Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution
Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, Ming-Hsuan Yang; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 624-632
Abstract
Convolutional neural networks have recently demonstrated high-quality reconstruction for single-image super-resolution. In this paper, we propose the Laplacian Pyramid Super-Resolution Network (LapSRN) to progressively reconstruct the sub-band residuals of high-resolution images. At each pyramid level, our model takes coarse-resolution feature maps as input, predicts the high-frequency residuals, and uses transposed convolutions for upsampling to the finer level. Our method does not require the bicubic interpolation as the pre-processing step and thus dramatically reduces the computational complexity. We train the proposed LapSRN with deep supervision using a robust Charbonnier loss function and achieve high-quality reconstruction. Furthermore, our network generates multi-scale predictions in one feed-forward pass through the progressive reconstruction, thereby facilitates resource-aware applications. Extensive quantitative and qualitative evaluations on benchmark datasets show that the proposed algorithm performs favorably against the state-of-the-art methods in terms of speed and accuracy.
Related Material
[pdf]
[arXiv]
[
bibtex]
@InProceedings{Lai_2017_CVPR,
author = {Lai, Wei-Sheng and Huang, Jia-Bin and Ahuja, Narendra and Yang, Ming-Hsuan},
title = {Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {July},
year = {2017}
}