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Abstract

Thermal infrared-visible video registration for non-

planar scenes is a new area in visual surveillance. It al-

lows the combination of information from two spectra for

better human detection and segmentation. In this paper, we

present a novel online framework for visible and thermal in-

frared registration for non-planar scenes that includes fore-

ground segmentation, feature matching, rectification and

disparity calculation. Our proposed approach is based on

sparse correspondences of contour points. The key ideas of

the proposed framework are the removal of spurious regions

at the beginning of videos and a registration methodology

for non-planar scenes. Besides, a new non-planar dataset

with an associated evaluation protocol is also proposed as a

standard assessment. We evaluate our method on both pub-

lic planar and non-planar datasets. Experimental results

reveal that the proposed method can not only successfully

handle non-planar scenes but also gets state-of-the-art re-

sults on planar ones.

1. Introduction

The problem of thermal infrared and visible spectrum

(TIR-Vis) video content registration is a familiar task in

computer vision. The fundamental idea of registration is

finding correspondences from video frame pairs to allow

scenes and objects to be represented in a common coordi-

nate system. Some works proposed to use dense feature

matching for high registration quality [4, 12, 15] while oth-

ers [17, 16, 5] use sparse correspondences taken from com-

mon salient features for fast registration. Although these

systems have some contributions in this area, they still have

drawbacks that need to be solved. We address their three

main disadvantages as follows.

First, dense correspondence methods that use area-based

measurement to match correspondences from two frame

pairs are too slow to be applied on videos [12, 4]. Thus,

there is a need for a lightweight method to boost the speed

of this registration process. Furthermore, these methods

need rectified video frames which are not always readily

available when tackling non-planar scenes (i.e. scenes in

which objects appear on different depth planes). Some au-

thors have proposed their own dataset [4] along with recti-

fied videos created by calibration as inputs. These works

cannot adapt to raw input video captured from different

cameras. Besides, in video applications, the registration

quality can be lower. As a result, in this paper, we address

the problem of sparse feature correspondence for fast regis-

tration.

Second, existing sparse correspondence methods [16, 5]

can only deal with planar scenes. Their frameworks assume

that all captured scenes are approximately planar. Thus, this

assumption limits their applicability to planar scenes only.

Third, since most sparse methods [16, 5] rely on brute

force matching strategies, their computational complexity

is usually quite high. They are thus unsuited for mobile or

distributed video surveillance applications.

The typical structure of current existing frameworks used

for sparse registration comprises three main steps, which

are feature extraction, feature matching and image warp-

ing. In feature extraction and matching, traditional feature

descriptors are exploited using sparse correspondence [16]

between multimodal imagery [1]. Other technique has been

proposed [13] to get more meaningful features from two

types for TIR-Vis registration. However, these techniques

are not always successful because of the differences in tex-

ture and resolution of TIR-Vis image pairs. In the image

warping step, with the assumption that all captured scenes

are nearly planar, a homography transformation is applied

to maximize overlap area between objects. It should be

noted that no existing framework uses unrectified videos as

inputs for TIR-Vis non-planar scene registration. In this pa-

per, we address the drawbacks of current existing systems

in the TIR-Vis video registration problem for both planar

and non-planar scenes.

Main contribution. There are four significant contribu-

tions presented in this paper. First, a novel method for align-
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Figure 1. Proposed framework overview. First, raw input videos are segmented to get foreground objects using a statistical model [18].

Second, a noise filtering strategy is applied to eliminate spurious noisy blobs in segmented videos to reduce unnecessary computation.

Third, videos are rectified using fundamental matrix estimation. Fourth, disparities are calculated from corresponding blobs of pair of

video frames. Finally, videos are derectified to restore frames to raw input condition.

ing TIR-Vis blobs using sparse correspondences for raw in-

put videos is proposed to deal with non-planar scenes. Ex-

perimental results show that the proposed framework also

outperforms the state-of-the-art on planar scenes.

Second, a segmentation noise filtering strategy is pre-

sented to eliminate spurious blobs at early processing

stages, which reduces unnecessary calculations afterward.

Third, a corresponding blob preservation algorithm is in-

troduced to approximate correspondence between blobs in

every frame without using a brute force method. The advan-

tage is that the correspondence list needs only to be updated

when there is a change in the order of objects in video pairs.

Fourth, we created a new public dataset for TIR-Vis reg-

istration with raw input video1. Groundtruth together with

an evaluation protocol are also presented to simplify com-

parisons between different frameworks in the future.

2. Related work

To get features from both TIR-Vis videos, the first works

on the topic [6, 8] used edge maps and silhouette infor-

mation. Shape skeletons have also been exploited as fea-

tures to estimate homographic registration transformations

[3]. Besides, blob tracking [20] was also utilized to find

correspondences. The above methods are good only in spe-

cial cases. More specifically, their accuracy mainly depends

on captured video quality. Thus, we can use [6] only for

infrared video with large contrast between foreground and

background information. Furthermore, although skeletons

and edge information are handy for general estimation, they

do not give precise corresponding features to match because

they roughly represent objects as simple polygons.

The idea of foreground segmentation before processing

[10, 21] has been proposed to increase accuracy in find-

ing object features. However, this approach simply exploits

shape contours and treats frames separately. Thus, there is

nearly no connecting information between frames. As a re-

sult, noise in the segmentation step has a big effect in the

accuracy of the registration system. To decide if a feature

match is good or not, a temporal correspondence buffer can

also be constructed [16, 17]. Several kinds of buffer fill-

1https://github.com/luannd/TIRVisReg

ing strategies can be used, such as first-in, first-out (FIFO)

[16], or RANSAC combined with persistence voting [17].

Nonetheless, these methods are just applicable for planar

scenes since they assume all input videos as planar ones.

There is still no lightweight method available to solve the

non-planar, unrectified video registration problem.

Since all recent sparse correspondence methods [16, 17]

are designed for planar videos, only one transformation ma-

trix is applied to register entire frames. This method of reg-

istration cannot be adapted to non-planar scenes where each

object has its own disparity (or lies on its own depth plane).

Our framework proposed in Section 3.3 addresses this com-

mon limitation. We treat each object as separate blobs so

that many transformations matrices may be used in a single

frame.

The work of St-Charles et al. [17] is the most closely re-

lated to ours. Their work uses PAWCS segmentation [18]

to extact the foreground of TIR-Vis videos. Contour extrac-

tion together with shape context matching are used to get

correspondence between blobs. Besides, they also create a

random sampling buffer with voting scheme to filter inliers

and outliers. Transformation smoothing is used to improve

resilience to noise. However, their work is designed for pla-

nar scene registration while ours is designed to deal with

non-planar scenes, which is more general. We build upon

the merit of their work by proposing: (1) a new segmenta-

tion noise filtering method in the early processing stage, (2)

a fast blob matching strategy, (3) a keypoint matching strat-

egy that accelerates the framework by avoiding exhaustive

searches, and (4) a video rectification and disparity calcula-

tion method to register non-planar scenes.

As far as we know, our proposed framework is the first to

register non-planar TIR-Vis videos with sparse correspon-

dences. There is no public dataset and evaluation protocol

suitable for this problem. Although Bilodeau et al. [4] cre-

ated a public dataset for non-planar video registration, the

input video frames are rectified. Thus, it is not general. As

a result, we also create a new dataset, an extended version

of Bilodeau’s work [4], and provide our evaluation protocol

as a standard one beside the overlap assessment metric.
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3. Framework Architecture

Our proposed framework is shown in Figure 1. We con-

sider all input frame pairs as from a non-planar scene. Thus,

each object has its own disparity. To the pair of frames, we

apply PAWCS method [18] for segmentation, which per-

form background subtraction with a statistical model. The

resulting foreground segmentation however is still noisy

and unfit for the following blob matching step. To filter

noise, we propose a new way to remove spurious blobs

based on a coarse warping of images. Warped blobs that

do not have a correspondence in the other image of the pair

are removed, as explained in Section 3.1.

This new cleaned version of foreground segmentation

is used for feature matching. Contours are extracted from

object blobs and shape context matching is applied to get

correspondences between each pair of frame. Besides,

RANSAC algorithm [9] is also applied to filter outliers

in order to increase transformation accuracy between ob-

ject blobs. Instead of using a brute force method to get

best match for each blob, a preservation matching strat-

egy is proposed to increase the processing speed and elim-

inate wrong matches during early processing stages. This

preservation matching strategy consists of a correspondence

match list to keep track of match pairs throughout the ana-

lyzed video sequences. The match list is updated only when

spatial relationships between objects are changed. The de-

tails of feature matching is discussed in Section 3.2.

Then, input video frames are rectified to reduce the dis-

parity search space from 2D to 1D. In Section 3.3, the

method to register non-planar scenes is described. The dis-

parity for each object in every frame is calculated using

the corresponding blob pairs obtained from previous stage.

Based on these disparities, a transformation is applied in

each object and video is unrectified to give the output as the

same format as raw input.

3.1. Segmentation and noise filtering

Similarly to [17], we use background subtraction based

on a statistical model using colors, binary features and

an automatic feedback mechanism to segment object fore-

ground blobs from the scene’s background. We use the

PAWCS method [18]. The resulting segmentation contains

spurious blobs from background. Eliminating these spuri-

ous blobs makes our framework more robust. As shown in

Figure 2, from raw segmentation returned by PAWCS, we

computed a coarse transformation to estimate a homogra-

phy of the whole scene. This transformation is then used to

overlap the frame pair. We remove the blobs in the frame

pair that do not overlap after the transformation.

Algorithm 1 describes our strategy in details. In the algo-

rithm, B”(Fi) represents all blobs in the other frame of the

ith frame pair, n and m(Fi) are the number of frames and

number of blobs in frame Fi respectively. There are situa-
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Figure 2. Segmentation and Spurious blobs filtering strategy

Algorithm 1 Noise elimination by rough registration

Input: TIR-Vis frame pairs

Output: Cleaned videos version without spurious blobs

1: procedure NOISEELIMINATION

2: for Fi ∈ F1, F2, ..., Fn do

3: MFi
= 1

m(Fi)

∑m(Fi)

k=1 M(B
(Fi)
k );

4: Let B(Fi)new = Ø
5: for B

(Fi)
k ∈ B

(Fi)
1 , B

(Fi)
2 , ..., B

(Fi)
m do

6: B′(Fi)
k = Apply matrix MFi

for blob B
(Fi)
k

7: B′(Fi)
k = Expand B′(Fi)

k by α percentage

8: if B′(Fi)
k ∩B”(Fi) = Ø then

9: Eliminate B
(Fi)
k

10: else

11: B
(Fi)
new = B

(Fi)
new ∪B

(Fi)
k

12: end if

13: end for

14: Save new cleaned frame B
(Fi)
new

15: end for

16: end procedure

tions where blobs do not have correspondences in the other

frame of a frame pair due to the position of each camera (ho-

mography does not explain perfectly the non-planar scene).

We handle this case by applying a voting scheme instead of

computing a scene-wide homography. A coarse transforma-

tion matrix M(B
(Fi)
k ) is computed for each blob, and each

matrix votes for overall scene transformation. M(B
(Fi)
k )

is computed by extracting the contour and general shape of

each blob B
(Fi)
k in frame Fi. From these shapes, we com-

pute the best match for each blob based on point matching

strategy described in Section 3.2. Because this is a coarse

registration to eliminate noise in early stage, we just com-

pute a homography transformation instead of calculating the

disparity of each blob to reduce computation costs. Based

on the obtained correspondence list, if one blob does not

have correspondence in the other modality, it does not take
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Figure 3. Blob correspondence matching strategy

part in the voting scheme. Then, the final coarse transfor-

mation MFi
for the current frame pair is the mean transfor-

mation of all voting blobs.

Finally, we use this scene transformation to verify the

overlap between blobs in the frame pair. Blobs are ex-

panded by α = 120% from their original size to decide

whether they have overlap with any blobs in the other frame.

Blobs with a corresponding overlapping blob are kept, the

other removed. We filter blobs in the visible video with in-

frared video as a reference and vice versa.

3.2. Feature matching

In TIR-Vis registration, keeping track of blobs to find

correspondence is one of many challenges. Indeed, corre-

sponding features should be found only on corresponding

blobs. St-Charles et al. [17] use a brute force method to find

feature correspondences in each frame pair. In their method,

a feature is a contour point extracted and described using

the shape context descriptor [2]. χ2 tests are used to calcu-

late similarity scores and find matches. For each iteration,

to verify the optimal transformation between blob features,

the Thin Plate Spine (TPS) model [7] is applied. We inherit

the merit of this strategy to find correspondences. The key

difference is that we do not exhaustively consider all possi-

ble feature matches and we do not treat frames separately.

As such, we propose a new method for faster computing of

correspondences. Our main idea is that we preserve the cor-

respondences from the previous frame pair and apply them

to the new one. This gives rise to two situations: the easier

case, where the same number of blobs appears in consec-

utive frame pairs, and the harder one when this is not the

case.

To deal with the first case, we exploit useful informa-

tion from the previous frame pair. More specifically, each

blob has a unique ID and a center position. A buffer for

temporarily saving correspondences in each frame pair is

constructed. The consecutive frame pairs are captured after

a very short time interval. Based on that observation, it is

clear that spatial relationships between objects are mostly

preserved. We exploit this characteristic by accumulating

�૚ 
Disparity 

calculation 

(T) 

�૛−૚ 

Input Output 

Figure 4. Non-planar scene registration

blobs with ID and position into the buffer based on a order-

ing on their position from left to right and top to bottom. To

get the correspondence for one blob, we just need to look

up blob ID in the sorted list. Besides, we also use a buffer

of previous frames to guarantee that a blob still exists in

current frame by comparing position with blob ID. When

two blob pairs in consecutive frame are associated, corre-

spondences are just search on the new blob pairs , instead

of everywhere in the image. Figure 3 details our strategy to

find correspondences.

Although consecutive frame pairs have a large propor-

tion of unchanged number of blobs, there are situations in

which objects are visible in one video but they are invisible

in the other. To handle these situations, we use a brute force

method to get blob correspondences based on shape context

[2]. However, our brute force method is not similar to [17].

We treat blobs by their positions so that for each processing

blob, we only keep blobs in the other frame of frame pair

whose position is similar to the current one. Thus, search

space is reduced to position based area. Blob order is also

updated and used as reference for later frames.

To sum up, by using this new strategy, we only need to

update the frame buffer if there are missing or new objects

in either frame of the video pair. Therefore, the correspon-

dence search speed is significantly increased.

3.3. Non­planar registration

Our framework for non-planar registration comprises

three steps. Schematic diagram of our framework is pre-

sented in Figure 4. General formulation of our framework
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is described by

D = H1 ∗ T ∗H
−1
2 (1)

where D is the registration matrix to register objects in non-

planar scene, T is the disparity transformation for each blob

in current frame, H1 and H2 are the rectification matrix to

transform from raw video into rectified one of input and

output video respectively.

3.3.1 Frame rectification strategy

First, we address two challenges with video rectification.

As it can be seen from (1), to get the correct transformation

for each object in video pairs, we need to estimate H1 and

H2 correctly. However, the main difficulty is calculating

the fundamental matrix. If the fundamental matrix is far

from the real one, the result, of course, is affected. Thus,

H1 and H2 matrices are not correct and it leads to wrong

disparity calculation. Some existing techniques such as [8,

11, 14] are useful for the image rectification problem, not

for the video one. Given this observation, we propose a new

technique for robust rectification using spatial and temporal

frame information.

The first part of this technique is treating each frame as

a single image. The fundamental matrix is calculated using

the correspondence buffer. To clarify, since our segmenta-

tion frames are free of spurious blobs, features for each blob

in Vis and TIR frame are accumulated to get corresponding

feature lists. Then we calculate fundamental matrix from

these feature lists of Vis and TIR frame. Because a noisy

fundamental matrix FMcur will be obtained by only using

a single frame, we create a global fundamental matrix FMg

as an optimal value by using temporal information. Equa-

tion (2) describes the relationship between current funda-

mental matrix and the global one.

FMg = β ∗ FMg + (1− β) ∗ FMcur (2)

where β is an adaptation factor. We used a fixed value for

the whole dataset used in our experiments.

The second part of our technique is adaptive decision

for updating FMg . Since not all fundamental matrices are

good enough to take part in the updating scheme, we ap-

ply a coarse registration to validate the quality of the new

matrix. Specifically, from FMcur, we calculate H1 and H2

value. In disparity calculation step, which is described in

Section 3.3.2, we approximate disparity values by using av-

erage blob disparities. The reason for this approximation is

to reduce running time and estimate the fundamental matrix

without redundant calculations.

After disparities for whole scene are estimated, we

roughly use them for coarse registration as in Section 3.1.

Besides, the error threshold φcur for computing registration

is also used to decide whether FMcur is qualified to update

Algorithm 2 Rectification Video strategy

Input: Pair of segmented videos

Output: Value H1best and H2best

1: procedure RECTIFY

2: Emin =∞,FMbest = Ø,H1best = Ø,H2best = Ø
3: for Fcur ∈ F1, F2, ..., Fn do

4: H1, H2 ← FMcur

5: Estimate coarse registration Tcur

6: Ecur = registerτ (H1, Tcur, H2)
7: if Ecur < Emin then

8: FMg = β ∗ FMg + (1− β) ∗ FMcur

9: Ecur = Emin, FMbest = FMg

10: H1best , H2best ← FMbest

11: end if

12: end for

13: end procedure

or not. If current registration error Ecur is lower than mean

of registration errors of τ = 30 recent frames (φcur), it is

kept and used for update; otherwise, we eliminate FMcur.

Algorithm 2 describes our technique for rectifying videos.

3.3.2 Disparity calculation

Finding disparity is one of the most important parts of our

framework. At this stage, the two videos are rectified so

that we only need to find disparity in one dimension for

each object in each frame.

As mentioned in Section 3.1, each object is represented

by its foreground blob following the segmentation step.

Thus, calculating disparity is equivalent to calculating the

translation between two blobs. There are two steps to do

this. First, to reduce unnecessary computation, we roughly

estimate translation of two corresponding blobs by subtract-

ing their centroids. After that, the disparity search range is

set to 150% of the blob size to find a correct match. For

instance, let us suppose that we have a blob whose position

is α and rough disparity is η, the real range for finding dis-

parity is [α + η − θ ∗ γ, α + η + θ ∗ γ], where γ is blob’s

width and θ is equal to 0.5. This approach allows the search

for an optimal match to be completed more quickly.

However, there is still one problem we need to address,

which is the registration evaluation criteria. Thus, we pro-

pose a new formula to estimate registration quality. The

work of Bilodeau et al. [4] already proposed a criterion for

planar scene registration, which we adapt to individual blob

registration instead of whole scene. Specifically, let B
(1)
i,k

and B
(2)
i,k be the ith blob taken from the kth frame of the

first video and second video, respectively; registration error
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Criteria Framework LITIV1 LITIV2 LITIV3 LITIV4 LITIV5 LITIV6 LITIV7 LITIV8 LITIV9

Sonn et al. [16] 21.67 21.38 25.81 15.17 16.78 28.90 37.94 100 11.73

Min St-Charles et al. [17] 18.74 10.63 10.81 11.80 17.24 6.94 9.13 13.77 9.51

Proposed method 17.43 20.50 9.42 12.98 18.25 6.62 15.15 10.59 9.18

Sonn et al. [16] 39.92 53.78 42.25 39.94 33.87 78.45 66.79 100 24.09

Mean St-Charles et al. [17] 32.77 27.57 31.08 31.81 41.45 34.28 32.73 29.67 20.94

Proposed method 17.54 21.25 12.71 13.94 18.43 6.87 18.50 11.59 9.90

Table 1. Mean and minimum registration error (%) comparisons with St-Charles et al. [17] and Sonn et al. [16] in planar scenes

for ith blob in kth frame is calculated as follows:

Ei,k = 1−
B

(1)
i,k ∩B

(2)
i,k

B
(1)
i,k ∪B

(2)
i,k

(3)

Based on this error evaluations strategy, disparity for reg-

istration of blob Bi,k is chosen to have the lowest error

value. Furthermore, we also propose overall video regis-

tration error as follows:

EV id =
1

n

n∑

k=1

1

mk

mk∑

i=1

argmin(Ei,k) (4)

where mk and n are the number of objects in frame k and

number of frames in video respectively.

In our framework, objects are treated separately so that

each object has its own disparity. Thus, we apply disparity

translation and multiply with H−1
2 as in (1) to obtain the

final registered scene.

4. Experiments

Although the final purpose of our framework is TIR-Vis

non-planar video scene registration, we conducted experi-

ments on both planar and non-planar scenes to show the su-

periority and generalization of our framework in both cases.

4.1. Experimental method

Dataset for planar scenes. We use LITIV dataset [19]

for fair comparison with other state-of-the-art methods on

planar scenes. This dataset contains 9 videos covering sev-

eral kinds of planar scene situations. We used the polygon

overlap evaluation protocol of the dataset to evaluate regis-

tration errors.

Dataset for non-planar scenes. As far as we know,

there is no public dataset general enough to cover all kinds

of situations for TIR-Vis video registration. Work of Torabi

et al. [19] proposed a dataset for planar scenes, while the

work of Bilodeau et al. [4] provided non-planar scenes for

registration. However, the input of [4]’s dataset is different

from ours. It provides rectified input videos, which is less

general. Therefore, we provide a new dataset for non-planar

scene whose inputs are raw (unrectified) videos and public

evaluation protocol for easy comparison.

By contacting the authors of [4], we obtained the un-

rectified videos. With the raw videos, we created our own

ground truth by using manually corrected PAWCS segmen-

tation [18]. Furthermore, our new evaluation is based on

overlap between one frame of the pair with the other after

transformation. The equation used to evaluate the overall

video registration error is the same as (4).

4.2. Results for planar scenes

Figure 5 and Table 1 show the comparison with Sonn

et al. [16] and St-Charles et al. [17]. Results reveal that

the proposed method has often a higher accuracy than two

other state-of-the-art methods. With the idea of dealing with

planar scenes as non-planar scenes, we get very small regis-

tration errors. As it can be seen from these results, the pro-

posed method is superior to the others by reducing errors

at the beginning of the videos. Our mean registration error

is thus always lower. This error reduction is the result of

accurately estimating the fundamental matrix. Since LITIV

dataset scenes are not perfectly planar, the groundtruth pro-

vided with this dataset, which is a scene-wide homography,

also results in higher errors in comparison with the proposed

method in Videos 4, 6, 8, and 9. Besides, in Video 8 where

there is a big blackboard in the camera view, our result has

low registration error (11.59 %) while the others, St-Charles

et al. (29.67 %) and Sonn et al. (100 %), still have high er-

ror because we filter out this blackboard as background and

as a result it does not take part in registration step.

Furthermore, our results show that our method is robust

to noise. It can be seen from Figure 5 that in Video 4, our

framework has a small rise in the error in the middle of

video because it has several frames which people are oc-

cluding. As a result, the proposed framework treats these

occluded people as a single person and gives out one dis-

parity for two people. This situation is very challenging for

a sparse registration method. However, our registration er-

ror is still not only lower than Sonn et al. and St-Charles et

al. work, but also lower than the homographic groundtruth

for some videos.

4.3. Results for non­planar scenes

We applied our method and the methods of Sonn et al.

and St-Charles et al. on our new dataset. We used their

suggested default parameters and the authors’ C++ imple-

68



Figure 5. Comparison with state-of-the-art techniques in planar scenes. Red curve: proposed method, blue dash curve: St-Charles et

al. work [17], green dash curve: Sonn et al. work [16]. Proposed method outperforms them for nearly all videos with low error rate at

beginning of videos.

Framework Video 1 Video 2 Video 3 Video 4

Sonn et al. [16] 82.72 39.58 38.68 51.19

St-Charles et al. [17] 78.19 34.27 32.61 41.27

Proposed method 62.77 21.20 20.18 23.93

Table 2. Mean registration error (%) using blob overlap metric

with groundtruth segmentation

mentations that are publicly available. Results are shown

in Table 2. We can observe that our proposed method

significantly reduces the mean registration error by up to

17.34% (from 41.27% to 23.93%) in Video 4, and by at

least 12.43% (from 32.61% to 20.18%) in Video 3.

One question might arise when studying these results,

i.e. why is the registration error still important? The answer

is simple: since input videos are of non-planar scenes, peo-

ple in videos have different sizes according to their depth.

Thus, sometimes people near the camera occlude in part

of the ones behind. As a result, two different depths are

merged in a single blob and registration is thus not accu-

rate for those cases. Furthermore, people move around fre-

quently throughout the sequences, meaning that this situa-

tion is often happening. It leads to high registration errors.

Figure 6 shows some frames which present difficult situa-

tions.

To demonstrate the robustness of our proposed frame-

work, we set PAWCS to generate more noise in foreground

segmentation results. Fundamental matrices are thus calcu-

lated based on this noisy segmentation. We apply H1 and

Framework Video 1 Video 2 Video 3 Video 4

Sonn et al. [16] 91.97 48.02 47.41 59.00

St-Charles et al. [17] 87.51 42.10 39.30 50.16

Proposed method 65.90 26.85 22.42 27.54

Table 3. Mean registration error (%) using blob overlap metric

with noisy segmentation

H2 from the new matrices to rectify two videos. From these

two rectified videos, we apply our disparity calculating step

to complete registration. We compare our results with the

same two algorithms.

Results are shown in Table 3. In comparison with Ta-

ble 2, Table 3 has higher registration error than the other.

However, for the proposed framework, the error increase is

small. For instance, our framework increase 3.13% error

(from 62.77% to 65.90%) in Video 1 while Sonn et al. and

St-Charles et al. works increased up to 9.25% (from 82.72%

to 91.97%) and 9.32% (from 78.19% to 87.51%) respec-

tively. Since current state-of-the-art techniques only esti-

mate homographies, they are not flexible to various types of

videos. The proposed method, on the other hand, relies on

many components so that it is well adapted to diverse input

videos.

4.4. Disparity evaluation for non­planar scenes

The main aim of this experiment is to evaluate our rec-

tification step. The other purpose is to verify the disparity

calculation step. Groundtruth for comparison is extracted
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Figure 6. Some “easy” and difficult registration situations. Left:

easy scene since blobs are separated. Middle and Right: people

are occluding each other, leading to wrong disparity calculations.

Input R D

video pair Mean Standard deviation

Video 1 7.68 7.34 3.19

Video 2 13.89 3.30 1.03

Video 3 6.23 2.81 0.92

Video 4 5.09 3.53 1.77

Table 4. Error in rectification R (%) and registration D (pixel) in

comparison with rectified groundtruth of Bilodeau et al. [4]

from Bilodeau et al. [4] dataset. In order to verify the accu-

racy of our rectification and registration, we deal with raw

input videos instead of rectified ones. First, from the dia-

gram described in Figure 4, we segment and rectify videos

using our rectification strategy. Then, disparity calculation

is applied to get disparities for each object in every frame.

We conducted experiments with error evaluation as follows.

First, we calculate the number of groundtruth points of

the rectified videos that fall inside our registered blobs af-

ter segmentation to decide whether the rectification step

is good or not. If rectification is good, many groundtruth

points should fall within the blob regions. This is expressed

in percentage of the number of groundtruth points. More

specifically, given Ai,j and A′

i,j two blobs returned by the

proposed framework and groundtruth points in jth object of

ith frame respectively, this is calculated as

R =
1

n

n∑

i=1

mi∑

j=1

(1−
θ(Ai,j)

θ(A′

i,j)
) (5)

where θ(A) returns the pixel count of blob A that exists in

groundtruth dataset, n and mi are number of frames and

number of objects in the ith frame respectively, R is thus

the proportion of points that do not fall inside the registered

blobs.

Second, mean of disparity is calculated as in (6).

Dmean =
1

n

n∑

i=1

mn∑

j=1

(|D
′

i,j −Di,j |) (6)

where Di,j and D
′

i,j are respectively the disparity of pro-

posed framework and groundtruth.

Since the annotations for groundtruth points and dispari-

ties are sparse and do not cover all blobs, we extend the an-

notations by adding several points. Table 4 shows R, mean

disparity error and their standard deviations with new anno-

tations in comparison to groundtruth. Because Video 2 only

has two people moving around, there is not enough blob

pairs reference to have a good fundamental matrix for recti-

fication. Thus, R is still high (13.89%). However, since the

others have up to four or five people in non-planar scenes,

the proposed framework quickly acquires good correspon-

dences to calculate the fundamental matrix. As a result, R

values in these videos are significant lower in comparison

with Video 2. In general, not only our R but also our dis-

parity error is low. In Video 2 and 3, since these videos have

small number of people, people do not often occlude each

other so our proposed framework obtains small mean dis-

parity errors (3.30 and 2.81) and standard deviation errors

(1.03 and 0.92). In contrast, the disparity errors are higher

in Video 1 because there are many occlusions.

Furthermore, this increasing error in disparity evaluation

also reveals the fact that our extension of groundtruth an-

notation is precise and worthwhile. By doing this experi-

ments, we can note that for TIR-Vis video registration, the

more people in a video, the more accurate the rectification

is but this also introduces more errors in the registration.

Thus, there is a tradeoff between rectification and registra-

tion quality.

5. Conclusion

We have presented an end-to-end framework for TIR-Vis

uncalibrated video registration for non-planar scenes. This

paper demonstrates that foreground segmentation and input

videos rectification can complement each other to simplify

multimodal video registration. The key ideas of the pro-

posed framework are removing spurious blobs in the begin-

ning of videos and preserving matches for frame to frame.

A new dataset is also provided with an evaluation protocol.

This framework and new dataset are significant contribu-

tions in non-planar scenes TIR-Vis video registration field.

As far as we know, our proposed framework is the first

work to deal with problem of TIR-Vis video registration for

non-planar scene by sparse correspondences. Thus, there

is room for improvements and for exploiting characteristics

of both infrared and visible videos. Although the proposed

framework gets lower errors in planar scenes, there is still

one existing obstacle when dealing with non-planar scenes,

which is occluding people at different depths. This problem

could be overcome by using blob position and information

from previous frames to split blobs.
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