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Abstract

Heterogeneous face recognition is the problem of iden-

tifying a person from a face image acquired with a non-

traditional sensor by matching it to a visible gallery. Most

approaches to this problem involve modeling the relation-

ship between corresponding images from the visible and

sensing domains. This is typically done at the patch level

and/or with shallow models with the aim to prevent over-

fitting. In this work, rather than modeling local patches

or using a simple model, we propose to use a complex,

deep model to learn the relationship between the entirety

of cross-modal face images. We describe a deep convolu-

tional neural network based method that leverages a large

visible image face dataset to prevent overfitting. We present

experimental results on two benchmark datasets showing its

effectiveness.

1. Introduction

In recent years, a significant amount of research in the

computer vision community has focused on Heterogeneous

Face Recognition (HFR) [21]. The objective of HFR is to

be able to perform face recognition with probe images cap-

tured via alternative sensing modalities. Due to the ubiquity

of visible cameras, virtually all face galleries are comprised

of visible light images. Thus the main challenge of HFR is

enabling the cross-domain comparison of probe images to

visible-light gallery images. Most works address this prob-

lem by selecting [14, 35] or learning [11, 32] features that,

among other things, are more invariant across domains than

raw pixels. While these methods achieve some degree of

success, due to data constraints, the features used are almost

always local in nature or learned using shallow models.

Considering that most HFR datasets have large feature

dimension (at least 100x100 pixels) and only a moderate

number of images for training (fewer than 10000), any at-

tempt to learn global features with deep models will likely

overfit to the training set. To get around this problem, HFR

algorithms learn features to represent patches rather than

whole images. This alleviates the data constraints in two

ways: by increasing the number of training samples (be-

cause there are multiple patches per image) and by decreas-

ing the feature dimension (because patches are smaller than

whole images). Although some works do consider global

features [11, 32], the limited training data restricts them to

using simple models.

Although learning local features and using simple mod-

els make HFR more tractable, recent computer vision re-

search has shown that global features and deep models tend

to outperform local features and shallow models. Even just

using a simple spatial pyramid approach (i.e. a naive glob-

alization of a local histogram feature) can improve system

performance for many applications [16]. This is especially

true for current state-of-the-art algorithms in face recogni-

tion, which use deep networks to extract global represen-

tations for face images. This allows for a richer represen-

tation that can model the face as a whole rather than as a

collection of parts. In this work, we show how to use deep

learning to leverage a large visible face recognition dataset

to learn global features for HFR.

Deep networks perform well due to their ability to learn

information from extremely large (sometimes unlabeled)

datasets. In fact, the recent surge in deep learning research

was spurred in part by the breakthrough method of Hin-

ton et al. [5] to initialize deep networks. They proposed

to greedily pretrain the layers of a network with a gen-

erative model. This helps the stochastic gradient descent

learning algorithm by guiding it towards better local min-

ima [3]. In the case where there is limited training data, it

also helps to prevent overfitting. In this work, we propose

to adapt the same paradigm to HFR. Like [5], we initialize
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networks using the abundant data (labeled visible faces) and

then tweak them with the scarcer application-specific data

(labeled/corresponding visible and infrared faces).

More specifically, our approach is as follows. We first

train a deep convolutional neural network on a large visi-

ble face dataset for identification. We then use the trained

network to initialize networks that will be used to extract

features from visible and near-infrared images for HFR. Fi-

nally, we further optimize the HFR networks on the HFR

training data to couple their output features, making them

suitable for cross-modal face recognition.

The main contributions of this paper are as follows:

• We present the first method to use a deep model to

learn global features for HFR.

• We learn coupled deep convolutional neural net-

works to map visible and NIR faces into a domain-

independent latent feature space where they can be

compared directly.

• We show how to leverage a large visible face recogni-

tion dataset to prevent overfitting of the networks.

The remainder of the paper is organized as follows. In

Section 2 we review relevant HFR, face recognition, and

deep learning literature. In Section 3 we describe our ap-

proach. In Section 4 we provide implementation and engi-

neering details. In Section 5 we present experimental results

and discuss their implications. In Section 6 we conclude the

paper.

2. Related Work

2.1. NIR­Vis Face Recognition

HFR has been extensively researched over the past

decade, with NIR being one of the most prominent alter-

native sensing modalities. Here we briefly describe some

recent works on the subject. Klare and Jain [15] use kernel

similarities to a set of training subjects as features. Zhu et

al. [35] propose a new feature descriptor and a transduc-

tive model for domain-adaptive matching. Yi et al. [32] use

restricted Boltzmann machines to reduce the domain differ-

ence locally and ignore initial PCA coefficients to do the

same globally. Jin et al. [9, 10] learn local features to rep-

resent images consistenly across domains and discrimina-

tively within each domain. Juefei-Xu et al. [11] use cross

spectral joint dictionaries to reconstruct visible light images

from near IR images and vice-versa. They then compare

images directly. A common drawback of all these methods

is they do not use a deep, global representation of face im-

ages, which has been shown to produce superior results for

face recognition.

2.2. Deep Learning Face Recognition

Face recognition has been researched heavily for decades

[34]. With few exceptions ([24]) recent state-of-the-art al-

gorithms have been dominated by deep convolutional neu-

ral networks trained on extremely large datasets to produce

global feature representations. Taigman et al. [30] were

the first to train a deep neural network for face recogni-

tion. They trained on the private Social Face Classification

dataset which contains 4.4 million labeled images of 4030

subjects. They used convolutional, locally connected, and

fully connected layers in their network. Additionally they

fine-tune the parameters for verification with a siamese net-

work. They extended their work in [31] and increased the

dataset size to 500 million images of 10 million subjects.

Sun et al. [25, 26, 27, 28] make a variety of adjustments to

improve the performance of deep networks for face recog-

nition including a joint verification-identification loss func-

tion, different network architectures, and Bayesian metric

learning. They use the private CelebFaces [25] (202,599

images of 10,177 subjects) and WDRef [1] (99,773 images

of 2,995 subjects) datasets to train their networks. They also

use convolutional, locally connected, and fully connected

layers. Parkhi et al. [22] learn a feature embedding by us-

ing a triplet loss function. They also detail the steps they

took to create their 2.6 million image dataset. Schroff et

al. [23] leveraged a 200 million images of 8 million sub-

jects to train a network. This has the best performance to

date on Labeled Faces in the Wild (LFW) [6], a standard

unconstrained face recognition benchmark.

3. Our Method

3.1. Network Structure and Initialization

The network structure we use throughout this work (de-

tailed in Table 1) is from the Googlenet [29] family of net-

works (i.e. deep with small convolutional filters). It is com-

prised of five major sections connected in series. Each sec-

tion contains the following in order: a convolutional layer,

a rectified linear unit layer, a second convolutional layer, a

second rectified linear unit layer, and a max pooling layer.

The only exception is that the fifth (and last) pooling layer

is an average pooling layer. The output of the last section

is fed to a fully connected layer whose output is evaluated

by a softmax loss function for identification. We composed

the network entirely of convolutional layers (as opposed to

locally and fully connected layers) to minimize the number

of parameters so as to reduce the risk of overfitting. This

is not a concern during the initial training, but can become

an issue when tweaking the network for HFR due to limited

HFR training data.

We train the network with the standard stochastic gra-

dient descent (SGD) and backpropagation on the CASIA

WebFace Database [33]. It is comprised of 494,414 images
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of 10,575 subjects, which is large enough to provide suf-

ficient generalization. We held out 10,000 images for val-

idation purposes and, after training, the network was able

to classify 80 percent of them correctly. We also tested the

network on Labeled Faces in the Wild (using the negative

distances of pool5 layer features as similarity scores) and

achieved 96 percent accuracy. While not state-of-the-art on

LFW, the network is more than good enough to serve as

an initialization for our HFR application. Within-domain

identification experiments on the HFR training data yield

greater than 99.5 percent accuracy for both visible and near-

infrared images. Furthermore, it has significantly fewer pa-

rameters than state-of-the-art networks, which lowers the

risk of overfitting when adapting the network for HFR. For

the remainder of this paper, we will refer to this network as

IDNet.

3.2. HFR Networks

While we would ultimately like to learn a network for

identification on infrared faces, we do not have access to in-

frared face images of probe subjects for training. Instead,

we train two networks for cross-modal verification: VisNet

(for visible images) and NIRNet (for near infrared images).

We initialize these networks as copies of IDNet, with the ex-

clusion of the fully connected softmax classifier. The fully

connected layer contains more parameters than the rest of

the network combined, so removing it helps to prevent over-

fitting. Additionally, the outputs of the fully connected layer

are each highly tuned for a specific subject in the WebFace

dataset, and are not likely to generalize well to arbitrary

subjects. After removing layer fc6, the last layer of each

network is pool5 and the output of each is one 320-channel

pixel.

We train VisNet and NIRNet to couple their output fea-

tures by creating a siamese network [2, 4] as shown in Fig-

ure 3. Although we initialize them with the same values,

unlike the normal use of a siamese network, we do not force

the two halves of the network to share weights during train-

ing. This allows the networks more freedom to capture fea-

tures that manifest differently in visible and NIR images.

We use the contrastive loss [4] of the outputs of the Vis-

Net and NIRnet as the loss function for the network. The

contrastive loss L on vectors x,y ∈ R
n can be written as

follows,

L(x,y) =

{

‖x− y‖2
2

if lx = ly

max(0, (p− ‖x− y‖2))
2 otherwise

(1)

where x and y have respective labels lx and ly , and p is a

tuneable parameter. Minimizing the contrastive loss makes

the distance between images of the same subject as small as

possible while ensuring images of different subjects are at

least a distance of p away from each other.

Figure 1: Aligned and cropped Webface images.

As with IDNet, we train using stochastic gradient de-

scent and calculate the gradients using the backpropagation

algorithm. Whereas in the IDNet training a sample consists

of a visible image and its corresponding identity label, here,

a sample consists of a visible image, an infrared image, and

a binary label indicating whether the images depict the same

subject.

4. Implementation Details

4.1. Image Preprocessing

We perform very minimal image preprocessing. We first

align all faces using [12] from the Dlib C++ library [13].

This method works well on NIR images in addition to vis-

ible ones. Next we crop the faces and resize them to be

100×100 pixels. We then convert the images to gray-scale

and subtract the mean face image of the WebFace dataset.

We do not scale or filter the images in any way. Sample

aligned and cropped images (prior to mean subtraction) are

shown in Figures 1 and 2.

4.2. IDNet Details

We train IDNet using the Caffe [8] deep learning frame-

work for 200,000 iterations with a batch size of 256 images.

We initially set the learning rate to be .01 and reduce it by

a factor of 10 every 80,000 iterations. We set the momen-

tum to .9 and the weight decay to .0005. We use a single

NVIDIA 12GB GeForce GTX Titan X GPU to train IDNet

which takes approximately two days.

4.3. HFR Details

When training the HFR networks, we are given training

data consisting of a set of labeled visible faces and a set of

labeled infrared faces. None of the subjects in the testing

set are present in the training set. We use all possible same-

subject visible-infrared image pairs as positive samples. Be-
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Name Type Filter Size Stride Output Size Params

conv11 Convolution 3× 3× 32 1 100× 100× 32 288

relu11 ReLU 100× 100× 32 0

Section 1 conv12 Convolution 3× 3× 64 1 100× 100× 64 18.4K

relu12 ReLU 100× 100× 64 0

pool1 Max Pooling 2× 2 2 50× 50× 64 0

conv21 Convolution 3× 3× 64 1 50× 50× 64 36.7K

relu21 ReLU 50× 50× 64 0

Section 2 conv22 Convolution 3× 3× 128 1 50× 50× 128 73.7K

relu22 ReLU 50× 50× 128 0

pool2 Max Pooling 2× 2 2 25× 25× 128 0

conv31 Convolution 3× 3× 96 1 25× 25× 128 111K

relu31 ReLU 25× 25× 128 0

Section 3 conv32 Convolution 3× 3× 192 1 25× 25× 192 166K

relu32 ReLU 25× 25× 192 0

pool3 Max Pooling 2× 2 2 13× 13× 192 0

conv41 Convolution 3× 3× 128 1 13× 13× 128 221K

relu41 ReLU 13× 13× 128 0

Section 4 conv42 Convolution 3× 3× 256 1 13× 13× 256 295K

relu42 ReLU 13× 13× 256 0

pool4 Max Pooling 2× 2 2 7× 7× 256 0

conv51 Convolution 3× 3× 160 1 7× 7× 160 369K

relu51 ReLU 7× 7× 160 0

Section 5 conv52 Convolution 3× 3× 320 1 7× 7× 320 461K

relu52 ReLU 7× 7× 320 0

pool5 Avg Pooling 7× 7 1 1× 1× 320 0

fc6 Fully Connected 10575 3.38M

cost Softmax 10575 0

Table 1: IDNet layer details

Figure 2: Aligned and cropped NIR-VIS 2.0 face images.

The top row is visible-light and the bottom row is near-

infrared.

cause there are significantly more different-subject image

pairs, we do not use all of them, but rather we balance our

training set by including the same number of negative sam-

ples as positive samples. We choose the different-subject

pairs randomly.

While training IDNet from scratch takes two days,

tweaking VisNet and NIRNet can be done much quicker

with IDNet as a good initialization point. This allows us to

choose some parameters by cross-validation. For all exper-

iments we use a batch size of 64 image pairs. For the learn-

ing rate policy, we halve the learning rate every 1000 itera-

tions and set the momentum to .9. We found that both the

loss function and performance saturated before 4,000 itera-

tions, allowing us to train the network in about 20 minutes.

Parameters we choose with cross-validation include the ini-

tial learning rate, the weight decay, the contrastive loss pa-

rameter, and the distance metric used for nearest neighbor

classification (ℓ2-norm, ℓ1-norm, or cosine).

Although we generate as many training samples as possi-

ble while maintaining a balanced dataset, the HFR network

training is still prone to overfitting due to too little data and

too many parameters. We alleviate the overfitting problem

by forcing the convolution kernels of some of the network
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Figure 3: Network Diagram

layers to maintain the original IDNet values. This reduces

the number of parameters the training algorithm must learn,

lessening the amount of training data needed.

Ideally we would determine which layers to fix entirely

through cross-validation. Unfortunately, with each half

of the network having 10 convolutional layers, there are

210 × 210 ≈ 106 combinations to test (where a combina-

tion indicates for each layer whether it will be fixed to its

initial value or allowed to float during training). Instead, we

use intuition to select a small subset and cross-validate over

those. We first assume that if one layer in a section is fixed,

then the other must be fixed as well (i.e. if conv32 in VisNet

is fixed, then conv31 in VisNet must also be fixed). We then

further assume that at least one of the first and last sections

must be floating (i.e. not fixed) and that all floating layers in

a network must form a contiguous block. Our assumptions

reduce the combinations from more than a million down to

the 81 shown in Table 4.

5. Experiments and Discussion

5.1. NIR­VIS 2.0

The CASIA NIR-VIS 2.0 database [19] is the largest

publicly available NIR HFR dataset. It contains 17,580

total images of 725 subjects. The dataset contains two

views: View1 for algorithm development and parameter

NIR-VIS 2.0 Rank 1 Std. Dev. FAR=.001

IDNet 58.6 2.0 39.0

CDFL[9] 71.5 1.4 55.1

LMCFL[10] 75.7 2.5 55.9

[11] 78.5 1.67 85.8

C-CBFD[20] 81.8 2.3 47.3

[32] 86.2 0.98 81.29

Our Method 87.1 0.88 74.5

Table 2: Performance on View2 of CASIA NIR-VIS 2.0

Face Database

HFB Rank 1 FAR=.01 FAR=.001

IDNet 80.9 70.4 36.2

P-RS [15] 87.8 98.2 95.8

C-DFD[17] 92.2 85.6 65.5

THFM [35] 99.28 99.66 98.42

[32] 99.38 - 92.25

Our Method 97.58 96.9 85.0

Table 3: Performance on View2 of CASIA HFB Face

Database

tuning, and View2 for performance reporting. View1 con-

tains separate testing (probe/gallery) and training sets with
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NIR-VIS 2.0 View1 Floating NIRNet Sections

Identification Rate 1 1-2 1-3 1-4 All 2-5 3-5 4-5 5

1 71.8 81.4 86.5 87.8 87.8 87.9 87.4 85.8 83.4

1-2 80.7 81.5 85.7 87.6 87.5 87.7 87.6 85.6 82.3

1-3 86.2 85.7 83.4 82.5 83.0 83.1 81.8 79.9 78.9

Floating 1-4 86.1 86.7 82.0 77.0 73.5 73.7 72.6 70.7 70.2

VisNet All 85.8 86.8 82.0 72.5 61.1 61.2 60.1 58.8 60.9

Sections 2-5 85.7 86.6 81.7 73.3 61.2 61.2 59.7 58.6 60.9

3-5 86.0 86.2 80.9 72.0 60.3 60.7 59.8 58.6 60.6

4-5 85.5 86.0 80.4 71.0 61.1 61.1 59.7 60.9 60.0

5 84.9 85.5 82.3 71.5 62.0 61.3 62.2 59.8 60.1

Table 4: View1 performance variation based on which sections of NIRNet and VisNet are altered during training. The rest of

the sections are fixed to their initial IDNet values.

different subjects. The training set has 2,480 visible images

and 6,270 NIR images of 357 subjects. The testing set has

6123 NIR probe images of the remaining 358 subjects and

one visible gallery image per subject. View2 has 10 sub-

experiments each of which has the same setup as View1

with slightly different numbers of images. NIR-VIS 2.0 is

by far the most difficult NIR HFR dataset. In particular, the

combination of pose variation, large gallery size, and single

gallery image per subject make the dataset challenging. We

view this dataset as the most relevant to real-world scenarios

due to these challenges. Table 2 shows our method outper-

forms all others on View2 of this dataset. Additionally, the

ROC curve on View2 is shown in Figure 4.

5.2. HFB

The CASIA HFB dataset [18] is an older and thus more

widely used NIR HFR dataset. It has 5,098 total images

from 200 subjects. It has a similar protocol setup to NIR-

VIS 2.0 (View1 for tuning parameters, ten View2 experi-

ments for reporting results). View1 (and each experiment in

View2) split the dataset into 100 training subjects and 100

testing subjects. In View1, the training set contains 1,036

visible images and 1,438 NIR images, and the testing set

contains 1,059 visible gallery images and 1,542 NIR probe

images. The experiment protocols in View2 have similar

statistics. HFB is less challenging than NIR-VIS 2.0 be-

cause there are fewer gallery subjects and multiple gallery

images per subject. Additionally, there is significantly less

pose variation in HFB as there is in NIR-VIS 2.0. These

factors make HFB less relevant to real world applications.

It’s worth noting one aspect of HFB that makes it more dif-

ficult to train with: the relatively small number of training

subjects. Models are more likely to fit to those specific sub-

jects rather than generalizing. Our results on View2 of HFB

and those of other methods are shown in Table 3 and our

ROC curve is shown in Figure 5.

5.3. Layer Fixing Cross­validation

Table 4 shows the results of a cross-validation experi-

ment used to choose which VisNet and NIRNet layers to al-

ter during training. In addition to useful information for pa-

rameter selection, it also provides insight into the strengths

and weaknesses of learning local and global features (see

Table 5 for the localness of the features output by differ-

ent network layers). The configurations that train only local

features (the four in the upper left corner) perform signifi-

cantly worse than those that consider global features. This

supports our claim that it is important to learn features with

a deep, global model. In the same vein, the configurations

that produce the best results almost all allow learning in sec-

tion 4 or section 5 in either VisNet or NIRNet. This shows

that learning global features with a deep model can improve

HFR performance. Additionally, the bottom right quadrant

of the table shows the difficulty in learning global features

and why they are generally not used in HFR. Any config-

uration where both nets have one of their two highest level

sections (4 and 5) floating causes the network to overfit and

perform poorly. This is how any deep approach to HFR

would perform given the limited training data. We avoid

this problem by fixing the high-level layers of one of the

network halves to the strong initialization, yielding the per-

formance shown in the upper right and bottom left quad-

rants. Without the IDNet initialization (i.e. with random

initialization), we would have to train every layer of both

VisNet and NIRNet, which yields an identification rate of

61.1 percent.

Another point that can be inferred from Table 4 is the

relative importance of altering VisNet versus altering NIR-

Net. While the difference is usually small, it is generally

better to alter more layers of NIRNet and leave more layers

of VisNet fixed. This can be seen by comparing the iden-

tification rate of a combination with the that of the combi-

nation with swapped NIRNet and VisNet floating sections

(swapping the row and column values on the table). For
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Layer Region Size

Input 1× 1
pool1 6× 6
pool2 16× 16
pool3 36× 36
pool4 76× 76
pool5 100× 100

Table 5: Sizes of image regions that affect features in a

given layer. Each feature in a layer in the first column en-

capsulates visual information from an image region of cor-

responding size from the second column.

example, the performance when allowing all NIRNet sec-

tions and VisNet sections 1-2 to float is 87.5 percent, while

the swapped version (NIRNet 1-2 and all sections of Vis-

Net float) correctly identifies at a slightly lower rate (86.8

percent). Intuitively this makes sense as IDNet was initially

trained to extract discriminative features from visible im-

ages and thus does not need to be tweaked as much when

being used for that purpose.

5.4. Gallery Size

While the NIR-VIS 2.0 and HFB databases provide ex-

cellent benchmarks for NIR HFR, they do not cover all real-

world scenarios. For example, it is possible to have a gallery

of thousands or more subjects. In this section, we examine

how the performance degrades with increasing gallery size.

To accomplish this task, we append visible face images (one

per subject) from the WebFace dataset used to train IDNet

to the NIR-VIS 2.0 galleries. This provides a simulation

of a situation with significantly more subjects. The results

in Figure 6 show that our method is fairly robust to the in-

creased gallery size.

6. Conclusion

In conclusion, we have presented a novel approach to

NIR HFR. We have proposed to use convolutional neural

networks to learn deep, global features that capture discrim-

inative information in NIR and visible face images. More-

over, we coupled the networks so they produce domain-

independent features that can be compared directly. We pre-

vented overfitting by initialization with a visible face identi-

fication network trained on a very large visible face dataset.

We evaluated our approach on two benchmark databases

and additionally investigated how our method scales with

larger gallery sizes.
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10-6 10-5 10-4 10-3 10-2 10-1 100

False Acceptance Rate

0.0

0.2

0.4

0.6

0.8

1.0
V

e
ri

fi
ca

ti
o
n
 R

a
te

HFB ROC Curve

Figure 5: ROC Curve for CASIA HFB dataset.

References

[1] D. Chen, X. Cao, L. Wang, F. Wen, and J. Sun. Bayesian face

revisited: A joint formulation. In Computer Vision–ECCV

2012, pages 566–579. Springer, 2012.

[2] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similar-

ity metric discriminatively, with application to face verifica-

tion. In Computer Vision and Pattern Recognition, 2005.

CVPR 2005. IEEE Computer Society Conference on, vol-

ume 1, pages 539–546. IEEE, 2005.

[3] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vin-

cent, and S. Bengio. Why does unsupervised pre-training

help deep learning? The Journal of Machine Learning Re-

search, 11:625–660, 2010.

[4] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduc-

tion by learning an invariant mapping. In Computer vision

and pattern recognition, 2006 IEEE computer society con-

60



28 29 210 211 212 213 214

Gallery Size (Subjects)

84

85

86

87

88

89

Id
e
n
ti

fi
ca

ti
o
n
 R

a
te

 (
%

)

Figure 6: Performance degradation on NIR-VIS 2.0 View2

with increased gallery size.

ference on, volume 2, pages 1735–1742. IEEE, 2006.

[5] G. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm

for deep belief nets. Neural Computation, 18(7):1527–1554,

July 2006.

[6] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller.

Labeled faces in the wild: A database for studying face

recognition in unconstrained environments. Technical Re-

port 07-49, University of Massachusetts, Amherst, October

2007.

[7] J. D. Hunter. Matplotlib: A 2d graphics environment. Com-

puting In Science & Engineering, 9(3):90–95, 2007.

[8] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-

tional architecture for fast feature embedding. arXiv preprint

arXiv:1408.5093, 2014.

[9] Y. Jin, J. Lu, and Q. Ruan. Coupled discriminative feature

learning for heterogeneous face recognition. Information

Forensics and Security, IEEE Transactions on, 10(3):640–

652, 2015.

[10] Y. Jin, J. Lu, and Q. Ruan. Large margin coupled feature

learning for cross-modal face recognition. In Biometrics

(ICB), 2015 International Conference on, pages 286–292,

May 2015.

[11] F. Juefei-Xu, D. Pal, and M. Savvides. Nir-vis heterogeneous

face recognition via cross-spectral joint dictionary learning

and reconstruction. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition Workshops,

pages 141–150, 2015.

[12] V. Kazemi and J. Sullivan. One millisecond face alignment

with an ensemble of regression trees. In Computer Vision

and Pattern Recognition (CVPR), 2014 IEEE Conference on,

pages 1867–1874. IEEE, 2014.

[13] D. E. King. Dlib-ml: A machine learning toolkit. Journal of

Machine Learning Research, 10:1755–1758, 2009.

[14] B. Klare and A. Jain. Heterogeneous face recognition:

Matching nir to visible light images. In Pattern Recogni-

tion (ICPR), 2010 20th International Conference on, pages

1513–1516, Aug 2010.

[15] B. F. Klare and A. K. Jain. Heterogeneous face recognition

using kernel prototype similarities. Pattern Analysis and Ma-

chine Intelligence, IEEE Transactions on, 35(6):1410–1422,

2013.

[16] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of

features: Spatial pyramid matching for recognizing natural

scene categories. In Computer Vision and Pattern Recogni-

tion, 2006 IEEE Computer Society Conference on, volume 2,

pages 2169–2178. IEEE, 2006.

[17] Z. Lei, M. Pietikainen, and S. Li. Learning discriminant face

descriptor. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 36(2):289–302, Feb 2014.

[18] S. Z. Li, Z. Lei, and M. Ao. The HFB face database for

heterogeneous face biometrics research. In Computer Vision

and Pattern Recognition Workshops, 2009. CVPR Workshops

2009. IEEE Computer Society Conference on, pages 1–8.

IEEE, 2009.

[19] S. Z. Li, D. Yi, Z. Lei, and S. Liao. The casia nir-vis 2.0 face

database. In Computer Vision and Pattern Recognition Work-

shops (CVPRW), 2013 IEEE Conference on, pages 348–353.

IEEE, 2013.

[20] J. Lu, V. Liong, X. Zhou, and J. Zhou. Learning com-

pact binary face descriptor for face recognition. Pattern

Analysis and Machine Intelligence, IEEE Transactions on,

37(10):2041–2056, Oct 2015.

[21] S. OuYang, T. M. Hospedales, Y. Song, and X. Li. A survey

on heterogeneous face recognition: Sketch, infra-red, 3d and

low-resolution. CoRR, abs/1409.5114, 2014.

[22] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face

recognition. Proceedings of the British Machine Vision,

2015.

[23] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A uni-

fied embedding for face recognition and clustering. In Com-

puter Vision and Pattern Recognition (CVPR), 2015 IEEE

Conference on, pages 815–823, June 2015.

[24] K. Simonyan, O. Parkhi, A. Vedaldi, and A. Zisserman.

Fisher vector faces in the wild. In Proceedings of the British

Machine Vision Conference. BMVA Press, 2013.

[25] Y. Sun, Y. Chen, X. Wang, and X. Tang. Deep learning

face representation by joint identification-verification. In

Advances in Neural Information Processing Systems, pages

1988–1996, 2014.

[26] Y. Sun, D. Liang, X. Wang, and X. Tang. Deepid3: Face

recognition with very deep neural networks. arXiv preprint

arXiv:1502.00873, 2015.

[27] Y. Sun, X. Wang, and X. Tang. Deep learning face represen-

tation from predicting 10,000 classes. In Computer Vision

and Pattern Recognition (CVPR), 2014 IEEE Conference on,

pages 1891–1898, June 2014.

[28] Y. Sun, X. Wang, and X. Tang. Deeply learned face represen-

tations are sparse, selective, and robust. In Computer Vision

and Pattern Recognition (CVPR), 2015 IEEE Conference on,

pages 2892–2900, June 2015.

[29] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

61



Going deeper with convolutions. CoRR, abs/1409.4842,

2014.

[30] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface:

Closing the gap to human-level performance in face verifica-

tion. In Computer Vision and Pattern Recognition (CVPR),

2014 IEEE Conference on, pages 1701–1708, June 2014.

[31] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Web-scale

training for face identification. In Computer Vision and Pat-

tern Recognition (CVPR), 2015 IEEE Conference on, pages

2746–2754, June 2015.

[32] D. Yi, Z. Lei, and S. Li. Shared representation learning for

heterogenous face recognition. In Automatic Face and Ges-

ture Recognition (FG), 2015 11th IEEE International Con-

ference and Workshops on, volume 1, pages 1–7, May 2015.

[33] D. Yi, Z. Lei, S. Liao, and S. Z. Li. Learning face represen-

tation from scratch. arXiv preprint arXiv:1411.7923, 2014.

[34] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld. Face

recognition: A literature survey. Acm Computing Surveys

(CSUR), 35(4):399–458, 2003.

[35] J.-Y. Zhu, W.-S. Zheng, J.-H. Lai, and S. Li. Matching nir

face to vis face using transduction. Information Forensics

and Security, IEEE Transactions on, 9(3):501–514, March

2014.

62


