Image Super-Resolution via Deep Recursive Residual Network

Ying Tai, Jian Yang, Xiaoming Liu; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 3147-3155

Abstract


Recently, Convolutional Neural Network (CNN) based models have achieved great success in Single Image Super-Resolution (SISR). Owing to the strength of deep networks, these CNN models learn an effective nonlinear mapping from the low-resolution input image to the high-resolution target image, at the cost of requiring enormous parameters. This paper proposes a very deep CNN model (up to 52 convolutional layers) named Deep Recursive Residual Network (DRRN) that strives for deep yet concise networks. Specifically, residual learning is adopted, both in global and local manners, to mitigate the difficulty of training very deep networks; recursive learning is used to control the model parameters while increasing the depth. Extensive benchmark evaluation shows that DRRN significantly outperforms state of the art in SISR, while utilizing far fewer parameters. Code is available at https://github.com/tyshiwo/DRRN_CVPR17.

Related Material


[pdf]
[bibtex]
@InProceedings{Tai_2017_CVPR,
author = {Tai, Ying and Yang, Jian and Liu, Xiaoming},
title = {Image Super-Resolution via Deep Recursive Residual Network},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {July},
year = {2017}
}