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Abstract

Data archived by the United States radar network for

weather surveillance is useful in studying ecological phe-

nomena such as the migration patterns of birds. However,

all such methods require a manual screening stage from

domain experts to eliminate radar signatures of weather

phenomena, since the radar beam picks up both biologi-

cal and non-biological targets. Automating this screening

step would be of significant help to the large-scale study of

ecological phenomenon from radar data. We apply several

techniques to this novel task, comparing the performance of

Convolutional Neural Networks (CNNs) models against a

baseline of the Fisher Vector model on SIFT descriptors. We

compare the performance of deeper and shallower network

architectures, deep texture models versus the regular CNN

model and the effect of fine-tuning ImageNet pre-trained

networks on radar imagery. Fine-tuning the networks on the

radar imagery provides a significant boost, and we achieve

an accuracy of 94.4% on a dataset of 13,194 radar scans,

3,799 of which contained rain.

1. Introduction

In order to get an understanding of ecological phenom-

ena, such as bird migration patterns, it is necessary to ac-

quire and study large scale datasets describing such phe-

nomena. There are three main ways of acquiring such

data [8]: by deploying novel sensors, using data collected

from citizen science volunteers or by repurposing existing

sources of data.

In the first case, given the millions of individual birds

in flight during migration, movement-tracking sensors can

realistically be placed on only a small fraction of the to-

tal number of birds whose movements we intend to model.

These would not be fully representative of the population

and thus this method of acquiring data is not practical.

Using data from volunteer bird watchers combined with

machine learning is a possible alternative, as explored by

Fink et al. [11, 10]. However, as with most humans-in-the-

loop systems, there are challenges such as the quality of the

data and the wide variation in the competence level of the

volunteers [16].

The third alternative is to use existing sources of data

and extract relevant information from it. This approach has

recently been used to reconstruct the velocities of migrat-

ing birds using data recorded by weather radars by Shel-

don et al. [21]. An extended version of the above work

can be found in Farnsworth et al. [8]. They acquired

data archived from the early 1990 onwards of the Weather

Surveillance radar – 1988 Doppler (WSR-88D) network,

consisting of 159 radar stations, covering most of the United

States. Although these were intended originally to record

weather phenomena [6, 26], the radar stations are also able

to detect biological airborne objects such as birds, bats and

insects [18].

Among various limiting factors in analysing this abun-

dant source of available data is the fact that these radar scans

pick up weather phenomenon such as precipitation along

with migrating birds. The presence of non-biological ac-

tivity like rain would naturally distort the actual readings

of bird migration patterns. It requires manual screening by

domain experts to identify which scans have the presence

of rain. This is not practical when dealing with massive

amounts of data – Farnsworth et al. [8] estimate that a single

night at peak migration time will generate approximately

15,000 scans across the United States. Thus, automatically

being able to identify the presence of rain would be an im-

portant pre-processing step in the further accurate analysis

of such data. Indeed, Sheldon et al. [21] mention screen-

ing 351 scans to eliminate those cases that had presence of

non-biological targets within a radius of 37.5 km of the sta-

tion, before proceeding with their automated processing of

velocity data from the scans. Our proposed automated sys-

tem would enable such models to work accurately on much

larger amounts of data without being restricted by the time

and cost associated with human annotators.
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Figure 1. Rendered scans of reflectivity. Each row of images represents a different radar scan, using reflectivity data z. The first three

columns (a,b,c) correspond to radar sweeps at successively higher elevation angles ρ. The last column (d) shows images with the three

elevation sweeps concatenated as the three colour channels of an RGB image – this is the input image to the recognition models. The

red channel (a) corresponds to the lowest sweep, green (b) for the next highest and blue (c) for the highest sweep. Bird migration usually

occurs at lower elevations and thus is primarily visible in the red (a) and sometimes in the green channels (b). Precipitation usually occurs

at all three elevations and thus in all three channels of the RGB image (d), where it is clearly visible as white blobs.

Extracting Biological Signal from Weather Radar

Several research labs in the US are working toward develop-

ing more automated systems to provide information about

migrating birds using data from a network of weather sta-

tion radars in the United States [1, 2, 23, 9]. The large vol-

ume of data (over 100 million archived radar scans) pre-

cludes manual interpretation at scale. Automatically elim-

inating the presence of precipitation from these scans is a

key step towards further analysis of bird migration patterns.

Farnsworth et al. [9] developed an online annotation tool

that enables users to efficiently browse through radar im-

ages and annotate them with appropriate labels. Two do-

main experts then used this tool to label approximately

40,000 scans from 13 radar stations as containing non-

biological targets such as precipitation. We obtained labeled

data from the authors of [9] to train supervised models that

can automatically detect the presence of precipitation.
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Problem Statement and Contribution
Classifiers of various degrees of sophistication can be used

directly on the readings of various data channels recorded

in the radar scans – reflectivity, radial velocity, spectrum

width, etc. A naive approach would be to treat the data

as a vector, without taking advantage of the visual patterns

inherent in this data, which humans use to easily distin-

guish between rain and other effects based on visual inspec-

tion alone. We utilize deep convolutional neural networks

(CNNs) to exploit the visual nature of this data and learn

the feature representation from the data itself. A deep CNN,

pre-trained for object recognition on a dataset of a million

natural images, ImageNet [7], is fine-tuned on labelled ren-

derings of radar scans to classify them as containing rain or

not. We compare this to baseline results using Fisher Vec-

tors [20] and find that fine-tuning deep CNNs on this task

gives a significant boost in performance.

2. Radar Scan Data

In this section we give a brief overview of how we ren-

der images from the radar scan data. As mentioned in the

introductory section, the dataset that we use is a subset of

the data acquired from [9]. The reader is referred to [8, 9]

for more details.

A volume scan consists of a sequence of radar sweeps

– the radar antenna rotates 360 degrees about the vertical

axis at a fixed elevation angle. The discrete portion of the

atmosphere sensed at a specific antenna position and range

is called a pulse volume. The result of a sweep is a set of

such pulse volumes, indexed by the triple (r, φ, ρ) where

r is distance from the radar station, φ is the azimuth – the

clockwise angle in the horizontal plane between the antenna

direction and due north as the antenna rotates, and ρ is the

fixed elevation angle of the antenna in the vertical plane

when conducting the sweep. A radar samples data by con-

ducting a sequence of volume scans, each of which take 6

to 10 minutes, at a radio frequency of 2.7-3.0 GHz. For a

fixed elevation, the data from a radar sweep is aligned to a

polar grid (r, φ), with a resolution of 250 m and 0.5 degrees,

respectively.

The upward angle of a beam and the earth’s curvature

cause the radar beam to sample points at higher altitudes as

it moves further out, as explained in Figure 2. We can see in

the top-view plot that after a distance of about 1.5 km from

the particular radar station, the beam becomes too high to

sense any birds, which usually fly at lower altitudes.

Information is contained in the various data “products”

or channels collected from a sweep, the most common of

which is reflectivity, z(r, φ, ρ). This is a measure of the total

power returned to the radar from targets within each pulse

volume. It can indicate the amount of rain or birds present

in the atmosphere. Renderings of the scans as images for

different elevations are shown in Figure 1. The images of

the radar scans are generated by concatenating 3 successive

elevation sweeps of reflectivity data into the three channels

of an RGB image. The elevation angles are 0.5, 1.5 and 2.5

degrees. The rendered images use reflectivity values sam-

pled at a radius of 37.5 km around the radar station. Along

with the fact that presence of birds become rare at higher al-

titudes (i.e. higher elevation angles of the radar beam), we

can observe in Figure 1 that the visual patterns of rain and

birds are also distinctive enough for humans to usually be

able differentiate between them without specialized train-

ing.

We obtained a total of 39,586 rendered scans from 13

radar stations that were labeled to contain rain or not by

two domain experts. They would be able to observe the full

radar scan data, but would label a scan as containing rain

only if rain appeared within a 37.5 km radius of the station.

The annotators were experts in radar ornithology, and report

having achieved a scan reviewing rate of 2-3 seconds per

scan in [9], using a custom-designed web interface [15]. In

case of a disagreement in labelling between the two annota-

tors, a conservative approach was adopted and the particular

scan was regarded to have contained rain. The agreement

rate between the two annotators was 97.27%.

These radar scans are a subset of the data recorded by

the 13 WSR-88D stations during the Fall migration months

during 2010 and 2011. One scan per hour from a station

is taken, beginning from the local sunset time to the local

sunrise time. Radar patterns from biological targets may

also include diurnal and nocturnal foraging patterns in ad-

dition to migrations [14]. Given the times and location of

the radar data, which were chosen to minimize the chances

of non-migration activity, most of the biological activity is

likely to be caused by migration.

3. Image Classification using Deep CNNs

Convolutional neural networks (CNNs) are composed

of a hierarchy of units containing a convolutional, pool-

ing (e.g. max or sum) and non-linear layer (e.g., ReLU

max(0, x)). In recent years deep CNNs, typically consist-

ing of the order of 10 or so such layers and trained on mas-

sive labelled datasets, such as ImageNet [7], have yielded

generic features that are applicable in a number of recog-

nition tasks ranging from image classification [17], object

detection [12], semantic segmentation [13] to texture recog-

nition [5].

The ability to use a pre-trained CNN as a feature extrac-

tor for object recognition is advantageous in our problem,

since we do not have sufficient radar data to train a deep

network from scratch. However, training linear SVMs on

the pre-trained CNN features is possible. We can also fine-

tune the pre-trained network (train with a very low learning

rate) on the target dataset, which is a straightforward way to

adapt an ImageNet-trained CNN, with a source domain of

12



kmkm

k
m

−200 −100 0 100 200 −200 −100 0 100 2000
1
2
3

4

0.5 degrees

km

−200 −100 0 100 200
−200

−100

0

100

200

k
m

dBZ

0
5

10
15
20
25
30

Figure 2. 3-D radar scan volume [8]. Left: The figure shows how the beam sent out at a fixed elevation angle of 0.5 degrees rises with

increasing distance from the station. Right: Figure showing a top down view, with the red circle indicating a radius of 100 km around the

radar station. For our experiments, we render images from reflectivity data at a radius of 37.5 km around the station.

natural images, to our target domain of radar imagery.

Since it is not immediately clear whether the presence of

rain in radar scans can be regarded as a distinct object or be

more accurately described as a sort of “texture”, we inves-

tigate the performance of recent texture recognition mod-

els [5] on this task.

4. Experiments

We report results using a variety of methods on the radar

scan dataset – regular CNN, Fisher vector formed using

CNN features and a baseline method of Fisher vector using

SIFT features. We report results after fine-tuning ImageNet

pre-trained models on the radar imagery, using deeper CNN

models and the effect of elevation angle on accuracy. We

conclude the section with an analysis of the error cases of

our best performing model.

4.1. Methods

Our implementation is in MATLAB and the MatCon-

vNet [25] library was used to train the deep networks. The

library also provided the ImageNet pre-trained networks for

download. The SIFT and Fisher vector implementations

were from the VLFeat [24] library.

Dataset

The radar dataset consists of 39,586 rendered scans. Of

these images, 26,392 are used for training and 13,194 for

testing, in a two-thirds and one-third split. Out of the total

39,586 images, 11,397 were labelled to contain rain, which

we consider to be the positive class. The test set has 13,194

radar scans out of which 3,799 contain rain. We use the

first three elevation sweeps of reflectivity, z, to generate the

images as 3-channel RGB.

Network architecture

Two networks of varying depth are used – VGG-M [4]

and VGG “very-deep-16” [22]. Both take in 224 × 224
3-channel images as inputs and provide 4096-dimensional

features in their penultimate fully-connected layer, also re-

ferred to as the ‘fc7’ layer in the network architecture. We

use the ‘fc7’ activations after the ReLU non-linearity. Dur-

ing fine-tuning, a softmax classification loss is used to train

the networks.

Network fine-tuning

The learning rate is set to be 0.0001 and is divided by 10 ev-

ery 10 epochs. The learning rate of the last fully-connected

layer (the classification layer) was set to be 10 times that of

the global learning rate. Each network is fine-tuned for 30

epochs. The learning rates were determined on a validation

set formed by keeping aside a third of the training data.

We now summarize the methods and their acronyms that

we have evaluated on this dataset:

• FV-SIFT: Fisher vector encoding of SIFT features.

The SIFT descriptors are densely computed over the

input image with a stride of 4 pixels and a window of

size 32 × 32. The input image of size 224 × 224 is

up-scaled to 448 × 448. The 128 dimensional SIFT

descriptors are then PCA-reduced to 80 dimensions.

The number of components in the Gaussian Mixture

Model (GMM) for the Fisher vector encoding is set

to be K = 64, 128. This results in a 2 ∗ K ∗ D di-

mensional encoding, where K is the number of GMM

components and D is the dimension of the PCA-SIFT

descriptor. Therefore FV-SIFT-64 is 10,240 dimen-

sional while FV-SIFT-128 is 20,480 dimensional. If

not specified, when we use “FV-SIFT” in this paper,

we are referring to the model with K = 64.
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• CNN: The VGG-M model [4], pre-trained on Ima-

geNet. Feature dimension is 4096.

• CNN-VD: The “very-deep-16” model [22], pre-

trained on ImageNet. Feature dimension is 4096.

• FV-CNN: Fisher vector encoding formed out of CNN

(FV-CNN) and CNN-VD (FV-CNN-VD) features [5].

The features from the last fully-convolutional layer of

a network provide a set of dense descriptors over a

downsampled version of the image. E.g., for the VGG-

M network this would be the output of the ‘relu5’ non-

linearity after the ‘conv5’ layer, which is 13×13×512
for an input image of size 224× 224. Using up-scaled

images of size 448 × 448, we obtain 27 × 27 × 512
dimensional activations at the ‘conv5+relu5’ layer.

These can be regarded as 512-dimensional descriptors

over a coarse spatial grid of 27×27. The Fisher vector

model is formed by pooling these descriptors. The fea-

ture size is 65,536 (2∗K ∗D, with K=64 and D=512).

The features extracted using each of the methods is then

used to train a linear SVM classifier, with “rain” being con-

sidered as the positive class. For the CNN models, L2-

normalization is applied on the features. For the Fisher

vector based models, the features are square-root and L2-

normalized for added invariance, following standard prac-

tice [20, 3]. The SVM hyperparameter, Csvm is set to be

1.

Method w/o ft w/ ft

FV-SIFT-64 86.4 -

FV-SIFT-128 87.5 -

CNN 86.9 91.5

CNN-VD 87.0 94.4

FV-CNN 89.2 91.0

FV-CNN-VD 88.8 90.6

Table 1. Comparison of results. The classification accuracy of

the various methods is shown here, before and after fine-tuning

the CNNs on radar imagery (the w/o ft and w/ ft columns, respec-

tively). Fine-tuning significantly improves the performance of the

CNN-based methods, showing the advantage of using learned de-

scriptors. The fine-tuned CNN-VD model gives the highest per-

formance.

4.2. Results

The results are summarized in Table 1. Precision-recall

curves are shown in Figure 3. We discuss the numbers in

details in the following sub-sections.

Baseline model

It is observed that SIFT with Fisher vector performs quite

well, at 86.4% when using 64 Gaussian components (K =

64). Doubling the number of Gaussians, K, from 64 to 128,

in the Fisher vector model improves its accuracy to 87.5%,

an increase of about 1%.

Effect of fine-tuning and depth

The deep models, after fine-tuning, significantly outperform

the SIFT-based baselines. The performance of the CNN

(VGG-M architecture) increases from 86.9% to 91.5%. For

the “very-deep 16” architecture CNN-VD, performance in-

creases from 87.0% to 94.4%, which is the best perfor-

mance among the methods we compare in our current ex-

periments.

As expected, a deeper network like CNN-VD gives bet-

ter performance than a shallower architecture such as the

VGG-M. This is more apparent after fine-tuning – 91.5%

vs. 94.4% as opposed to 86.9% vs. 87.0% when using Im-

ageNet pre-trained networks.

Deep Fisher Vector model

Using pre-trained CNN features (w/o fine-tuning), the FV-

CNN model gives better performance than the correspond-

ing CNN model (89.2% versus 86.9%). The GMM of the

FV-CNN is learned on the descriptors from the radar im-

ages, and this unsupervised domain adaptation can provide

more informative features to the classifier. However, af-

ter fine-tuning the CNN on radar images, the FV model us-

ing CNN features gives slightly lower performance (91.0%)

than the regular CNN (91.5%).

A possible reason for this could be the fact that the Fisher

vector model, unlike a CNN, pools features in an order-

less manner, which discards all explicit spatial information.

However, in radar images, the distance from the radar sta-

tion has a strong correlation with the altitude of the objects

being sampled by the beam (Figure 2). This information

may be potentially helpful to distinguish rain from biologi-

cal phenomena due to the differences in altitude where they

are most likely to occur. This distinction can be learned

from the data by fine-tuning the CNN. The loss of spatial

information in the Fisher vector model may thus be respon-

sible for the slight 0.5% drop in performance compared to

the fine-tuned CNN model. Appending positional informa-

tion as polar coordinates (r, φ) to the local descriptors in the

Fisher vector model may help in the case of spatial structure

in images, as shown in face verification experiments using

the FV+SIFT model [19].

Effect of elevation angle

We perform a simple experiment to see if a hybrid of learned

descriptors and some “hand-engineering” of features can re-

sult in improved performance on our problem. The motiva-

tion behind using CNN descriptors is to let the model learn
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Figure 3. Precision-Recall curve (zoomed in): Comparing the

performance of the best deep-learning model (CNN-VD) and the

hand-crafted descriptor method (FV-SIFT) at classifying rain. We

can observe the effect of fine-tuning on the CNN model (CNN-

VD-ft) and the effect of doubling the number of Gaussians in the

Fisher vector model (FV-SIFT-64 and FV-SIFT-128). The num-

bers in parenthesis next to the method names are average preci-

sion (AP) values.

the most suitable feature representation from the data itself,

without resorting to the earlier era in computer vision of

feeding hand-crafted descriptors as features to classifiers.

However, sometimes explicitly using domain knowledge

can help.

In our specific case, it is obvious from looking at the

rendered scans in Figure 1 that the presence of rain is most

prominent in the 3rd elevation sweep. At that altitude, the

presence of birds is scarce and all activity is usually due

to weather phenomena. The results are shown in Table 2

below.

Method sweep w/o ft w/ ft

CNN
1,2,3 86.9 91.5

3 86.6 91.0

FV-SIFT
1,2,3 86.4 -

3 88.1 -

Table 2. Effect of a single elevation. Results on using only the

highest elevation angle (sweep ‘3’) to render the images, compared

against using 3 elevation angles (sweep ‘1,2,3’) as done in the pre-

vious set of experiments. The results before and after fine-tuning

are shown under the columns w/o ft and w/ ft respectively.

With the CNN model, we see negligible differences in

performance when using a single elevation sweep versus

using the information from all three sweeps. The differ-

ence in using pre-trained CNN is 0.3% and after fine-tuning

the networks the difference is 0.5%. We hypothesize that

this could be due to useful information being contained in

the lower elevation sweeps as well, which supports the idea

of using all the channels of data and then letting the model

figure out from the data what is most discriminative.

However, with a shallow model like FV-SIFT, the intu-

ition about the 3rd elevation sweep being most discrimina-

tive holds true – we get 88.1% accuracy when using only

the highest elevation sweep as opposed to 86.4% when us-

ing all the three elevation sweeps to form the radar scan

image. The FV-SIFT model achieves higher performance

in ‘sweep 3’ setting because any signal at that elevation can

mostly be attributed to precipitation, without having to find

complex interactions between features when using the ad-

ditional information from multiple elevation sweeps.

We further note a difference in the ways a CNN and a

SIFT-based model would handle multiple channels. By con-

struction, the CNN models we use take in 3-channel images

as input. So even without fine-tuning, the CNN model has

some distinction between different channels in the input im-

age. We use the simplest setting of the FV-SIFT model,

where the 3-channel image is converted to grayscale be-

fore the dense SIFT descriptors are extracted. The informa-

tion of the 3 elevation sweeps may get “averaged” together

and become less discriminatory, as opposed to simply using

a single elevation sweep as a single channel image to the

FV-SIFT model. Forming different Fisher vector models

for each elevation sweep separately and then using a lin-

ear SVM classifier may boost performance in this scenario,

however this would also increase the feature dimension of

the Fisher vector by 3 (30,720).

Runtime Comparison

The relative evaluation runtime on our system gives some

idea of comparative expense of using learned descriptors

versus hand-crafted descriptors, shown in Table 3. Our sys-

tem is a Dell workstation with an NVIDIA Tesla K40 GPU

and an Intel Xeon CPU with 14 cores. We use an older ver-

sion of MatConvNet (beta-9) .

Method CPU GPU

CNN 36 124

CNN-VD 13 43

FV-SIFT 10 -

Table 3. Evaluation runtime. The average evaluation time as im-

ages/second is shown here for deep and shallow methods.

Thus we can see that even on a CPU, a moderately-sized

CNN architecture like VGG-M is faster than traditional ap-

proaches using hand-engineered features like SIFT, while

giving superior performance. Using a deeper architecture

like CNN-VD results in higher accuracy at speeds compa-

rable to the FV-SIFT model.
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4.3. Error Analysis

The top false positive and false negative images using the

CNN-VD model are shown in Figure 4. A false positive is

when the classifier predicts “rain” for an image with ground

truth “not rain”. Similarly, a false negative is when the clas-

sifier predicts “not rain” when ground truth is “rain”.

In the case of false positives, all the images have some

faint blue-green or whitish blobs, usually around the edges.

High magnitudes in G and B colour channels signify ob-

jects at higher altitudes. If an object is present all lower

and higher altitudes it would be rendered as a white patch

in the image. This is usually the case with rain, as opposed

to birds which are restricted to lower altitudes. Thus, even

though these images have been labeled as without rain, the

classifier mistakes them to be rain as they have portions very

similar in appearance to rain.

There is also a high possibility of there being labeling er-

rors among these images. If the lowest sweep looked clear,

the labelers usually would not examine the second and third

sweeps, so they could easily miss rain that only appeared

at higher elevations or if there just wasn’t anything in the

lowest elevation to suggest that rain might be occurring.

For false negatives, the top two images show signs of

mixed rain along with migration, so it is possible that the

classifier got confused. In particular, the first image shows

majority of activity in the R channel. The white blobs, pos-

sibly indicating rain at all three elevation angles, is present

in the center of the scan. It is possible that the CNN has

learned that rain, being at high altitudes, would appear as

white blobs with fairly sharp boundaries (see examples of

such features in Figure 1) at the edges of images where the

beam samples points at higher altitudes.

The bottom three images are the most straightforward to

explain – they have very little activity outside the R channel

(i.e. the lowest altitude sweep). The green blobs, indicat-

ing activity in the 2nd sweep elevation, are mostly faint or

present at the edges. This could lead to them being missed

in some cases by the CNN. It is also to be noted, the anno-

tators had the additional context of looking at the full area

of the radar scan. Heavy presence of rain outside the 37.5

km radius could clue them onto the faint presence of rain

within that radius, which is missed by the classifier as it is

looking at images only within the 37.5 km radius.

5. Conclusion

Human annotators perform reasonably well at the task

of distinguishing weather patterns from biological targets.

The two expert annotators had a labeling agreement rate of

about 98% on nearly 40,000 scans.

Even without domain knowledge it is possible to visually

differentiate between rain and other phenomena in many

cases, as can be seen from the sample radar scans in Fig-

Figure 4. Visualizing error cases. Left: false positives (classi-

fier=“rain”, groundtruth=“not rain”). Right: false negatives (clas-

sifier=“not rain”, groundtruth=“rain”).

ure 1. Thus, it seems justified to expect computer vision

based approaches to perform quite well on this task. We
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set a good baseline using a simple SIFT+FV model on this

data. The CNN-based models surpass this baseline after

fine-tuning, while performing quite fast even without using

a GPU at evaluation-time.
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