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Abstract

We consider the problem of detecting and localizing a

human action from continuous action video from depth cam-

eras. We believe that this problem is more challenging than

the problem of traditional action recognition as we do not

have the information about the starting and ending frames

of an action class. Another challenge which makes the prob-

lem difficult, is the latency in detection of actions. In this

paper, we introduce a greedy approach to detect the ac-

tion class, invariant of their temporal scale in the testing

sequences using class templates and basic skeleton based

feature representation from the depth stream data generated

using Microsoft Kinect. We evaluate the proposed method

on the standard G3D and UTKinect-Action datasets con-

sisting of five and ten actions, respectively. Our results

demonstrate that the proposed approach performs well for

action detection and recognition under different temporal

scales, and is able to outperform the state of the art meth-

ods at low latency.

1. Introduction

Human action detection still remains as a very challeng-

ing task in computer vision. Action detection requires the

localization of a particular action in the temporally unseg-

mented sequences consisting of multiple actions instances

as depicted in Fig. 1. We believe that this is one rea-

son which makes this task more challenging than action

recognition on temporally segmented sequences. The abil-

ity to detect and temporally localize the human actions with

low latencies is of utmost importance to several applica-

tions of action recognition such as video surveillance, video

retrieval, sign language detection, automated driver assis-

tance, and human-robot interactions. These applications

call for a robust detection algorithm which can work on

even complex actions in real time.

The problem of action detection involves considering

the intra-class variations among different classes, viewpoint

variation, and variation in temporal scale of the action se-

quence and the latency in detection of the action class.

Intra-class variations occur due to the differences in the way

the same action is performed by different subjects. Tempo-

ral scale of the action can drastically vary for the same ac-

tion and a fixed scale search strategy to detect the action in

a continuous sequence might not work well. Detection La-

tency can either be observational latency or computational

latency as mentioned in [1], where observational latency is

the time required by the system to observe enough frames

to make a decision, whereas computational latency is the

time required to perform the actual computation on a frame.

Hence, the detection algorithm must be robust against vari-

ations, and efficient enough to perform well at a lower de-

tection latency.

The feature representation required to represent a se-

quence or frames of the sequences must be invariant to

translation, and illumination conditions. With the recent

development in low cost depth sensors, such as Microsoft

Kinect, it is now possible to perform pose estimation and

capture the 3D skeleton data in realtime [12], invariant to

variation in color and illumination conditions.

Previous works [1], [17] & [11] either use a fixed tem-

poral scale approach for the training and testing of the ac-

tion class or they use a multi scale approach. It is evident

that a fixed scale approach is not the best strategy for action

detection, as the same action can be performed for different

time durations. The reason for using fixed scale approach in

the previous works is the use of video level features which

represent a sequence with a single feature vector instead of

frame level features. The frame level feature representation

helps in better addressing the temporal scale variance. We

represent skeleton features at frame level after preprocess-

ing as done in [14], which also achieve viewpoint invariance

and spatial scale invariance of the skeletons.

An important aspect in the action detection problem is to

deal with the unknown starting and ending locations of ac-

tion frames. In this paper, we introduce a greedy approach
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Figure 1. Illustration of action detection problem on G3D dataset searching for action - left hand punch.

to detect specific actions in a continuous sequence, address-

ing the problem of unknown starting and ending frames of

the action class. We demonstrate that our action detection

approach is scale invariant and also achieves a low detection

latency.

Our approach involves the notion of class templates and

frame to metaframe distance from [7]. However, the ap-

proach proposed in [7] has only been applied for an offline

continuous action recognition on RGB data using a dynamic

programming based approach. We build upon this using

our greedy strategy for online action detection, and also use

more robust skeleton based features for feature representa-

tion. Fig. 2 depicts the overall framework of action detec-

tion approach that has been proposed in this paper, where

class templates are used to represent the specific action class

and later used for the testing purpose. The class template

based framework used for training and testing addresses the

problem of large intra class variations, and also makes the

testing framework robust enough to work with a low num-

ber of training examples. With more traditional template

based models like DTW, HMMs and CRF, it is difficult to

mitigate the above mentioned issues.

Our results demonstrate that the proposed approach

clearly outperforms the existing methods for the action de-

tection tests performed on G3D - gaming dataset [2] for

fighting actions. While our work is primarily proposed for

action detection, we also evaluate our approach for action

recognition on the UTKinect-Action dataset [16], consist-

ing of common actions with challenges of viewpoint vari-

ance, and inter-class and intra-class variations.

Figure 2. Overall framework of our action detection approach.

2. Related work

With the advent of real-time depth cameras, there has

been much work on the problem of human action recogni-

tion rather than action detection. Vemulapalli et al. [14],

Wang et al. [15], Oreifej & Lui [10] and Chen et al. [3] in-

troduced robust feature representation techniques for prob-

lem of action recognition which perform effectively on the

benchmark datasets. But these approaches use video level

features to classify presegmented videos and haven’t been

extended to tackle the problem of action detection yet. Also,

these work either will require fixed scale approach or a multi

scale approach with high computational latencies, if directly

used for action detection.

To measure latency, Nowozin and Shotton [9] introduced

the concept of action points, a temporal anchor for action

instances within a sequence. An action point is a single pose

that can be clearly and easily identified as a representative

of an action. Action points allow a very accurate and fine-

grained detection for the actions. In Fothergill et al. [6], a

fixed sliding window approach of 35 frames was used for
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performing the action detection task.

Bloom et al. [1] proposed a dynamic feature selection

based approach for online action recognition with a fixed

scale strategy. They use multiple AdaBoost classifiers to

train the reduced feature vectors using feature selection

method built in to Random Forest. A fixed scale approach

does not necessarily work for generic real-time sequence as

the same actions can be performed in different durations.

Zhao et al. [17] detected and optimized the size of seg-

ment by dynamically matching with pre-learned templates.

However, as the average length of their templates is about

35 frames, the observational latency of classification is high.

Sharaf et al. [11] proposed real-time multi-scale action

detection using a descriptor derived from angles and angular

velocities of the 3D joint data extracted from depth sensors.

With multi scale approach, they are able to deal with scale

variance to some extent but as the number of scales to detect

are increased, there is a increase in computational latency as

well. So, there is a tradeoff between the selection of scales

and the computational latency.

Considering the limitations of related approaches men-

tioned above, we propose a greedy approach to detect ac-

tions in continuous action sequences, using class templates

constructed from the training data. We demonstrate that our

approach yields a good detection performance even under

different temporal scales of actions, and also outperform re-

lated contemporary approaches in real time. Thus, the ad-

vantage of using our greedy alignment approach is its abil-

ity to handle temporal scale variance while working at a low

latency for action detection.

The rest of the paper is organized into the following sec-

tions. In Section 3, we discuss the proposed approach in

detail, outlining the Skeleton feature representation and the

Detection framework. We present the experimental results

and comparisons, with related discussions for various cases

in section 4. We conclude in section 5.

3. Proposed approach

Human Action Detection from depth cameras requires

3D video representation (extraction of suitable spatio-

temporal features) and machine modeling of human actions

(modeling and learning of dynamic patterns) for training of

the action classes and suitable pattern searching framework

for 3D action detection for testing.

3.1. 3D video representation

We use 20 skeletal coordinates for each frame to rep-

resent that frame by processing the skeletal data to handle

viewpoint variance, bone length scale variance and loca-

tion variance. We make the skeletal data invariant to abso-

lute location of the human in the scene, by transforming all

3D joint coordinates from the world coordinate system to a

person-centric coordinate system by placing the hip center

at the origin.

As mentioned in [14], we take one of the skeletons

as reference, and normalize all the other skeletons (with-

out changing their joint angles) such that their body part

lengths are equal to the corresponding lengths of the refer-

ence skeleton. This normalization makes the skeletons bone

length scale-invariant.

We also rotate the skeletons such that the ground plane

projection of the vector from left hip to right hip is parallel

to the global x-axis. This rotation makes the skeletons view-

invariant.

Finally, we concatenate all the 20 joints x, y and z coordi-

nates to represent each frame using 60 dimensional feature

vector. We get feature vector fi to represent ith frame as:

fi = [xi1, yi1, zi1, xi2, yi2, zi2, ..., xi20, yi20, zi20]
T (1)

3.2. Action detection framework

Our overall Action detection framework consists of two

phases: Training phase, which is an offline phase where

we represent each action class consisting of metaframes

using notion of class templates as done in [7] and Testing

phase, which is an online phase where we use a greedy al-

gorithm with sliding initial frame search approach to detect

action class from the continuous sequence. We note that

OP-DFW and TP-DFW methods proposed in Kulkarni et

al. [7] only allow offline recognition on continuous video

sequences whereas our greedy approach targets to work on

the problem of real time action detection.

3.2.1 Training phase

In [7], Kulkarni et al., presented a concept of action tem-

plate, which is denoted by Y l for each action category l
and class template denoted by Ỹ l. For each class, among

the training sequences {X l
n} we seek the sequence Y l ∈

{X l
n}

Nl

n=1 , which represents the mean action of a class l.
This can be done via the following minimization using dy-

namic time warping [8]:

i∗ = argmin
i

∑

j 6=i

DTW
(

X l
i , X

l
j

)

(2)

where DTW is matching score between two temporal se-

quence using dynamic time warping.

The above equation aligns each example X l
j with Y l and,

eventually, the class template can be defined as:

Ỹ l =
(

ỹl1, . . . ỹ
l
t′ , . . . , ỹ

l
T
Y l

)

, (3)

composed of a sequence of metaframes, where each

metaframe ỹlt′ being a collection of matched frames result-

ing from the minimization (4).

ỹlt′ =
{

xl
jt′

}j=N l

t′

j=1
, (4)
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where xl
jt′ ∈ X l

j is associated with the t′-th metaframe,

xl
jt′ ∈ X l

j , and N l
t′ is the number of frames associated with

this metaframe.

3.2.2 Testing phase

The testing phase requires a measure for calculating frame

to metaframe distance and a detection framework which can

accomodate lack of knowledge about the boundaries of the

action in the continuous test sequence.

Frame to metaframe distance To align a test sequence

consisting of frames and class template consisting of

metaframes, we require to find distance between the test

frame zt and metaframe ỹlt′ . The frame-to-frame distance

d(xt, yt′) can be used by the dynamic time warping algo-

rithm but not with the framework dealing with class tem-

plates.

In order to compute a frame-to-metaframe distance, a

test frame zt ∈ R
K is taken as a linear combination of

the training frames associated with a metaframe X
l
t′ =

[xl
1t′ . . . x

l
jt′ . . . x

l
N l

t′
t′
] and because only a few training

frames are likely to be similar to the test frame, a sparse

solution for wt′ by solving the following basis pursuit de-

noising problem Chen et al. [4], is found.

wt′ = argmin
w

‖zt −X
l
t′w‖2 + γ‖w‖1. (5)

The frame-to-metaframe distance in closed-form repro-

duced from [7] and proposed in Evangelidis and Psarakis

[5] is:

d̃
(

zt, ỹ
l
t′

)

= min
w

∥

∥

∥

∥

∥

zt −
X

l

t′w

‖X
l

t′w‖2

∥

∥

∥

∥

∥

2

2

s.t.

|S|
∑

i=1

wi = 1.

(6)

Algorithm 1 Greedy alignment algorithm

1: Input: Test sequence: X1→TX
& Action Class l Tem-

plate: Ỹ l
1→T

Ỹ l

2: for Λ = 1 to TX − TỸ l do

3: Set i = Λ & j = 1 & Score = 0
4: while i < TX − ϕ & j < TỸ l − ϕ do

5: i∗, j∗ = argmin
i,j

d̃(Xi→i+ϕ−1, Ỹ
l
j→j+ϕ−1)

6: Score = Score+ d̃(Xi∗ , Ỹ
l
j∗)

7: repeat and set i = i∗ and j = j∗

8: end while

9: if Score < τ l then χ = XΛ→i

10: end if

11: end for

Figure 3. Illustration of Greedy alignment algorithm to match con-

tinuous test sequence XΛ→TX
& class template Ỹ l

1→T
Ỹ l

where

within each local window of size ϕ, we search for the best match

between frames and metaframes. Each grid point represents the

frame to metaframe distance between respective metaframe of

class template and the frame of test sequence.

Greedy alignment algorithm As mentioned earlier, for

action detection it is imperative to locate the starting and

the ending frames of an action class. we present a novel

matching framework based on a greedy algorithm, which is

depicted in Algorithm 1. For searching the starting frame,

we propose a initial-frame search for class template Ỹ l of

length TỸ l on a continuous test sequence X of length TX .

The class template Ỹ l, during each iteration is slided on the

test sequence X starting at Λ, to search for the beginning of

the action class.

As we do not know the end point of the test action in

the test sequence, a dynamic programming approach such

as DTW or other template based models cannot work here.

To locate the ending frame, and hence the overall matched

segment, we search for best match between the metaframes

of class template Ỹ l and frames of continuous test sequence

X within a local alignment window as illustrated in Fig. 3

using:

i∗, j∗ = argmin
i,j

d̃(Xi→i+ϕ−1, Ỹ
l
j→j+ϕ−1) (7)

where i, j are the indices of the alignment window and

i∗, j∗ are the indices of the best local match in the align-

ment window and ϕ is size of the alignment window. This

frame to metaframe distance for the best matches as com-

puted above, is accumulated as the matching Score.

The size of the square alignment window which we use

at each iteration of frame matching in the Algorithm 1 is

calculated as :

ϕ = min(⌊TX/10⌋ , ⌊TỸ l/10⌋) (8)
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With the above approach, we get some predicted segments

χ for the test action class in the continuous test sequence

based on the matching threshold τ l using the Algorithm 1.

We set the threshold τ l as the closest matching score we get,

when training the action class template Ỹ l with all the train-

ing examples of the action class l. Ideally, we should get a

single predicted segment χ for each action class l, for which

the score is lesser than the threshold. However, if multiple

instances of predicted segments fall below the threshold, it

would reflect in lowering of the F1-score measure (based on

precision and recall).

We importantly note that we train and detect each ac-

tion independently of the other actions in the test sequence.

That is, to detect a particular action, we do not require the

approach to be trained on the other actions present in the

test video.

Action recognition We also evaluate our framework for

Action Recognition on the UTKinect-Action dataset for

comparative analysis as there are no previous works for ac-

tion detection on this dataset. Training phase for the prob-

lem remains the same as we deal with temporally preseg-

mented sequences in both action detection and action recog-

nition. The only difference that comes in greedy alignment

algorithm is that we do not have to make initial frame search

as the test sequences are already temporally presegmented

in action recognition.

4. Experiments and results

We evaluate our approach on two standard datasets: G3D

[2] and UTKinect-Action dataset [16]. We also show com-

parisons of our work with some state-of-the-art methods.

4.1. Datasets

The G3D dataset comprises of 10 subjects performing

20 gaming actions grouped into seven categories. We se-

lect fighting category for evaluation of proposed strategy as

it has substantial temporal scale variance, inter class varia-

tions and intra class variations. To our knowledge, all previ-

ous works which use the G3D dataset for action detection,

evaluate their approach only on the fighting category. The

fighting category contains five gaming actions: right punch,

left punch, right kick, left kick and defend.

UTKinect-Action dataset contains 10 types of human ac-

tions in indoor settings using a single stationary Kinect.

The sampling rate for both RGB and depth images is 30

frames per second (FPS). Skeleton coordinates for the de-

tected skeletons for each frame are available. The 10 actions

include: walk, sit down, stand up, pick up, carry, throw,

push, pull, wave and clap hands. Each action was collected

from 10 different persons for 2 times: 9 males and 1 fe-

male. The reason for evaluating our approach on this dataset

is that this dataset is more complex than G3D dataset con-

sidering the fact that it contains periodic actions and has

substantial temporal scale variance and viewpoint variance.

Both the datasets consist of continuous action sequences

with multiple actions being performed by several subjects.

4.2. Experimental settings

We evaluate proposed approach on the leave-persons out

protocol as used in previous works to make comparisons

more informative. We have used the same evaluation mea-

sures as in other approaches for comparative results. For the

G3D dataset, all actors perform all the actions. We remove

one subject from the full dataset to construct the test set and

the larger remaining set of videos is used for training (i.e.

27 videos for training and 3 videos for testing in each fold).

This process is repeated 10 times with different subjects to

obtain the general performance.

For UTKinect-Action dataset we remove five subjects

for training and use the removed set of 5 subjects for the

testing purpose (i.e. 10 videos for training and 10 videos

for testing for each fold). We perform the experiments two

times taking at first odd numbered subjects as training pur-

pose and then even numbered subjects for training purpose.

Note that this strategy highlights the evaluation with lesser

training examples.

4.3. Evaluation metrics

We need to use a latency-aware evaluation metric to test

our action detection algorithm. To make the comparative

analysis for G3D dataset, we use the action point annota-

tions available in G3D dataset as used in previous works

[1],[11]. Action point annotations are not available for

UTKinect-Action dataset and there has been no previous

work on the problem of action detection on this dataset.

Also, it comprises of periodic actions where the motion is

repetitive like walking, clapping, etc. Hence, for UTKinect-

Action dataset we assign a detected action as true positive if

more than 50% of the frames for both ground truth segment

and detected temporal segment of the action match.

To find the latency in detection in UTKinect-Action

dataset, middle frame index of the detected segment and

middle frame index of the ground truth segment are as-

signed as predicted action point tp and ground truth action

point tg respectively. The system latency shows how large

the delay between the true action point and the system pre-

diction is. For a specified amount of latency (∆), a detec-

tion made at time tp for action a is correct with respect to a

ground truth action point at time tg , if |tg − tp| ≤ ∆. For

G3D dataset, we use ground truth action point annotation

available for each sequence as tg and time to match action

point of the class template with the predicted segment χ, as

tp. We employ the F1-score defined as:

F1(a,∆) = 2 precisiona(∆).recalla(∆)
precisiona(∆)+recalla(∆) (9)
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where precisiona(∆) is the fraction of retrieved instances

of action class a that are relevant, and recalla(∆) is the

fraction of relevant instances of action class a that are re-

trieved.

Because the system detects multiple actions, we used the

mean F1-score over all actions:

F1(A,∆) =
1

|A|

∑

aǫA

F1(a,∆) (10)

where A is the set that contains all the different actions in

the dataset.

4.4. Action detection results

We perform detection experiments on G3D dataset and

UTKinect-Action dataset. Computational latency is very

low for our proposed detection framework as our method

runs in real time (∼100 fps). The run-time is obtained

on a notebook with a 2.10 GHz core i3 CPU and 6 GB

RAM. The implementation is using an unoptimized and un-

parallelized MATLAB code.

Actions F1-

Score

(Min,

Max)

frames

Mean

no. of

frames

Std. dev.

of no. of

frames

Right Punch 1 (4, 35) 13.63 6.47

Left Punch 0.933 (6, 26) 11.57 5.33

Right Kick 0.933 (3, 25) 8.60 5.33

Left Kick 0.867 (3, 22) 8.73 4.89

Defend 0.967 (20, 101) 40.37 16.32

Average 0.94 (7.2, 41.8) 16.58 7.66

Table 1. Performance of our method on G3D dataset and temporal

scale indication of each action of ’Fighting’ category.

Table 1 shows the performance of our method for the

G3D Fighting dataset, where we note that we achieve a very

high F1-Score, consistently for all categories. Table 2 shows

the comparative results between our approach and the state

of the art detection approaches on fighting category of G3D

dataset. Clearly, our approach even while using with sim-

ple skeleton based features, outperforms all the existing ap-

proaches representation at low observational latency (∆) =

333 ms.

Method Avg. F1-Score

Adaboost[1] 0.896

Dynamic feature selection[1] 0.919

Multi Scale Detection[11] 0.937

Ours 0.94

Table 2. Comparisons of our method with the state-of-the-art ap-

proaches using leave-one-out protocol on the ’Fighting’ category

of G3D dataset.

Table 3 shows the performance for the various actions of

UTKinect-Action dataset and also the frame scale variance

for each action category in UTKinect-Action dataset. Note

that this dataset is somewhat more complex than the G3D

dataset involving complex periodic actions, larger temporal

scale variance, viewpoint variance. Still, at such complex-

ity, our approach achieves a high F1-score = 0.8177 on this

dataset at observational latency (∆) = 333 ms.

The low detection scores for the cases of walk and carry

action are because these actions are also present in parts

of some other actions, i.e. we have multiple instances of

these actions in a single sequence, even though only one

of them is labeled as walk or carry. Also, both carry and

walk themselves involve the walking action. As the skele-

ton based features are very noisy in the case where sub-

ject bends down to pick up an object, it is not modeled

well, hence action class pick up results in lowest detection

score. Action class throw comprises of very similar motions

by the subject to the action class push and pull combined,

hence throw has a low precision, whereas push and pull in-

dependently are modeled with high detection scores. We

also want to emphasize here that our feature representation

is quite simple, and the detection rates may be further im-

proved using more sophisticated feature representation.

The last three columns of Table 1 and Table 3 indicate the

temporal variations in the number of frames for the actions

in this dataset. These results highlight that our approach

maintains its good performance even with large scale vari-

ations among actions. This scale invariant performance of

our method can be noted across both the datasets.

4.5. Action recognition results on UTKinect-Action
dataset

While we demonstrated encouraging results for action

detection on the UTKinect-Action dataset, we did not pro-

vide comparative results as there are no previous works

available on UTKinect-Action dataset for the problem of

action detection. However, as discussed towards the end of

section 3.2.2, the proposed approach can also be modified in

a straight-forward manner for action recognition, for which

there have been some works reported on the UTKinect-

Action dataset. We believe that a positive comparative re-

sults on this dataset for action recognition would also reflect

on a superior detection performance.

For action recognition, we presegment the continuous

sequences as the respective action sequences based on the

segment labels for each action present in the dataset, to use

this dataset for action recognition problem. Table 4 shows

the comparative results of some state of the art skeleton

based methods of action recognition experiments performed

on UTKinect-Action dataset for 5-5 cross subject protocol.

Fig.4 shows more detailed recognition analysis for all the

actions in UTKinect-Action dataset.
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Actions Precision Recall F1-Score (Min, Max) frames Mean no. of frames Std. dev. of

no. of frames

Walk 0.5 0.6 0.545 (22, 54) 40.85 8.07

Sit Down 1 1 1 (15, 48) 33.25 9.01

Stand Up 1 1 1 (13, 48) 24.65 6.50

Pick Up 0.33 0.4 0.362 (14, 55) 35.20 11.40

Carry 0.727 0.8 0.762 (1, 110) 49.45 22.99

Throw 0.538 0.7 0.608 (5, 19) 12.15 4.02

Push 1 1 1 (6, 17) 9.85 3.08

Pull 1 1 1 (7, 29) 13.65 5.90

Wave Hands 1 1 1 (22, 70) 44.05 14.23

Clap Hands 0.9 0.9 0.9 (14, 72) 28.50 15.36

Average 0.7995 0.84 0.8177 (11.90, 51.20) 29.16 10.06

Table 3. Performance of our method on the UTKinect-Action dataset using 5-5 cross-subject evaluation scheme, and temporal scale indi-

cation of each action category.

Method Accuracy

HOJD[16] 90.92%

Random Forests[18] 91.90%

Grassmannian representation[13] 95.25%

Ours 96%

Table 4. Recognition Accuracy comparisons of our method to

some state-of-the-art skeleton based approaches using 5-5 cross

subject evaluation of UTKinect-Action dataset.

Figure 4. Recognition accuracy of UTKinect-Action dataset con-

sisting of 10 actions.

The recognition results clearly show that our approach

shows positive comparisons with respect to some contem-

porary methods. Also, we note that the training data in this

case is quite low, with just 5 subjects for training for each

class, and rest of the 5 for the testing. The possible reason

behind the efficacy of our approach is the use of frame level

features and the scale invariance. For some of the other

methods, periodic actions like walk, carry, wave hands and

clap hands may tend to get misclassified due to variance in

their scales for the same action.

It is also clearly evident that action classes walk, carry,

pick up and throw have much better recognition accuracy

in action recognition than detection rate in action detection.

As the action recognition problem considers presegmented

action sequences, we do not face the problem of multiple

action instances of same action in the sequence and also the

class templates are modeled very robustly.

Thus, we believe that frame level feature representation,

combined with the notion of class templates, and the resul-

tant scale invariance and performance at low latency, are

important features of approach.

5. Conclusion

In this paper, we propose a novel scale invariant ap-

proach for the 3D human action detection, based on the no-

tion of class templates, which is more robust to inter-class

and intra-class variations. The framework employs simple

skeleton joint based feature representation which has ability

to capture both structural and spatio-temporal information.

Our experiments and results show that the proposed method

outperforms the existing 3D action detection methods on

benchmark dataset of G3D dataset for fighting category.

Our experiments also show that the proposed framework

works well with lesser training examples on the complex

UTKinect-Action dataset involving high viewpoint variance

and temporal scale variance. Another overall advantage to

this framework is that the observational and computational

latency of the method is quite low which makes it an ideal

choice for real time applications such as video retrieval or

action localization.
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