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Abstract

Weakly supervised methods have recently become one of

the most popular machine learning methods since they are

able to be used on large-scale datasets without the criti-

cal requirement of richly annotated data. In this paper,

we present a novel, self-taught, discriminative facial feature

analysis approach in the weakly supervised framework. Our

method can find regions which are discriminative across

classes yet consistent within a class and can solve many

face related problems. The proposed method first trains a

deep face model with high discriminative capability to ex-

tract facial features. The hypercolumn features are then

used to give pixel level representation for better classifica-

tion performance along with discriminative region detec-

tion. In addition, calibration approaches are proposed to

enable the system to deal with multi-class and mixed-class

problems. The system is also able to detect multiple dis-

criminative regions from one image. Our uniform method is

able to achieve competitive results in various face analysis

applications, such as occlusion detection, face recognition,

gender classification, twins verification and facial attrac-

tiveness analysis.

1. Introduction

Early computer vision and pattern recognition methods

for face-related applications, e.g. facial age estimation, fa-

cial gender classification, face detection and face recog-

nition, aim to build a robust classifier, e.g. Linear Dis-

criminant Analysis (LDA), Convolutional Neural Network

(CNN), Support Vector Machines (SVM), etc., on top of an-

notated facial regions with pre-defined windows. However,

these methods are limited in practical applications. They

are, indeed, unable to guarantee the optimal annotated win-

dow to achieve the highest classification results [10, 21, 22].

Moreover, these supervised machine learning methods usu-
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Figure 1. An example of weakly supervised facial analysis with

dense hypercolumn features. The first row: the automatically de-

tected discriminative regions between faces with sunglasses and

faces with scarves; The second row: mixed-class multiple region

detection on faces with both sunglasses and scarves.

ally require huge amount of training data with richly anno-

tated labels, e.g. bounding boxes in the object detection,

segmented regions in the object segmentation problems or

even labeled regions of object parts. The manual labeling

task is mostly impossible when these systems process large-

scale databases, i.e. millions of images.

Weakly supervised approaches have become prominent

machine learning methods recently [14, 1, 16]. These ap-

proaches overcome the limitations of the traditional ap-

proaches mentioned above since they have the capability

to relax the process of empirically selecting fixed sizes for

cropping windows and the over-fitting possibilities in se-

lected local optimal hyper-parameters in the classifiers. Fur-

thermore, these methods do not require as detailed labels

for their corresponding databases as their classical counter-

parts. Nguyen et al. [14] introduced a weakly supervised

framework to simultaneously localize a single discrimina-

tive sub-window of the positive class and to distinguish it

from the negative one. The data in this method are only

annotated with binary labels indicating the presence of an

object without its location. However, it has some critical

limitations. Firstly, it is only applicable in the binary clas-

sification problem. Secondly, due to its optimization con-

straints, as shown in Eqn. (1), the method is only able to

find a discriminative sub-window in the positive class, but

not in the negative one. Thirdly, the method can localize
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Figure 2. The hypercolumn feature. Given an input image at the

bottom, a few feature maps of different layers in CNN can be com-

puted by forward pass. The hypercolumn at one pixel is the vector

of the activations of all units that lie above that pixel.

only one sub-window in input images.

Our work proposes a weakly supervised, self-taught

method extending the work by Nguyen et al. [14] for si-

multaneously discriminative localization and classification

with advanced properties highlighted in Figure 1. In gen-

eral, our contributions in this work can be summarized as

follows.

Firstly, our proposed approach employs dense hyper-

column features from a deep CNN model (Sections 3.1,

3.2). After pre-processing and training (Section 3.3), our

hypercolumn-feature-based, binary classifiers outperform

the state-of-the-art method in various facial analysis prob-

lems. These deep model based features are shown to ex-

tract more discriminative information so that the system can

yield higher classification accuracy.

Secondly, instead of finding discriminative sub-windows

only in positive class for binary classification tasks, our

method can search across all classes for multi-class classifi-

cation tasks, and has even proven to be effective for mixed-

class classification tasks (see Figure 1). To deal with multi-

class problems, a simple but non-trivial SVM calibration

technique is employed to process numerous one-vs-all bi-

nary SVMs (Section 3.4). Therefore, our method can han-

dle more general classification tasks than binary classifiers.

Moreover, our method is able to find any number of

sub-windows in each class. The number of windows are

pre-defined according to the specific application. This is

achieved by removing the key points in the previous dis-

criminative region to search for the next one. So it can

enhance the discriminative capability between classes and

consistency within classes (Section 3.5).

As the focus of our paper is on a general method for im-

proving classification by localizing discriminative regions,

we choose to show that our method can be successfully em-

ployed in various facial analysis applications, i.e. occlusion

detection, face recognition, gender classification, twins ver-

ification and facial attractiveness analysis. Even though in

many of these applications, the face is already generally lo-

calized, the presence of unnecessary information can throw

off traditional methods whereas this unique framework can

achieve better results in these applications.

2. Related Work

2.1. Joint Localization and Classification

The idea of joint localization and classification is to si-

multaneously localize sub-windows, the most discrimina-

tive between categories and the most consistent within each

category, and to learn a classifier to distinguish them [14].

The data are only annotated with binary labels indicating

the presence of an object without their locations. This joint

detector and classifier can be achieved by solving the SVM

optimization problem presented in Eqn. (1).

minimize
w,b

1

2
‖w‖2

s.t. max
x∈LS(d

+

i
)
wTϕi(x) + b ≥ 1, ∀i,

max
x∈LS(d

−

i
)
wTϕi(x) + b ≤ −1, ∀i,

(1)

where d+
i belongs to the positive training data and d−

i be-

longs to the negative training data. LS(d) denotes the set

of all possible sub-windows in image I . And ϕ(x) is the

feature vector representing the image sub-window x. The

constraints in Eqn. (1) guarantee each positive image has at

least one sub-window classified as positive and each nega-

tive image to have all sub-windows classified as negative.

Given a query data d, first the sub-window x̂ with the

highest SVM score will be computed as follows:

x̂ = arg max
x∈LS(d)

wTϕ(x) + b (2)

Then if the score (wTϕ(x̂)+ b) is positive, x̂ will be consid-

ered as the detected object in d. Otherwise, there is not any

object found in d. In previous work by Nguyen et al. [14],

the feature vector ϕ(x) is the histogram of visual words as-

sociated with descriptors inside the sub-window x. When

using this kind of region representation, the search for the

sub-window x with the highest SVM score can be imple-

mented efficiently using the branch-and-bound algorithm

[7].

2.2. Hypercolumns

“Hypercolumn” is a term from neuroscience used to de-

scribe a set of V1 neurons sensitive to edges at multiple

orientations and multiple frequencies arranged in a colum-

nar structure [6]. Bariharan et al. [3] borrowed this term in

their work to describe a pixel level deep CNN feature, not

only edge detectors but also more semantic units.

Most classification algorithms based on CNN use the

output of the last layer as the features. However, this kind
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of feature contains mostly semantic and not spatial infor-

mation. That may not be enough information to achieve

precise detection. Hypercolumns, on the other hand, are

constructed with both earlier CNN layers for localization

capability as well as the later layers for semantic informa-

tion. More specifically, a hypercolumn at a pixel is a vector

of activations of all CNN nodes above that pixel as illus-

trated in Figure 2. These hypercolumn features are used

in our proposed approach as the descriptor of key points in

facial images for the tasks of searching and localization.

2.3. SVM Calibration

A calibrated multi-class classifier outperforms running

binary classifiers independently when the data or features

are, to a large extent, overlapping, and hard to separate by

single binary classifiers [2]. Calibration is also used fre-

quently in Exemplar SVMs [12] that apply a joint method

for calibration.

One popular calibration method is Platt scaling [18] that

takes the scores from the classifier and turns it into a proba-

bility. Platt scaling uses a sigmoid function,

p(y = 1|x) =
1

1 + exp{af(x) + b}
(3)

where a, b ∈ R. Though Platt scaling is proposed for bi-

nary classification problems, it is able to be further extended

to multi-class problems by replacing sigmoid function with

softmax function.

3. Our Proposed Method

3.1. Deep Face Model Training

We adopt the architecture proposed by [23] to train a

deep CNN model for face recognition. There are four con-

volution layers with max-pooling layers included in the

CNN model. The max-pooling also includes an element-

wise maximum between two sub-tensors sliced from the

feature map tensor. Two fully-connected layers follow,

combining with the final softmax layer, to give a prob-

abilistic distribution over classes, as shown in Figure 3.

Dropout with a rate of 0.7 is applied between the two fully-

connected layers. Training data are normalized and cropped

to 144× 144 based on facial landmarking points.

To further enrich the input data, the data layer of the

CNN randomly crops each image into 128 × 128 pieces.

The maximum number of iterations is 2,000,000. The Ca-

sia WebFace dataset [20] with 494,414 images of 10,575

subjects are used for training. The testing dataset is La-

beled Faces in the Wild [5]. Our trained model performs

quite competitively against the state-of-the-art method [20]

on randomly picked 3,000 pairs of LFW images with an av-

erage precision of 99.15%.

Figure 3. CNN model for face verification.

3.2. Dense Hyper­column Feature Extraction and
Clustering

This section describes how to extract hypercolumn fea-

tures from dense key points and how to quantize these fea-

tures by clustering. Given an aligned face image Fi, where

i ∈ {1...N} indexing through all the images, it is fed into

the CNN model described in 3.1 and the outputs of all lay-

ers are computed. A dense grid of key points is gener-

ated on top of the image. For each key point, pij , where

j ∈ {1...K} indexing through all the key points on ith
image, its hypercolumn representation, hij , is computed

by concatenating all the intermediate outputs from feature

maps above the location of pij . Similar to [3], each feature

map is resized to the size of the input image and the fully

connected layers are treated as a 1 × 1 feature map. Even-

tually, we have a vector representation for each key point.

Unlike [3], in our approach, the sub-vectors extracted from

each layer are normalized to have unit length. This is in-

tended for better quantization during the clustering process.

In this work, the hypercolumn is constructed from the

output feature maps of conv1 (96 channels), conv2 (192

channels), conv3 (256 channels), conv4 (384 channels) and

fc1 (512 channels), which results in a 1440 dimensional

vector. In the quantization steps, all hypercolumns from

all images in the dataset are stacked into a matrix H =
[. . . , hij , . . .], and k-means clustering is performed based

on the ℓ2 distance. This H is usually very large, so the ap-

proximated nearest neighbors algorithm [13] is employed to

accelerate the sample-to-center comparisons. Finally, each

hij is assigned to a center with an index Iij pointing to that

center in the dictionary. Finally, each pij can be presented

as [xij , yij , Iij ], where x and y are the location coordinates

in the ith image.

3.3. Simultaneous Localization and Classification

In this section, we focus on simultaneously learning a

sub-window SVM classifier and searching for the most dis-

criminative sub-windows in the positive images among two

classes by solving Eqn. (1). The window feature ϕ(x) is
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the histogram computed by counting the Iij as described in

3.2 inside the window x. A coordinate descent method is

applied to solve this non-convex problem. The whole pro-

cedure is presented in Algorithm 1, where FW(d) is the full

Algorithm 1 Single window localization and SVM learning

Initialize SVM weights w

Initialize positive features: ϕi0(x ∈ FW(d+
i )), ∀i

Objective function: f = 1
2‖w‖2

repeat

Initialize negative features: ϕi0(x ∈ FW(d−

i )), ∀i
repeat

Setup positive and negative constraints using positive

and negative features.
Solve Eqn. (1) to get w and b
Add maximum violated negative features to negative

constraints: ϕ(argmaxx∈LS(d
−

i
) wTϕ(x)), ∀i

until The deviation of w is less than a tolerance

Replace positive features with maximum positive fea-

tures ϕ(argmaxx∈LS(d
+

i
) wTϕ(x)), ∀i

until Change of f is less than a tolerance

Output w and b
Output subwindows: x̂i = argmaxx∈LS(di) wTϕ(x) +
b, ∀i

window of d.

3.4. Extension to Multi­Class with SVM Calibration

So far, the system is able to detect regions in single pos-

itive class by a SVM classifier. However, the system is

not well designed to deal with data samples with different

regions containing multiple classes, e.g. classes(x(i)) =
{k1, k2, ...}. Therefore, we propose two calibration strate-

gies to tune multiple SVMs in an integrated system. Here

we present the method step by step. The overall approach is

shown in Algorithm 2.

Training data for calibration: Suppose we already

trained K binary SVMs in an one-vs.-all manner, one for

each of K classes, and we use SVMk to denote the SVM

treating class k as the positive class. Given a training data

sample x(i), we can first extract regions with high SVM

scores within the sample. Different strategies can be ap-

plied to define a high SVM score. In our experiments, we

find two regions with the two highest scores regarding each

SVMk. Ignoring the biases, we have a vector of regional

SVM scores of data sample i,

s(i) =
[

wT
1 ϕ1(x

(i)) ... wT
Ri
ϕRi

(x(i))
]T

(4)

where s(i) ∈ R
Ri and Ri ∈ R, denoting the number of

regions extracted by all SVMs; ϕj(x
(i)) denotes the fea-

ture vector of the region extracted by an SVM, and wj is

the corresponding SVM weight vector. Note that the re-

gions extracted by SVMk may contain nonsense if k /∈
classes(x(i)).

The corresponding class indicator vector is

y(i) =
[

y
(i)
1 ... y

(i)
Ri

]T

(5)

where y ∈ R
Ri and y

(i)
j = k if k ∈ classes(x(i)) and the

region j is extracted by SVMk, else y
(i)
j = 0.

Goal of calibrated SVM: Our final goal is to assign

any extracted region, if it contain a class marker, to the real

class. The calibration framework is basically doing a soft-

max regression over all K classes. The calibration parame-

ters are a, b ∈ R
K with entry ak, bk associated with SVMk.

Algorithm 2 Calibration of Binary SVMs

Input: A data sample x(i).

Output: classes(x(i)) and the set of bounding boxes

B(i) containing the marker regions of every entry in

classes(x(i)).
procedure EXTRACT CANDIDATE REGIONS

for each binary SVMk where k ∈ {1...K} do

Find high SVM scores wT
k ϕk(x

(i))
Add high scores to score set s(i)

end for

end procedure

procedure SVM CALIBRATION

for each binary SVMk where k ∈ {1...K} do

for each entry s
(i)
j ∈ s(i), where j ∈ {1...Ri} do

Find region B
(i)
j corresponding to s

(i)
j

if softmax(aks
(i)
j + bk) > threshold then

Add B
(i)
j to output set B(i)

Add k to classes(x(i))
end if

end for

end for

end procedure

Training SVM calibration: Similar to the training of a

softmax regression, our objective is

min
a,b

∑

i

Ri
∑

j=1

K
∑

k=1

exp{aks
(i)
j + bk}

∑K

k′=1 exp{ak′s
(i)
j + bk′}

− Y
(i)
j,k

(6)

where s
(i)
j = wT

j ϕj(x
(i)) are the SVM scores without bi-

ases, Y (i) ∈ R
Ri×K is the ground truth class indicator

function, which has multiple different definitions discussed

below.

Note that the sum of ground truth class indicator has to

be
∑K

k=1 Y
(i)
j,k = 1 so that it is a probability distribution

28



Figure 4. The first row shows challenging cases in face localiza-

tion where the faces are highly non-frontal, making sunglasses

barely visible. The DLC method (red boxes) fails to localize the

sunglasses. However, our approach (green boxes) still robustly

finds the precise locations. The second row shows clearly that our

method still gives a tighter and precise crop, though both the meth-

ods find the correct location.

over all classes. Some of the regions, as mentioned pre-

viously, may contain nonsense if the data sample doesn’t

belong to the class where it was extracted. Two strategies,

regarding different treatment of these regions, are applied

for the calibration.

SVM based Ignoring Strategy (SVM-IS): This strat-

egy simply ignores the nonsense regions, i.e. we only

consider the regions extracted by SVMs corresponding to

existing classes in a sample. Hence all regions contain

the meaningful marker of a class. In other words, in-

stead of j ∈ {1, 2, ..., Ri}, we have j ∈ {j′ : y
(i)
j′ 6=

0, ∀j′ ∈ {1, 2, ..., Ri}} and Y
(i)
j,k = ✶{y

(i)
j = k}.

SVM based Uncertainty Strategy (SVM-US): This

strategy treats the ground truth class indicator of nonsense

regions as a uniform distribution, instead of an indicator

function. That means the system is uncertain where the non-

sense regions coming from.

Y
(i)
j,k =

{

✶{y
(i)
j = k} if y

(i)
j 6= 0

1
K

if y
(i)
j = 0.

(7)

3.5. Extension to Multi­Window Localization

Our proposed framework is also extended to multi-

window localization to find multiple discriminative regions

and to learn multiple classification SVMs. It is implemented

by a simple yet effective strategy. After a new discrimina-

tive SVM is learned, the optimal sub-window correspond-

ing to this SVM is computed in each image. Then all the key

points in the sub-window are removed so that they will not

contribute to the histogram computing during the next learn-

ing circle. Then another SVM will be trained on features

extracted from sub-windows searched on the updated set of

key points. This strategy will be used for (N − 1) times to

find N sub-windows, where N is a predefined number by

the user. The whole pipeline is presented in Algorithm 3.

Algorithm 3 Multi-window localization and SVM learning

for n = 1, · · · , N do

Initialize SVM weights w(n)

Initialize positive features: ϕ
(n)
i0 (x = FW(d+

i )), ∀i
Objective function: f = 1

2‖w(n)‖2

repeat

Initialize negative features: ϕ
(n)
i0 (x = FW(d−

i )), ∀i
repeat

Setup positive and negative constraints using

positive and negative features

Solve Eqn. (1) to get w(n) and b(n)

Add maximum violated negative features to

negative constraints:

ϕ(argmaxx∈LS(d
−

i
) w(n)Tϕ(x)), ∀i

until The deviation of w is less than a tolerance

Replace positive features with maximum positive

features ϕ(argmaxx∈LS(d
+

i
) w(n)Tϕ(x)), ∀i

until Change of f is less than a tolerance

Output w(n) and b(n)

Output sub-windows:

x̂
(n)
i = argmaxx∈LS(di) w(n)Tϕ(x) + b(n), ∀i

Remove key points in x̂
(n)
i of di, ∀i

end for

4. Experiments

4.1. Single Window Localization and Classification

A single window classification experiment is imple-

mented on the CMU Face Images dataset 1 using Algorithm

1. This data consists of 640 black and white face images of

20 subjects taken with varying pose (straight, left, right, up),

expression (neutral, happy, sad, angry), eyes (wearing sun-

glasses or not). The experiment is setup to simultaneously

distinguish faces with and without sunglasses and localize

the sunglasses. For a fair comparison, we split the dataset

the same way as [14], i.e. training on the first 8 subjects

and testing on the last 12 subjects. Overall, there are 254

training images, 126 with sunglasses and 128 without sun-

glasses, and 370 testing images, 185 with sunglasses and

185 without sunglasses.

Table. 1 shows the classification results of our method

measured by accuracy and ROC area. We benchmark our

method against several other approaches. They are bag-of-

words [15] using a 10-nearest neighbor classifier, SVM-F

denoting the traditional SVM in which each image is rep-

resented by the histogram of the words in the full image,

Efficient Sub-window Search (ESS) [7] and Discriminative

Localization and Classification (DLC) [14]. Notice that our

method can not only achieve better classification accuracy,

1http://archive.ics.uci.edu/ml/datasets/CMU+

Face+Images
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Table 1. Comparison results on the CMU Face dataset.

Measure BoW SVM-F ESS DLC Ours

Acc. (%) 80.11 82.97 86.79 90.0 94.32

ROC Area n/a 0.90 0.94 0.96 0.99

Figure 5. Discriminative facial region of each class indicated with

red boxes, implemented on AR dataset [11]. First row is discrim-

inative for the sunglasses. Second row is discriminative for scarf.

Third row is discriminative for both wearing the sunglasses and

the scarf.

but also find a more precise location of sunglasses. In some

extreme cases where DLC fails to find the sunglasses, our

method can still give an accurate region hypothesis (see Fig-

ure 4).

4.2. Multi­class Localization and Classification with
SVM Calibration

A single window multi-class classification experiment is

implemented on AR dataset [11], which contain multiple

positive classes, i.e. faces with sunglasses and faces with

scarf. The classifiers are binary SVMs trained in a one-

vs-all manner, calibrated with Algorithm 2. Our method

is able to detect the discriminative region as well as clas-

sify the images. During training, we apply SVM-US to deal

with nonsense regions. In testing, any region with a cali-

brated softmax value of a positive class over 0.9 is consid-

ered a discriminative region and the image is classified to

the associated positive class. If an image is classified as the

negative class, i.e. bare face, the system will disregard the

region selected. Note that neither the binary classifier ap-

plied in [14] or the method in previous experiments can do

this multi-class task.

Further, we synthesize a set of mixed-class images, i.e.

the faces are now wearing sunglasses as well as a scarf for

testing. Keeping exactly the same framework and training

dataset as the above single window multi-class classifica-

tion experiment, the system can detect multiple windows

with respect to multiple classes.

The result is shown in Figure 5. The system can suc-

cessfully detect the discriminative regions we want and the

results are intuitive. The method achieves 100% accuracy

on AR dataset of 120 testing images, i.e. 30 images from

each class of sunglasses, scarf, bare face and mixed classes.

Subject 1

Subject 2

Subject 3
Figure 6. Discriminative facial region of each subject. Red win-

dows indicate discriminative regions on subjects, which are very

interesting and intuitive. Subjects are discriminative for (1) his

pointing nose, (2) the reflection on his forehead and (3) his special

patterns on his chin. Examples marked within the green boxes are

the failure cases in the testing set. It can be shown that one case

of Subject (1) is due to a mislabeling in the dataset itself. It seems

that the three cases of Subject (3) are caused by invisibility of the

discriminative region.

In the second experiment, we aim to show the efficiency

of our proposed calibration strategies on multi-class regions

in the application of face recognition. Our method will be

compared against other baseline classifiers, i.e. Linear Dis-

criminant Analysis (LDA), Locality Preserving Projections

(LPP) [4], Unsupervised Discriminant Projection (UDP)

[25], etc. This experiment aims to show the capability of our

method in the problem of multi-class classification where

the baseline method [14] is unusable. Our method doesn’t

aim to achieve the state-of-the-art performance on the large-

scale face recognition problems as shown in [22, 21].

The system also implements Algorithm 2 on three sub-

jects randomly selected from the CASIA WebFace dataset

[26]. The ultimate goal of the method is to automatically

find what is the most discriminative facial region of one

subject against others. The experiment takes 150 images

from each subject for training and 50 images from each for
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Table 2. Classification accuracy on three subjects from the CA-

SIA WebFace [26] dataset. Each subject has 50 testing images,

examples shown in Figure 6. The best classification accuracy is

97.33%, achieved by the uncertainty strategy.

Method Sub 1 Sub 2 Sub 3 Average

LDA 84% 92% 82% 86.00%

LPP [4] 84% 92% 84% 86.67%

UDP [25] 80% 62% 86% 76.00%

Our SVM-IS 96% 100% 84% 93.33%

Our SVM-US 98% 100% 94% 97.33%

testing. Two strategies described in 3.4 are implemented

for calibration. An upper constraint is imposed on the re-

gion size in order to speedup the learning procedure. Given

the biological properties of the human face, we restrict the

height and the width of possible regions to not exceed 30

and 50 pixels respectively. The classification results are pre-

sented in Table 2. Figure 6 gives some examples of detected

discriminative regions by the SVM calibrated with the un-

certainty strategy.

Briefly, our method can localize a facial region of

one subject discriminative to other subjects, yet consistent

within the subject class. This approach is significantly bet-

ter than other classifiers operated on the full face and is ro-

bust to different facial poses, illumination condition, occlu-

sion, expressions, and the interference of other faces. The

four failure testing cases are due to noise in the dataset or

invisibility of regions.

4.3. Gender Classification

Soft biometric classification is very useful in reducing

the possible search space for other recognition techniques.

To that end, we ran an experiment in gender classification

using our proposed method on frontal mugshot style photos.

The database was collected from several online sources, in-

cluding three mugshot databases and a set of Olympic ath-

lete photos. The dataset was balanced between both gen-

ders and the three most common ethnicities in the data, i.e.

Black, White and Asian. There are a total of 8,748 images

(1,458 images in each gender/ethnic group). A subset of

3,870 images (630 images in each gender/ethnic group) was

used in training both our method and baseline methods used

in the comparison. These images were from one of the four

mugshot databases. The rest of the data was used for testing

in order to account for any possible dataset bias. All data is

aligned using hand clicked eye locations.

The experiment is setup based on Algorithm 1. Again

taking the biological properties of face and the searching

efficiency into consideration, we restrict the height and the

width of possible regions to not exceed 30 and 50 pixels re-

spectively. Figure 7 illustrates the discriminative regions for

both male and female examples from the Olympic dataset.

The regions selected for males tend to be in a region that

Figure 7. Discriminative facial region of each subject. Green win-

dows indicate discriminative regions for males (top row) and fe-

males (bottom row). The discriminative region for males is on a

region that tends to have facial hair when it is present. This is a

good indicator of gender when it is present but does not help when

it is not. The discriminative region for the females tends to be on

the lips which is an area of the face that can be distinctive between

men and women.

Table 3. Gender classification accuracy (%) on the two mugshot

datasets not used in training (M1 and M2) and the Olympic athlete

dataset (O). The best overall classification accuracy is 94.09%,

achieved by our weakly supervised method.

Method M1 M2 O Overall

LDA 94.92 94.86 83.88 88.58

SVM 91.51 90.67 80.67 85.20

RF 86.68 87.30 73.62 79.25

Ours 95.60 96.03 92.90 94.09

indicates the presence or absence of facial hair. This could

be a result of the fact that mugshot images of males tend to

have facial hair more often than not. However, the method is

still able to achieve high accuracy. We report the classifica-

tion accuracy of out method and compare it with some base-

lines, i.e. Linear Discriminant Analysis (LDA), SVM and

Random Forest (RF), in Table 3. An important note is that

even though the other baseline methods do not seem to be

able to generalize from mugshot style pictures to Olympic

athlete pictures, our method is able to do a much better job,

maintaining a more consistent accuracy across datasets.

4.4. Twins Verification

This experiment addresses the twins verification prob-

lem using our unified framework of simultaneously detec-

tion and classification presented above. Experiments are

conducted on face images of identical twins from the Uni-

versity of Notre Dame ND-Twins database [17] acquired

at the 2009 and 2010 Twins Days Festivals in Twinsburg,

Ohio. The experiment shows that our proposed method

achieve the state-of-the-art performance compared against

recent works in [8] and [9] in two separated Twins datasets

of 2009 and 2010. The experiments are performed on the

category of neutral faces without glasses. There are 90 pairs

of identical twins collected in 2009 and 107 pairs of iden-

tical twins collected in 2010. For each pair of twins, there

are two images (TwinA, TwinB) selected for training, and
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Figure 8. Examples of twin classification: The first row: (a) and

(b) are the pair of twins, i.e. TwinA and TwinB , in training set,

(c) and (d) are the corresponding pair of twins, i.e. T̂winA and

T̂winB , in the testing set; green boxes show the discriminative

regions for distinguishing TwinA from TwinB ; the second row:

synthesized 3D faces of twin TwinA for training; The third row:

synthesized 3D faces of twin TwinB for training.

two other images (T̂winA and T̂winB) selected for testing.

The accuracy rates in this experiment are computed as the

ratio of the number of correct matches to the sum of the

number of correct and incorrect matches.

Since our proposed method requires multiple training

images to train the system, numerous variations of these two

twins images in the training set will be generated. There-

fore, the 3D Generic Elastic Model (3D-GEM) method [19]

is employed to generate multiple off-angle face images from

a single frontal face image as shown in Figure 8. In this

method, it is observed that fairly accurate 3D models can

be generated by using only one single frontal image in a

computationally cheaper way compared to other 3D ap-

proaches. For each single face image in the training set,

there are 143 synthesized face images varied in yaw an-

gles from −30o to 30o in ranges of 5o and pitch angles

from −25o to 25o in ranges of 5o. Table 4 shows the per-

formance obtained of images collected in 2009 and 2010

in the ND-Twins database by aging features based method

(Gabor and HOG), facial asymmetry decomposition based

methods (SVD-AD and Procrustes-AD) against to our ap-

proach. The first two best results are emphasized in bold.

Compared to the other twin identification methods, our pro-

posed approach achieves the best performance on both two

twins databases. The experiment not only proves that the

propose approach is a good solution for twins identification

problem but also shows that our method is able to work on

synthesized data (which is generated from 3DGEM on still

images).

4.5. Facial Attractiveness Analysis

This experiment shows the ability of our method to find

more than one discriminative regions in the positive class.

Table 4. Accuracy obtained of images collected in 2009 and 2010

in the ND-Twins database by aging features based method, facial

asymmetry decomposition based methods and our approach.

Approaches 2009 2010

Gabor based Facial Aging 96.7% 97.7%

HOG based Facial Aging 93.9% 98.6%

SVD-AD based Asymmetry 86.1% 96.7%

Procrustes-AD based Asymmetry 85% 95.8%

Our approach 95.6% 99.1%

Figure 9. Examples of attractive regions found on the positive

class. Blue boxes represent the regions found in the first loop,

which are located at the nose and the cheek. Red boxes are the re-

gions found in the second loop which are focusing on the forehead.

Overall, these two regions can be seen as the two discriminative

areas of facial attractiveness.

The experiment implements Algorithm 3 on an interest-

ing dataset: SCUT-FBP [24]. It is a novel face dataset

with attractiveness ratings and developed for automatic fa-

cial beauty perception. This dataset contains 500 differ-

ent Asian female subjects with attractiveness ratings, all

of which have been verified in terms of rating distribution,

standard deviation, consistency, and self-consistency.

The images are sorted based on their attractiveness score

in descending order. The top 200 images are selected as

the positive group and the last 200 images as the negative

group. Then 150 samples from each group are randomly

picked to build the training set. The rest of them are used

for evaluation. The number of the searching sub-windows

are set to 2. Thus, we want to find what are the two most

commonly attractive regions of a female face. It turns out

that the region combining the nose and the cheek and the

region of forehead are the two most distinguish area repre-

senting attractiveness, as illustrated in Figure 9. Our method

achieved a 75% classification accuracy.

5. Conclusion

This work has presented a simultaneous localization and

classification method using discriminative facial feature in a

weakly supervised framework. Our proposed unified frame-

work can be used to solve various face analysis problems.

The hypercolumn features extracted from our deep model

allows for higher classification results. In addition, our pre-

sented SVM calibration can help to deal with multi-class

categorization and the mixed-class problems. Finally, our

framework has the ability to handle multi-region analysis.
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