint).

Recent template protection schemes require either a

fixed length feature vector representation or a binarized

string as input. Thus, a variable length minutiae representa-

tion of a fingerprint cannot be directly used in combination

with these schemes. In addition, some template protection

schemes designed specifically to work with unordered sets

of varying number of minutiae (e.g., fuzzy vault [14]) expe-

rience degradation in matching accuracy due to alignment

issues and nonlinear distortion [12].

One of the earliest works on fingerprint template protec-

tion has secured minutiae information x, y, θ separately [3].

In a later study, FingerCode feature (a texture based finger-

print representation without minutiae information) has been

protected via biohashing [13]. Another branch of research

has focused on securing each minutia separately. Yang et

al. [28, 29] have proposed methods to extract a binary se-

cure hash bit string from each minutia and its vicinity us-

ing minutiae information only. A more recent study simi-

larly has used neighboring minutiae information along with

texture information around each minutia and secured each

minutia feature vector by biohashing [2]. Protected Minu-

tiae Cylinder-Code (P-MCC) [9], one of the most accurate

algorithms proposed recently, has secured each MCC struc-

ture that corresponds to a single minutia. All these stud-

ies have represented each minutia with a fixed length binary

string therefore matching between variable length final tem-

plates has been addressed as a minutiae pairing problem.

In the spectral minutiae representation [27], each minutia

location is coded by an isotropic two-dimensional Gaussian

function in the spatial domain. Here, minutiae are repre-

sented as a magnitude spectrum and their orientations are

incorporated by assigning each Gaussian a complex mag-

nitude. Bringer et al. [4] have characterized a fingerprint

in terms of its similarity to each representative local minu-

tiae vicinities in a set of fixed size. This fixed size set has

been extracted from a representative database of all exist-

ing vicinities in the world of fingerprints. For a fingerprint,

a feature vector that contains similarities of its vicinities to

those of the representative set has been produced.

In this work, our ultimate goal is to describe an underly-

ing framework that enables the generation of a fixed length

feature vector representation for fingerprint minutiae. The

framework draws upon the work of Campbell et al. on sup-

port vector machines using GMM supervectors for speaker

verification [6]. Each minutia and its neighbors within a

specified radius are represented as a 2D image by plac-

ing two-dimensional Gaussians at the locations of neigh-

bor minutiae. DCT coefficients of this patch image are re-

arranged based on zig-zag scanning and the first D DCT
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(a) A minutia and its neighbors in

R

(b) Gaussian representation for

neighbor minutiae

(c) Neighbor minutiae at the new

coordinate system

(d) Reconstructed minutiae patch

image from DCT coefficients

Figure 1. DCT representation of a minutia patch image

coefficients of this patch image are used to represent each

minutia as a D-dimensional feature vector. A single user-

independent GMM universal background model (UBM) is

trained from a collection of fingerprints to represent the dis-

tribution of DCT features. A fingerprint is then represented

with its probabilistic alignment into the UBM mixture com-

ponents and a GMM supervector is created from the stacked

first order statistics of the mixture components.

For a given enrollment fingerprint sample, a two-class

linear SVM is trained in order to create a model template

that discriminates positive samples from negative samples.

The matching between a query fingerprint and the model

template is performed by computing a single inner prod-

uct between the target SVM model and the query GMM

supervector. The performance of our framework was eval-

uated in a 1-to-1 fingerprint verification setup and the re-

sults on FVC2002DB1 database demonstrated that an EER

of 1.63% was achieved. The protection of the model is out

of the scope of this study and left as future work.

2. DCT-based minutia patches

2.1. Minutia Patch

A minutia patch is a local representation that encodes a

minutia and its geometric relations with other minutiae that

are closely located. Each minutia patch consists of a cen-

tral minutia mc and its neighboring minutiae within a radius

R (Figure 1(a)). In order to directly compare two minutia

patches, without any registration for the relative alignment

of fingerprints, an absolute representation using mc as a ref-

erence is required. The central minutia mc can be used to

define a new coordinate system where its position would be

the center of the system and its orientation would give the

direction of the x-axis. In this new coordinate system, the

coordinates and orientations of the neighbor points would

be translated and rotated accordingly. This representation

scheme is inspired from minutiae vicinities described in [4].

In this representation, a global set of minutiae is con-

verted into a collection of several local minutiae sets and

for each minutia of a fingerprint, a patch is constructed.

This also enables two fingerprints to be matched by locally

comparing patches pairwise and calculating their similar-

ity score using the local scores of the best pairs. Although

global coherency in the minutiae set is not utilized, the lo-

cal approach has the advantage of limiting the crucial elastic

distortion problem in fingerprint matching. In the local area

of a patch, distortion due to the elasticity of the skin is neg-

ligible. The radius used in the local approach is of great im-

portance. The neighborhood of the central minutia should

contain several minutiae in order to be sufficiently discrim-

inative but at the same time it should be small enough to be

considered as a local area.

2.2. Gaussian minutia patch image

Within a specific radius R, the number of neighbor points

of a central minutia varies and this leads to a minutia rep-

resentation of unknown length. In order to obtain a fixed

length representation, one can use a rectangular grid of size

(2R + 1) × (2R + 1) where the central minutia is at the

center. Each neighbor minutia is then inserted into this grid

with respect to its relative location to mc on the fingerprint.

Representing a minutia with a single point in the spa-

tial domain increases the sensitivity of minutiae positions

to small variations and does not maintain direction infor-

mation. Instead, each neighbor minutia is represented by a

two-dimensional multivariate Gaussian function:

f(x, µ,Σ) =
1

2πσ1σ2
e−

1

2
(x−µ)TΣ−1(x−µ) (1)

where Σ = diag(σ1, σ2) is the covariance matrix. A Gaus-

sian is centered at the minutia location and its covariance

matrix is selected such that the major axis coincides with the

minutia orientation as illustrated in Figure 1(b). For a neigh-

bor minutia (xi, yi, θi), a template Gaussian is translated to

(xi, yi) and rotated with θi. This makes the mean of Gaus-

sian as [xi, yi]
T and covariance matrix as Σ′ = AΣAT ,

where A = A(θi) is a rotation matrix 1. The patch image is

1Please note that, Gaussians are placed prior to the rotation with respect
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(a) Two neighbor

minutiae

(b) Minutia patch for

minutia 1

(c) Minutia patch for

minutia 2

Figure 2. Selected minutiae patches of two neighbor minutiae from

the same fingerprint image (before rotation)

then generated as a sum over these shifted Gaussians:

I(x) =

Np
∑

i=1

f(x, µi,Σ
′

i) (2)

where Np is the number of neighbor minutiae and µi =
[xi, yi]

T is the position of the neighbor minutia with respect

to mc. Sample minutia patch images selected from a finger-

print are illustrated in Figures 2(b) and 2(c). Please note

that, the central minutia is not directly included in this rep-

resentation, but it defines the new coordinate system and the

neighbors of the patch.

2.3. DCT representation for minutia patches

Although minutia patch images capture the required in-

formation for fingerprint matching, (2R + 1)2-dimensional

representation for each minutia brings heavy computation

and storage requirements. Discrete cosine transform (DCT)

is often used in image processing, especially for lossy com-

pression (e.g., JPEG), due to its strong energy compaction

property. It expresses a finite sequence of data points in

terms of a sum of cosine functions oscillating at different

frequencies. Since most of the signal information tend to

be concentrated in a few low-frequency components of the

DCT, discarding small high-frequency components results

in compact representation of the signal. By keeping only

the first D 2D-DCT coefficients after performing zig-zag

scanning, each minutia patch image is represented as a D-

dimensional feature vector.

We conducted an evaluation to assess the discrimina-

tive power of our DCT minutia patch representation. To

compare two fingerprints, fp1 and fp2, a pairing matrix

that contains similarity scores between patches of fp1 and

patches of fp2 was constructed. The scores were com-

puted using a decreasing function that converted the Eu-

clidean distances between DCT coefficients to a score (i.e.,

g(x) = 1/(1+ ex/τ )). A closest neighbor search algorithm

was applied to the pairing matrix in order to select the best

association of minutiae. At each turn, a minutiae pair from

fp1 and fp2 with the highest matching score was identified

to the orientation of the central minutia θc.

and removed from the matrix. The final score between two

fingerprints was computed by accumulating the matching

scores of identified pairs during the search.

In the evaluation, the FVC2002DB1 database [20] which

has 8 impressions of 100 different fingerprints captured

with an optical sensor was used. Following the perfor-

mance evaluation protocol of FVC2002 [21], 2800 genuine

and 4950 imposter comparisons were performed. An Equal

Error Rate (EER) of 4.46% was achieved for D = 50.

Although, the achieved EER was below the state of the

art [20, 21], it arguably confirmed the discriminative capa-

bility of minutia patches.

3. GMM supervector training

Gaussian mixture models (GMMs) have been domi-

nantly used for modeling in text-independent speaker ver-

ification. The distribution of features extracted from speech

segments (i.e., frames of an utterance) is modeled by per-

forming background model adaptation of GMMs. First, a

universal background model (UBM) is trained from set of

frames and then the speaker model for the ith speaker is de-

rived by adapting the universal background model to match

the observations of the speaker. Recently, the use of GMM

for modeling feature distribution has also become an effec-

tive approach for face verification [26].

Similar to the frames of a speech utterance or the blocks

of a face image, minutiae points of a fingerprint are sep-

arate observations of the same underlying signal. DCT

patch representation of minutiae is used to train a univer-

sal background minutiae model. The UBM is a large GMM

trained to represent the distribution of features. From a huge

database of fingerprints, a large number of minutiae patches

are extracted as training data and they are pooled to train the

UBM via EM (expectation maximization [7]) algorithm2:

g(x) =

N
∑

i=1

wipi(x) (3)

where wi are the mixture weights and pi(x) is the unimodal

Gaussian density with mean mi and covariance Σi (diag-

onal covariance is assumed as this requires fewer observa-

tions).

Given a fingerprint with T minutiae, xt, t = 1, ..., T are

the DCT minutia patches for each minutia. The estimates

of first order statistics for the fingerprint data are computed

for mixture i in the UBM as:

Ei(x) =

T
∑

t=1

Pr(i|xt)(xt − µi) (4)

Pr(i|xt) =
wipi(xt)

∑M
j=1 wjpj(xt)

. (5)

2For further details, please refer to [25].
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Using only the first order statistics (Ei(x)), a GMM su-

pervector is formed by concatenating the first order statis-

tics of each mixture. The GMM supervector maps a finger-

print to a high-dimensional vector of length D × N, where

D is the number of DCT coefficients and N is the number of

Gaussians in the mixture. Please note that, we do not per-

form MAP adaptation as done in [6, 18, 25, 26] for adapting

a speaker model. Our experiments showed that using first

order statistics without MAP adaptation performed better,

so we employed first order statistics only.

4. Linear SVM training for template genera-

tion

An SVM is a two-class linear classifier constructed from

sums of a kernel function K

f(x) =
L
∑

i=1

αitiK(x,xi) + d (6)

where ti are the ideal outputs (either 1 or -1), d is a learned

constant,
∑L

i=1 αiti = 0, and αi > 0. The vectors xi

are support vectors and obtained from the training set by an

optimization process. The kernel K is constrained to have

certain properties so that K can be expressed as an inner

product, K(x,xi) = Φ(xi) ·Φ(x), where Φ(·) is a mapping

to a higher dimension.

SVM provides a suitable solution to fingerprint verifi-

cation problem, since it is fundamentally a two-class prob-

lem. We aim to decide whether the fingerprint comes from

the user or the fingerprint belongs to someone else. As the

number of features is large in our problem (D ×N ), we do

not need to map data to a higher dimensional space and use

linear kernel (i.e., K(x,xi) = x
T
i x). In practice, the lin-

ear kernel tends to perform very well when the number of

features is large. In addition, GMM supervector has already

been employed as a linear kernel with a simple diagonal

scaling [5, 6]. The SVM in (6) can be expressed as:

f(x) =

L
∑

i=1

αitix
T
i x+ d = w

T
x+ d (7)

which reduces two-class classification to an inner product

between the classifier model w and GMM supervector x.

The model w is solved by minimizing:

min
w,d

(

1

2
‖w‖2 + C

∑

i

H1

(

ti(w
T
xi + d)

)

)

(8)

where H1(z) = max(0, 1−z) is the "Hinge Loss" and C is

a regularization parameter that controls a tradeoff between

a low error on the training data and the ability to generalize

well.

DB Name #Fingers
#Fingers ×

#Samples/Finger

FVC2002DB2 800 100 × 8

FVC2002DB3 800 100 × 8

FVC2002DB4 800 100 × 8

FVC2004DB1 800 100 × 8

FVC2004DB2 800 100 × 8

FVC2004DB3 800 100 × 8

FVC2004DB4 800 100 × 8

FVC2006DB1 1648 140 × 12

FVC2006DB2 1680 140 × 12

FVC2006DB3 1680 140 × 12

FVC2006DB4 1680 140 × 12

IN-HOUSE 3520 440 × 8

TOTAL 15808

Table 1. Number of fingerprints used in GMM training

We use SVM to create a model w (which we also refer to

as a template) for an enrollment fingerprint sample fenroll.

This is achieved by training an SVM using the GMM su-

pervector of fenroll as a positive sample (labeled as +1) and

GMM supervectors of fingerprints from example imposters

as negative samples (labeled as -1). Given a query finger-

print sample fquery , its matching score for the subject i is

the inner product between wi and xquery , where wi is the

SVM classifier model for the subject i and xquery is the

GMM supervector of fquery . The verification decision is

based upon whether the score wT
i xquery is above or below a

threshold. This approach provides 1-to-1 fingerprint match-

ing since only one single training sample for each class is

used to train the template model. It corresponds to compar-

ing a gallery fingerprint to a query fingerprint as done in all

other fingerprint verification systems.

5. Experiments and Results

We performed 1-to-1 fingerprint verification experiments

on the FVC2002DB1A fingerprint database [20]. For minu-

tiae extraction, a commercial fingerprint minutiae extrac-

tor (which participated in FVC-onGoing [19], Ongoing

MINEX [17] and FpVTE 2012 [16]) was used to obtain

minutiae information in ISO 19794-2 format (x, y, θ) [1].

In order to create patches for each minutia, all neighbor

minutiae within a radius R = 60 pixels were used. This

resulted in minutia patch images of size 121 × 121 pixels.

For DCT representation of patches, the first 50 DCT co-

efficients after zig-zag scanning were kept (i.e., D = 50),

which means that a minutia was represented along with its

local information via a feature vector of length 50.

We used 158083 fingerprints from publicly available

FVC databases and an in-house fingerprint database col-

332 minutiae in FVC2006DB1 have zero neighbors within R, therefore

they were not used in GMM training.
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# Gaussians 1024 2048 4096

EER 2.23% 1.85% 1.63%

Table 2. Equal error rates for GMMs with different number of

Gaussians

lected via an optical reader. The details of these databases

(the number of fingers and samples per finger) can be found

in Table 1. Our target database, FVC2002DB1, was not

included in GMM training to prevent any bias that might

favor supervector representation in the advantage of the

FVC2002DB1 database. The GMMs were trained for dif-

ferent number of Gaussians (1024, 2048, and 4096) and

their results were reported separately. Once the univer-

sal models were trained, we extracted first order statistics

of fingerprint samples from FVC2002DB1 and produced

supervectors for GMMs with different number of Gaus-

sians, which resulted in supervectors of dimensions 51200

(1024× 50), 102400 (2048× 50), and 204800 (4096× 50).

For the enrollment of target fingerprints, we trained an

SVM for each fingerprint sample using the target GMM

supervector and the set of imposter GMM supervectors la-

beled as -1, using the first impression of each subject as

imposters. The weight vector of the SVM classifier model

was the template for the enrolled fingerprint sample. During

verification, GMM supervector of the query fingerprint was

compared to the template of the claimed identity and their

inner product was used to give accept or reject decision.

The verification protocol was as follows:

i) Each impression was matched against the remaining im-

pressions of the same finger. The total number of gen-

uine tests was 5600 (8× 7× 100).

ii) The first impression of each finger was matched against

the first impression of the remaining fingers. The total

number of imposter tests was 9900 (99× 100).

For both cases, symmetric matching (i.e., fp1 vs fp2 and

fp2 vs fp1) was executed as w
T
fp

1

xfp
2

is different from

w
T
fp

2

xfp
1
.

Equal error rates (EERs) for GMMs with different num-

ber of Gaussians are shown in Table 2. The optimal C
value for training SVMs corresponding to different number

of Gaussians were found by grid search and best C values

were 10, 0.001, and 1 for 1024, 2048, and 4096 Gaussians,

respectively. As the number of Gaussians in the GMMs in-

creases, our method performs better in representing feature

distribution which eventually leads to lower error rates.

In order to provide comparison with our system, we also

performed direct minutiae matching4 with the commercial

algorithm which we also used for minutiae extraction. It

4Additional fingerprint features that are not defined in ISO minutiae

template were not used in any of the experiments.

obtained 0.50% EER on FVC2002DB1 and performed bet-

ter than our proposed method. This difference stems from

the facts that we can neither perform minutiae pair search,

which is a crucial step for minutiae matching, nor include

singular point information. However, the main purpose of

this study is to present a fixed length fingerprint represen-

tation and this performance drop was expected. Two other

fixed length approaches that can be compared with our sys-

tem are the spectral minutiae representation [27] and binary

feature vector representation in [4]. However, they do not

report error rates for the FVC2002DB1 database. When

we analyzed their reported results on the FVC2002DB2

database (2.48% [27] and 3.88% [4] EERs compared to

minutiae matching 1.0% on FVC2002DB2), we also ob-

served similar performance drops5.

6. Conclusion

The GMM-SVM based feature representation is a novel

method to create a fixed length feature vector for fin-

gerprint minutiae. Although minutiae-based matching is

the most widely used technique in fingerprint verifica-

tion/identification, the increasing security and privacy con-

cerns make minutiae template protection one of the most

crucial tasks. The main motivation of this study is to ob-

tain a fixed length feature vector for fingerprints so that

minutiae based fingerprint verification can be combined

with template protection schemes. In addition, our method

avoids the difficulties of minutiae registration by represent-

ing minutiae patches on a normalized coordinate system de-

fined by the orientation of the central minutia. Also, the

major problem of elastic distortion in fingerprint matching

is compensated with the local representation of the minutiae

neighborhoods.

This paper introduces a fixed length feature representa-

tion for variable length minutiae of a fingerprint. In order to

combine our method with the cryptographic primitives for

template protection, such as [8], one should extract bits that

are stable for genuine users and completely random for ar-

bitrary users. Another possible direction for template pro-

tection might be random projection-based biometric hash-

ing [13], which cannot be directly applied to minutiae tem-

plates. In the future, we will work towards protecting fea-

ture vectors that are created by our approach and include

the binarization of the GMM-SVM feature vectors. We also

conjecture that enriching the database that is used in training

GMMs and using random resampling ([22]) for addressing

data-imbalance problem in SVM will be possible improve-

ments to our GMM-SVM minutiae representation.

5We plan to analyze the performance of our system and make compar-

ison on the FVC2002DB2 database in the future.
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