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Abstract

Correlation filters for visual object tracking in visible im-

agery has been well-studied. Most of the correlation-filter-

based methods use either raw image intensities or feature

maps of gradient orientations or color channels. However,

well-known features designed for visible spectrum may not

be ideal for infrared object tracking, since infrared and vis-

ible spectra have dissimilar characteristics in general. We

assess the performance of two state-of-the-art correlation-

filter-based object tracking methods on Linköping Thermal

InfraRed (LTIR) dataset of medium wave and longwave in-

frared videos, using deep convolutional neural networks

(CNN) features as well as other traditional hand-crafted de-

scriptors. The deep CNN features are trained on an infrared

dataset consisting of 16K objects for a supervised classifi-

cation task. The highest performance in terms of the over-

lap metric is achieved when these deep CNN features are

utilized in a correlation-filter-based tracker.

1. Introduction

Visual object tracking is an active area in computer vi-

sion research, and most tracking methods have been widely

applied to visible spectrum imagery to serve as a useful tool

of various tasks including human computer interface [34],

action recognition [29, 16] and robotics [36]. State-of-the-

art methods such as support vector machines [17], sparse

dictionary-based learning [3, 30, 27], saliency-based ap-

proaches [40] and correlation filters [5, 10, 18] have been

applied in an online fashion for object tracking. More-

over, extensive benchmarks have been presented such as

Online Tracking Benchmark (OTB) 2013 [39], Visual Ob-

ject Tracking (VOT) 2014 [23] and VOT 2015 [22] chal-

lenges with different evaluation metrics. Experimenting on

these diverse datasets, recent methods mostly focus on the
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tracking routine itself rather than the features/descriptors

used for tracking. Tracking methods adopt the latest fea-

tures of object classification, most of which are based on

the gradient orientations, and tuned considering the visible

spectrum characteristics. A recent study [12] has already

compared the newest methods in an infrared benchmark

dataset [4] with conventional features, which might not be

feasible for night time imagery applications. To this end,

the need to analyze feature types is vital in infrared spec-

trum. Hence, in this work, we provide a fair comparison on

Linköping Thermal InfraRed (LTIR) dataset [4], including

20 sequences collected from various sources and annotated

in the VOT-toolkit [23, 22] format.

Similar to object classification, the discriminative and

representative power of the features play a crucial role in

object tracking. Since online tracking applications require

both a robust performance and an efficient implementation,

correlation filters, being computationally efficient and reli-

able, have become the prevailing approach for visual track-

ing. The seminal work of Bolme et. al. [5] introduced a

fast implementation, where they used raw image intensities.

Following their work, multichannel correlation-filter-based

tracking methods have been proposed using histogram of

oriented gradients (HOG) [7] features [18, 10], and color

channels [11]. Although HOG feature channels improve

the performance significantly in visible imagery compared

to the raw intensities, we show that these features, in con-

junction with specific tracking methods, perform weakly in

infrared images. Moreover, unlike color images, infrared

images capture information on a single band (e.g. medium

wave infrared (MWIR), longwave infrared (LWIR)) unless

a multispectral sensor is utilized. In the study of [15],

the performances of Haar-like features and image intensity-

based features are gauged in a visible/infrared comparison

context. Their major conclusion is that Haar-like features

cause a dramatic performance degradation when the spec-

trum is changed from visible to infrared, compared to using
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the raw image intensities.

The issues mentioned above motivate us to propose the

use of alternative feature types. Although there exist plenty

of features that could be integrated into a correlation-filter-

based tracking approach, we compare three feature types,

which we believe are the most beneficial ones for object

tracking in infrared imagery. The features that we com-

pare involve (1) those hand-crafted features such as Gist-

feature maps (where each map represents the band-pass re-

sponse of the visual object) and gradient orientation maps

(i.e. HOG feature channels) (2) the infrared feature maps,

which are extracted using the first-layer weights of CNN

filters learned independently for classification on a separate

infrared dataset, and which we call as “deep infrared sig-

natures (deep-IRS)”. To evaluate the role of these feature

types on visual object tracking task in infrared imagery, we

adopt correlation-filter-based tracking methods DSST [10]

and SRDCF [9] due to their recent success on Visual Object

Tracking Challenges [23, 22, 12].

In this work, our contributions are as follows: (1) we

evaluated the top-performing correlation trackers of both

VOT 2014 [23] and VOT 2015 [22] challenge, (2) two ro-

bust features are integrated into these two recent methods

and (3) one of the compared feature-map types is extracted

using infrared-specific filters learned by a CNN architecture

for an infrared classification task. (4) Extensive analyses are

carried out using the VOT-toolkit [22, 23] on LTIR dataset

[4].

In the rest of the paper, we first present the mostly related

works of object tracking divided into four broad categories

since complementary approaches to correlation-filter-based

approaches are also worth to discuss. Next, we provide a

brief explanation of the adopted correlation-filter-based al-

gorithms in Sec. 3. In Sec. 4, evaluated feature types are

presented, and the experimental results and discussions are

provided in Sec. 5.

2. Related Work

2.1. Generative approaches

Generative models construct an appearance model,

which is updated when necessary. Tracking is accomplished

by searching for the most-likely object candidate within a

search area on the next frame. Incremental visual track-

ing (IVT) [33], mean shift tracking [6] and visual track-

ing decomposition [24] are some prominent examples of

robust and generative tracking methods. In the context of

generative models, sparse representations have also been

used in visual tracking [30, 3, 27], since such representa-

tion improves the face recognition [38], due to its robust-

ness against occlusion and noise corruption.
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2.2. Discriminative approaches

In discriminative approaches, tracking is achieved upon

a learned binary classifier (e.g. target object vs. back-

ground) and the most probable target location is estimated

using classification. The pioneering studies are tracking

with online boosting [14] and ensemble tracking [1], where

both use an online version of AdaBoost [13] and update

weak classifiers according to the object location. Multiple

Instance Learning-based tracking (MILTrack) [2], Online

Discriminative Feature Selection (ODFS) [43], Fast Com-

pressive Tracking (FCT) [44] improve the performance of

feature-based discriminative tracking methods by the help

of Haar-like features. In [17], an online structured-output

support vector machine (SVM) is designed for visual track-

ing.

2.3. Correlationfilterbased methods

Instead of using a discriminative classifier, correlation-

filter-based trackers [5, 19, 18, 25, 10] employ dense corre-

lation in the image domain to localize the object. Minimum

Output Sum of Squared Errors (MOSSE) [5] learns a filter

which minimizes an objective function aiming at obtaining

a sharp peak in the correlation mask. [19] exploits the circu-

lant structure of the cyclic shifts of a signal and applies ker-

nel regression. The main drawback of the correlation-filter-

based trackers [5, 19] is that they are not scale-adaptive.

Hence, the tracking performance often degrades in video

sequences when the size of the target is subject to large

variations. To handle this situation, multiscale solutions

are proposed such as Discriminative Scale Space Tracker

(DSST) [10], Scale Adaptive Multiple Features (SAMF)

tracker [25], spatio-temporal context (STC) tracker [42].

Since the standard correlation-filter-based methods suffer

from the periodic boundary effect (which leads to imper-

fect training samples and a restricted search region), Spa-

tially Regularized Discriminatively learned Correlation Fil-

ters (SRDCF) [9] is proposed to alleviate these sufferings.

2.4. Hybrid Methods

As opposed to using a single approach, hybrid methods

employ complementary approaches and combine them to

compensate for their individual drawbacks. For instance,

multiple correlation trackers are run at different parts of

the object in [28] whereas part-based and holistic meth-

ods are combined in [37]. Reliable patches are tracked in

[26] using Kernelized Correlation Filters (KCF) [18] as the

base tracker. The work in Multiple Experts using Entropy

Minimization (MEEM) [21] selects the best support vector

machine-based discriminative tracker according to an en-

tropy minimization criterion. Like MEEM, an ensemble-

based method is proposed in [15], which selects the best

25



Figure 1. Illustration of the correlation-filter-based tracking

overview with deep-IRS features.

expert from the ensemble using a sparse appearance dictio-

nary, and a corresponding template exists for each tracker

in the ensemble. In [20], Markov Chain Monte Carlo sam-

pling selects trackers and combines them. Various track-

ers with mixed feature types are combined in [35]. Hy-

brid methods combining generative and discriminative ap-

proaches are proposed in [45, 41].

3. Multichannel Correlation-Filter-Based Vi-

sual Tracking

Most correlation-filter-based tracking methods compute

the correlation of the candidate object patch f around the

current region of interest with a template filter h, and the

location which gives the highest correlation score within a

search rectangle (i.e. gate) is determined as the estimated

location of the object at the current frame [5, 10, 18, 19].

The fast correlation is achieved in the frequency domain us-

ing the Convolution Theorem as G = F ⊙H , where lower

and uppercase letters denote the signal in image and fre-

quency domain, respectively, and ⊙ denotoes the element-

wise product. By taking the inverse Discrete Fourier Trans-

form of G, the correlation output is obtained. Since Fast

Fourier Transform (FFT) is used for finding the correspond-

ing signals in the frequency domain, the correlation calcu-

lation has a complexity of O(Plog(P )) rather than O(P 2)
(P denotes the discrete signal length). Unlike using only

raw image intensities of the template f , most state-of-the-

art methods employ more robust features [18, 19, 10] ex-

tracted from the template f (such as HOG orientation maps

or any other set of feature maps), and these extracted fea-

tures are {f1
i , ..., f

d
i } processed to be correlated in the same

way as described above. An overview of the correlation-

filter-based tracking algorithm is presented in Figure 1 for

the case of deep infrared signature features (deep-IRS).

In this work, the top performing correlation-filter-based

tracking methods of VOT 2014 [23] and VOT 2015 [22] are
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used as the baseline tracking approaches. The overall win-

ner of VOT 2014 is DSST [10] whereas the top performing

correlation method of VOT 2015 is SRDCF [9]. The fol-

lowing subsections briefly summarize these methods.

3.1. Discriminative Scale Space Tracker (DSST)

DSST [10] is an extension of MOSSE [5] where mul-

tichannels (HOG channels) are utilized for localization in

addition to the raw image intensities. The desired correla-

tion mask of the training example f is denoted by g and the

ridge regression cost in Eq (1) is intended to be minimized:

t
∑

i=1

∥

∥

∥

∥

∥

(

d
∑

l=1

hl
t ∗ f

l
i − gi)

∥

∥

∥

∥

∥
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+ λǫ
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∥
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t

∥

∥

2
(1)

Here, ∗ denotes the circular correlation operation, λǫ is the

control parameter for L2 regularization term of the filters

{hl
t}

d
l=1, and {f1

i , ..., f
d
i } are the feature channels which

may correspond to particular features (HOG, Gist, IR fea-

tures). There exists a closed form solution to the minimiza-

tion of the regularized cost in (1) for t = 1, i.e., for one

training example, in frequency domain as:

H l =
F l ⊙G∗

d
∑

k=1

F k ⊙ F k
∗
+ λǫ

, ∀l ∈ 1, ..., d, (2)

where ⊙ is the element-wise product and the subscript ∗ de-

notes conjugation operation. At each time instant, the filter

H l is updated by applying moving average to the numerator

and denominator of (2) separately via:

Al
t = (1− µ)Al

t−1 + µGt∗ ⊙ F l
t ,

Bt = (1− µ)Bt−1 + µ

d
∑

k=1

F k
t ⊙ F k

t∗,
(3)

where µ is the model update rate. The correlation of an

object patch z and the model H l is calculated using the

updated numerator Al
t and denominator Bl

t of H l in fre-

quency domain and the spatial domain correlation mask is

computed by taking the inverse Fourier transform as:

y = F−1

{

(

d
∑

l=1

Al
∗
⊙ Zl)/(B + λǫ)

}

, (4)

The new location of the object in the next frame is found

using (4). Scale estimation is performed on the translated

location. Features are extracted in the translated location

using variable patch sizes. The same correlation filtering

procedure is employed in the scale space using these fea-

tures (cf. [10] for details) to find the accurate scale of the

object in the next frame.
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3.2. Spatially Regularized Discriminatively
Learned Correlation Filters

Since correlation filters suffer from the limited search

range and imperfect training examples due to the cyclic

shifts, SRDCF [9] adds an extra term w to their cost func-

tion in Eq. (1):

t
∑

i=1

∥

∥

∥

∥

∥

(

d
∑

l=1

hl
t ∗ f

l
i − gi)

∥

∥

∥

∥

∥

2

+ λǫ

d
∑

l=1

∥

∥w ⊙ hl
t

∥

∥

2
, (5)

where w penalizes the values of the correlation filter hl
t’s at

the image boundaries by using a quadratic function that has

low values near the center of the image patch and high val-

ues near the boundaries. To solve the optimization problem

in (5), they use an efficient optimization procedure. Sim-

ilar to DSST, they also use HOG feature channels. Yet,

the computed feature maps are 16 times smaller than their

original area for efficiency since a 4 × 4 HOG cell size is

selected. In our evaluations, we first calculate the feature

maps of Gist and deep-IRS with the original patch size and

then downscale them by a factor of 4 for a fair comparison

with the baseline SRDCF implementation, which uses HOG

features.

3.3. Ensemble of MOSSE [5] Trackers

In [15], a comparison study is conducted for visual ob-

ject tracking on pairs of synchronized visible and infrared

sequences. The main comparison is done on the exploited

feature type of a tracker (i.e. Haar-like or raw image inten-

sities). The results of the work in [15] claim that the perfor-

mance of Haar-like features fades away when the spectrum

is changed to the infrared. Moreover, they use an ensemble

method, named TBOOST, that gives promising results de-

spite exploiting only raw image intensity values. Hence, we

also implemented this method and compared it with other

methods. The proposed tracker in [15] basically generates

a limited dictionary consisting of object templates. Each

object template belongs to a different MOSSE [5] tracker.

At each frame, only one tracker is run and its output is as-

signed as the resulting bounding box of that frame. The final

tracker to be run is generated by combining all MOSSE fil-

ters in the ensemble with different weights. These weights

are the coefficients of the sparse reconstruction of the cur-

rent object patch using the template dictionary. In our com-

parisons, TBOOST represents the method utilizing only the

raw image intensities, since its performance is reported to

be significantly higher than that of a single MOSSE tracker.
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4. Correlation Feature Channels For Object

Tracking

In this work, we propose to evaluate hand-crafted and

learned features. As the hand-crafted features, Gist and

HOG feature maps are exploited. As learned features, we

adopt infrared-specific features (deep-IRS). In addition to

these features, experiments with only raw image intensities

are also conducted. Figure 2 illustrates the examples from

three feature maps: deep-IRS, Gist, and HOG.

4.1. Histogram of Oriented Gradients

HOG [7] is an image representation frequently used in

various computer vision tasks, including object detection

and classification, since it possesses invariance to a tolerable

amount of discrepancies within the same object class. This

feature type is also exploited in the correlation-filter-based

methods such as [10, 18, 9]. Since HOG involves a global

representation (histogram) and lacks the spatial relation-

ships within the object, it is inconvenient to use histograms

in a correlation-filter-based tracking framework. To use

HOG representations in correlation, the cell size (please re-

fer to [7] for further details about important parameters) is

kept so small (typical cell size is 1 pixel) that the resulting

elements of HOG bins at each cell represent the gradient

orientations for each pixel. Thus, HOG channels exploited

in most correlation-filter-based trackers [10, 18, 9] corre-

spond to the gradient orientations maps (with contrast sen-

sitivity and insensitivity). During the experiments, the de-

fault parameters of DSST [10] and SRDCF [9] are inherited

for the HOG channels.

4.2. Deep Infrared Signatures (DeepIRS)

An increasing amount of attention to CNN architectures

has started to lead researchers to use CNN features in dif-

ferent research problems. Transferring the features trained

in one domain to another domain is also a commonly used

strategy, especially when the domains are close to each

other [8]. Features learned by training a CNN architecture

has already been employed in the correlation-filter-based

tracking [8]. In [8], the most useful CNN layer is experi-

mentally determined to be the first-layer feature maps since

the translational invariance properties and spatial informa-

tion are preserved. Following this work, we utilize IR-

specific feature maps.

To learn these IR features and to increase the perfor-

mance of classical classification and detection methods in

infrared spectrum, we generate a dataset consisting of IR

objects captured by MWIR (3-5um) and LWIR (8-12um)

cameras. Sample object patches are demonstrated in Figure

3. For the classification task, the dataset consists of 16K la-

beled object samples for different object categories includ-

ing pedestrian, ship, vehicle, airplane and helicopter. The
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Figure 2. A visual illustration of features on the Hiding sequence of LTIR [4] dataset: Top row: infrared feature maps extracted by the

prelearned deep CNN first layers (deep-IRS). Middle row: Gist feature maps, where each one corresponds to a response to the band pass

filters. Bottom row: HOG feature maps with each one representing a gradient in a specific orientation. Intensity values of the feature

channels are normalized between 0 and 1 for better illustration.

employed CNN architecture is as follows: (64 × 64) →
(5 × 5 × 20) → (5 × 5 × 40) → (4 × 4 × 80) →
(5 × 5 × 512) → (512 × 512) → (512 × 5) using con-

ventional neural network notation. For each convolutional

block, there is a rectified linear unit (ReLU), a dropout (with

a factor of 0.5) and a 2×2 max pooling layer with a stride 2.

To extract the IR feature maps, we utilize the first-layer re-

sponses of the CNN architecture that is trained on the gener-

ated IR dataset. During the training part, no images from the

LTIR dataset [4] are used. Hence, during the training and

testing, the images, which are captured in distinct environ-

ments by the help of the sensors with different properties,

are processed. This makes our comparisons and evaluation

realistic for a practical usage.

4.3. Gist features

The Gist, proposed by Oliva et al. [32, 31], is a holis-

tic scene descriptor based on power spectrum features, and

is well known for its effectiveness in scene classification.

In our experiments, we utilize power-spectrum-based maps

for enhancing the tracking performance in infrared imagery.

The images containing the tracked objects are prefiltered

with the aim of reducing illumination effects (which is also

encountered in thermal imagery as dynamics change and

temperature change [4]) such as large shadows in the scene

as well as preventing local and high-contrast image regions

Approved for public release; unlimited distribution.

Figure 3. Sample image patches from our infrared dataset.

that disturbs the image power spectrum. First, a logarith-

mic function is applied to the intensity distribution, very

low spatial frequencies are attenuated by the use of a high-

pass filter. Next, the local standard deviation at each pixel

of the image is adjusted to make large regions of the image

appear equally bright. These operations are given in Eq. 6,

i′(x, y) =
i(x, y) ∗ h(x, y)

ǫ+
√

[i(x, y) ∗ h(x, y)]2 ∗ g(x, y)
(6)

where i(x, y), g(x, y) and h(x, y) = 1 − g(x, y) represent

the image, an isotropic low-pass gaussian spatial filter, and

the high-pass filter that removes the mean intensity value

of the image and whitens the energy spectrum, respectively.

The denominator is simply a local estimator of the variance
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Figure 4. Visualization of filters. Each colored blob is a Gabor

filter in the frequency domain. The outer set of 12 blobs represents

the first scale, and the inner set of 12 blobs represents the second

scale.

of the output of the high-pass filter and is used for noise

reduction.

After prefiltering, power spectrum is computed for each

image by applying a Discrete Fourier Transform (DFT), and

is sampled with a bank of narrow-band Gabor filters. The

transfer function of each filter, tuned to a spatial frequency,

fr, is:

G(fx, fy) = Ke−2π2(σ2

x(f
′

x−fr)
2+σ2

yf
′2

y) (7)

where f
′

x = fxcos(θ) + fysin(θ), f
′

y = −fxsin(θ) +
fycos(θ) define the filter orientation, and σx and σy define

the filter shape. The filter bank is a set of filters with dif-

ferent orientations and scales as depicted in Fig. 4. For Gist

feature channels, we generate 2 scales of filters for DSST,

each scale consists of 12 filters. Since SRDCF downsam-

ples the object patches by a factor for 4, we selected a more

hierarchical configuration, 3 scales of filters, each consist-

ing of 16, 8 and 7 filters, respectively. These filters span all

frequency spectrum uniformly.

5. Experiments and Results

5.1. LTIR dataset

We perform experiments on Linköping Thermal In-

fraRed (LTIR) dataset [4], captured with cameras of MWIR

and LWIR bands, for evaluating the tracking methods com-

bined with different feature types. LTIR consists of 20

sequences including various targets such as rhinoceros,

horses, humans, dogs, quadrocopters and cars. Since their

annotations are provided in VOT-toolkit format, we evaluate

the methods in terms of VOT metrics, which are explained

in Section 5.2. The dataset includes both indoor and out-

door scenarios with different attributes such as dynamics
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change, temperature change, blur and camera motion. Av-

erage length of a sequence is 563 frames.

5.2. Evaluation metrics

In our evaluation, the performance metrics of VOT 2014

[23] and 2015 [22] are utilized. These are the average ac-

curacy, robustness scores, the ranking measure of [23] for

VOT 2014 dataset and expected overlap measure, which is

proposed in VOT 2015 challenge [22].

For a predicted object region and its ground truth at

frame t, accuracy is defined as Acct =
area(RP∩RT )
area(RP∪RT ) , where

RP and RT represent the predicted and the true object

regions in a specific frame, respectively. Average accu-

racy per sequence is calculated by averaging these accuracy

scores through time. If a tracker fails, i.e., accuracy score

decreases to zero, then the tracker is re-initialized (please

refer to VOT 2014 challenge paper [23] for further details).

On the other hand, robustness measures the number of fail-

ures per frame. Ranking of a tracker for each performance

metric is calculated by ordering each tracker among the

evaluation set, merging the tracker orders sharing statisti-

cally very similar results, and finally averaging these rank-

ings for all the sequences.

Since the accuracy and robustness are complementary

measures, a new metric, named expected overlap, is pro-

posed in [22] that takes the average of accuracy scores in a

principled manner to unify robustness and accuracy metrics.

This measure has been used as the new metric in VOT 2015

(please refer to [22] for details). To calculate the expected

average overlap ratio of a tracker, several tracking segments

are stored according to their length. For each tracking seg-

ment length, an expectation is calculated and the average of

all of the expectations from different segments constitutes

the final performance score.

5.3. Experimental results and discussion

Table 1 summarizes the performance results in terms of

the accuracy ranking, the robustness ranking, the average

accuracy, the average robustness and the expected overlap.

When we analyze DSST and the usage of different feature

types, a performance increase is observed in terms of ex-

pected overlap if the feature type is deep-IRS. Moreover,

the robustness also increases with the use of deep-IRS fea-

tures. In addition to these quantitative results in Table 1, we

also obtain important visual observations, where DSST with

deep-IRS features handle occlusion and large pose varia-

tions whereas HOG features fail. Some of the observations

from the sequences of LTIR [4] are presented in the supple-

mentary material.

Although SRDCF is the top correlation-filter-based ap-

proach of VOT 2015, its performance is lower than DSST

in thermal datasets in terms of expected overlap since each

image is resized to 16 times smaller that its original area,
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Figure 5. Accuracy and robustness ranking plot. Please refer to

Figure 7 for the legend.

and the representation power of the features degrades in the

infrared spectrum. Furthermore, neither Gist nor deep-IRS

features improves the performance of SRDCF method.

In VOTTIR 2015 challenge [12], the best performing

method was SRDCF with an additional feature obtained

by subtraction of consecutive frames. Since our goal is to

compare the algorithms and different feature types, and the

frame subtraction dominates the results, we opt to continue

without frame subtraction. Moreover, it is not always fea-

sible to use frame subtraction especially when the camera

or object has a large motion, though this is not the case in

LTIR. Consequently, we avoid overfitting on the dataset and

exploiting any prior information while probing the effects of

feature types.

Figure 5 illustrates the accuracy and robustness rankings.

Since the closeness to the top right region means better per-

formance, SRDCF using HOG features is the best perform-

ing one among the compared methods. However, expected

overlap measure (shown in Figure 6) considers all different

sequence lengths and takes their average. DSST, with deep-

IRS features, prevails in terms of this metric, followed by

the Gist features. The superiority of deep-IRS features over

the HOG orientations in infrared imagery is possibly due

to the fact that deep features are learned using an infrared

dataset with similar characteristics to LTIR [4] since both

datasets are on the same bands (medium wave and long-

wave) though the two tasks (tracking and classification in

infrared) are dissimilar. Moreover, discriminating proper-

ties of HOG channels do not arise in infrared spectrum.
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Figure 6. Expected overlap curves.

Figure 7. Expected overlap vs normalized speed graph.

Although the accuracy and robustness are important per-

formance metrics, the computation time is crucial from the

practical aspects. In Figure 7, the normalized speed is mea-

sured in terms of equivalent filter operations (EFO) ([23])

that the processor can run instead of processing the neces-

sary operations for one frame of the corresponding tracker.

The most efficient method is DSST with deep-IRS features

since the number of features is 20 whereas 28 features maps

are used for the HOG version. Moreover, SRDCF and its

different versions are significantly slower than DSST fam-

ily. Finally, the speed of TBOOST ranks between DSST

and SRDCF family.
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Table 1. Performance results of the evaluated tracking methods. Red, blue and green indicate the best, second and third ranking.

Methods Acc. Rank. Rob. Rank. Accuracy Robustness Expected overlap Normalized speed (EFO)

DSST deep-IRS 3.40 2.35 0.58 2.30 0.2668 7.12

DSST GIST 3.60 2.75 0.58 2.50 0.2618 3.16

DSST HOG 2.90 2.45 0.62 2.35 0.2463 6.98

SRDCF HOG 2.30 1.50 0.67 1.90 0.2450 2.99

SRDCF GIST 3.25 3.00 0.60 2.85 0.2115 1.11

TBOOST 4.75 3.65 0.56 3.30 0.1922 4.87

SRDCF IR 4.55 3.45 0.51 3.65 0.1614 2.45

6. Conclusion

In this work, we investigate the performances of

correlation-filter-based trackers when different features are

exploited in the infrared domain. To compare the feature

types, two state-of-the-art methods, which had the top rank-

ings in VOT 2014 and 2015 challenges, are evaluated. The

compared feature types include hand-crafted features (Gist,

HOG) and learned features (deep-IRS), extracted by the

weights of a deep CNN architecture trained for classifying

objects, such as pedestrian, ship, vehicle, airplane and heli-

copter, on an infrared dataset. DSST with learned infrared

features performs favorably against the other feature types

in terms of expected overlap, while being the most compu-

tationally efficient one among the compared methods.
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