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Abstract

This paper presents an infinite variational autoencoder

(VAE) whose capacity adapts to suit the input data. This

is achieved using a mixture model where the mixing coef-

ficients are modeled by a Dirichlet process, allowing us to

integrate over the coefficients when performing inference.

Critically, this then allows us to automatically vary the

number of autoencoders in the mixture based on the data.

Experiments show the flexibility of our method, particularly

for semi-supervised learning, where only a small number of

training samples are available.

1. Introduction

The Variational Autoencoder (VAE) [18] is a newly in-

troduced tool for unsupervised learning of a distribution

p(x) from which a set of training samples x is drawn. It

learns the parameters of a generative model, based on sam-

pling from a latent variable space z, and approximating the

distribution p(x|z). By designing the latent space to be easy

to sample from (e.g. Gaussian) and choosing a flexible gen-

erative model (e.g. a deep belief network) a VAE can pro-

vide a flexible and efficient means of generative modeling.

One limitation of this model is that the dimension of the

latent space and the number of parameters in the genera-

tive model are fixed in advance. This means that while the

model parameters can be optimized for the training data,

the capacity of the model must be chosen a priori, assuming

some foreknowledge of the training data characteristics.

In this paper we present an approach that utilizes

Bayesian non-parametric models [1, 8, 31, 13] to produce

an infinite mixture of autoencoders. This infinite mixture is

capable of growing with the complexity of the data to best

capture its intrinsic structure.

Our motivation for this work is the task of semi-

supervised learning. In this setting, we have a large volume

of unlabelled data but only a small number of labelled train-

ing examples. In our approach, we train a generative model

using unlabelled data, and then use this model combined

with whatever labelled data is available to train a discrimi-

native model for classification.

We demonstrate that our infinite VAE outperforms both

the classical VAE and standard classification methods, par-

ticularly when the number of available labelled samples is

small. This is because the infinite VAE is able to more ac-

curately capture the distribution of the unlabelled data. It

therefore provides a generative model that allows the dis-

criminative model, which is trained based on its output, to

be more effectively learnt using a small number of samples.

The main contribution of this paper is twofold: (1) we

provide a Bayesian non-parametric model for combining

autoencoders, in particular variational autoencoders. This

bridges the gap between non-parametric Bayesian meth-

ods and the deep neural networks; (2) we provide a semi-

supervised learning approach that utilizes the infinite mix-

ture of autoencoders learned by our model for prediction

with from a small number of labeled examples.

The rest of the paper is organized as follows. In Sec-

tion 2 we review relevant methods, while in Section 3 we

briefly provide background on the variational autoencoder.

In Section 4 our non-parametric Bayesian approach to infi-

nite mixture of VAEs is introduced. We provide the math-

ematical formulation of the problem and how the combi-

nation of Gibbs sampling and Variational inference can be

used for efficient learning of the underlying structure of the

input. Subsequently in Section 5, we combine the infinite

mixture of VAEs as an unsupervised generative approach

with discriminative deep models to perform prediction in

a semi-supervised setting. In Section 6 we provide empiri-

cal evaluation of our approach on various datasets including

natural images and 3D shapes. We use various discrimina-

tive models including Residual Network [12] in combina-

tion with our model and show our approach is capable of

outperforming our baselines.

2. Related Work

Most of the successful learning algorithms, specially

with deep learning, require large volume of labeled instance

for training. Semi-supervised learning seeks to utilize the
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unlabeled data to achieve strong generalization by exploit-

ing small labeled examples. For instance unlabeled data

from the web is used with label propagation in [6] for clas-

sification. Similarly, semi supervised learning for object de-

tection in videos [28] or images [43, 7].

Most of these approaches are developed by either (a)

performing a projection of the unlabeled and labeled in-

stances to an embedding space and using nearest neigh-

bors to utilize the distances to infer the labeled similar

to label propagation in shallow [15, 42, 14] or deep net-

works [45]; or (b), formulating some variation of a joint

generative-discriminative model that uses the latent struc-

ture of the unlabeled data to better learn the decision func-

tion with labeled instances. For example ensemble methods

[3, 26, 24, 47, 5] assigns pseudo-class labels based on the

constructed ensemble learner and in turn uses them to find

a new proper learner to be added to the ensemble.

In recent years, deep generative models have gained at-

tention with success in Restricted Boltzman machines (and

its infinite variation [4]) and autoencoders (e.g. [17, 21])

with their stacked variation [41]. The representations

learned from these unsupervised approaches are used for

supervised learning.

Other related approaches to ours are adversarial net-

works [9, 29, 25] in which the generative and discriminative

model are trained jointly. This model penalizes the gener-

ative model for as long as the samples drawn from it does

not perform well in the discriminative model in a min-max

optimization. Although theoretically well justified, training

such models proved to be difficult.

Our formulation for semi-supervised learning is also re-

lated to the Highway [40] and Memory [44] networks that

seek to combine multiple channels of information that cap-

ture various aspects of the data for better prediction, even

though their approaches mainly focus on depth.

3. Variational autoencoder

While typically autoencoders assume a deterministic la-

tent space, in a variational autoencoder the latent variable

is stochastic. The input x is generated from a variable in

that latent space z. Since the joint distribution of the input

when all the latent variables are integrated out is intractable,

we resort to a variational inference (hence the name). The

model is defined as:

pθ(z) = N (z; 0, I),

pθ(x|z) = N (x;µ(z), σ(z)I),

qφ(z|x) = N (x;µ(x), σ(x)I),

where θ and φ are the parameters of the model to be found.

The objective is then to minimize the following loss,

−E
z∼q(z|x) [log p(x|z)]

︸ ︷︷ ︸

reconstruction error

+KL (qφ(z|x)||p(z))
︸ ︷︷ ︸

regularization

. (1)
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Figure 1. Variational encoder: the solid lines are direct connection

and dotted lines are sampled. The input layer represented by x

and the hidden layer h determine moments of the variational dis-

tribution. From the variational distribution the latent variable z is

sampled.

The first term in this loss is the reconstruction error, or

expected negative log-likelihood of the datapoint. The ex-

pectation is taken with respect to the encoder’s distribution

over the representations by taking a few samples. This term

encourages the decoder to learn to reconstruct the data when

using samples from the latent distribution. A large error

indicates the decoder is unable to reconstruct the data. A

schematic network of the encoder is shown in Figure 1.

As shown, deep network learns the mean and variance of

a Gaussian from which subsequent samples of z are gener-

ated.

The second term is the Kullback-Leibler divergence be-

tween the encoder’s distribution qθ(z|x) and p(z). This di-

vergence measures how much information is lost when us-

ing q to represent a prior over z and encourages its values

to be Gaussian. To perform inference efficiently a reparam-

eterization trick is employed [18] that in combination with

the deep neural networks allow for the model to be trained

with the backpropagation.

4. Infinite Mixture of Variational autoencoder

An autoencoder in its classical form seeks to find an em-

bedding of the input such that its reproduction has the least

discrepancy. A variational autoencoder modifies this notion

by introducing a Bayesian view where the conditional dis-

tribution of the latent variables, given the input, is similar to

the distribution of the input given the latent variable, while

ensuring the distribution of the latent variable is close to a

Gaussian with zero mean and variance one.

A single variational encoder has a fixed capacity and thus

might not be able to capture the complexity of the input

well. However by using a collection of VAEs, we can en-

sure that we are able to model the data, by adapting the

number of VAEs in the collection to fit the data. In our

infinite mixture, we seek to find a mixture of these varia-
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Figure 2. Infinite mixture of variational inference is shown as a

block within which VAE components operate. Each latent variable

zi (one dimensional in this illustration) in each VAE is drawn from

a Gaussian distribution. Solid lines indicate nonlinear encoding

and the dashed lines are decoders. In this diagram, φ and θ are the

parameters of the encoder and decoder respectively.

tional autoencoders such that its capacity can theoretically

grow to infinity. Each autoencoder then is able to capture

a particular aspect of the data. For instance, one might be

better at representing round structures, and another better at

straight lines. This mixture intuitively represents the vari-

ous underlying aspects of the data. Moreover, since each

VAE models the uncertainty of its representations through

the density of the latent variable, we know how confident

each autoencoder is in reconstructing the input.

One advantage of our non-parametric mixture model is

that we are taking a Bayesian approach in which the distri-

bution of the parameters are taken into account. As such,

we capture the uncertainty of the model parameters. The

autoencoders that are less confident about their reconstruc-

tion, have less effect on the output. As shown in Figure 2,

each encoder finds a distribution for the embedding variable

with some probability through a nonlinear transform (con-

volution or fully connected layers in neural net). Each au-

toencoder in the mixture block produces a probability mea-

sure for its ability to reconstruct the input. This behavior

has parallels to the brain’s ability to develop specialized re-

gions responsible for particular visual tasks and processing

particular types of image pattern.

Mixture models are traditionally built using a pre-

determined number of weighted components. Each weight

coefficient determines how likely it is for a predictor to be

successful in producing an accurate output. These coeffi-

cients are drawn from a multinomial distribution where the

number of these coefficients are fixed. On the other hand,

to learn an infinite mixture of the variational autoencoders

in a non-parametric Bayesian manner we employ Dirich-

let process. In Dirichlet process, unlike traditional mixture

models, we assume the probability of each component is

drawn from a multinomial with a Dirichlet prior. The ad-

vantage of taking this approach is that we can integrate over

all possible mixing coefficients. This allows for the number

of components to be determined based on the data.

Algorithm 1 Learning Infinite mixture of Variational au-

toencoders

Initalize VAE assignments c

Ac = {} ∀c = 1, . . . , C
while not converged do

for xi ∈ X do ⊲ VAE assignments

Assign c
new
i to new VAE according to Eq. 3

Otherwise, sample c
new
i according to Eq. 2

if cnew
i 6= ci then

Aci
= Aci

∪ {i} ⊲ Given VAE has to forget

end if

end for

Update C for new VAEs

for c = 1, . . . , C do ⊲ Update VAEs

Forget Ac in cth VAE

Learn cth VAE ∀i where c
new
i = c

end for

end while

Return Infinite Mixture of VAEs

Formally, let c be the assignment matrix for each in-
stance to a VAE component (that is, which VAE is able to
best reconstruct instance i) and π be the mixing coefficient
prior for c. For n unlabeled instances we model the infinite
mixture of VAEs as,

p(c,π,θ,x1,...,n, α) = p(c|π)p(π|α)

∫
pθ(x1,...,n|c, z)p(z)dz

We assume the mixing coefficients are drawn from a

Dirichlet distribution with parameter α (see Figure 3 for ex-

amples),

p(π1, . . . , πC |α) ∼ Dir(α/C),

To determine the membership of each instance in one of the
components of the mixture model, i.e. the likelihood that
each variational autoencoder is able to encode the input and
reconstruct it with minimum loss, we compute the condi-
tional probability of membership. This conditional proba-
bility of each instance belonging to an autoencoder compo-
nent is computed by integrating over all mixing components
π, that is [35, 36],

p(c,θ,x1,...,n, α)=

∫ ∫ n∏
i

pθci
(xi|zci)p(zci)p(c|π)p(π|α)dπdzci

This integration accounts for all possible membership co-

efficients for all the assignments of the instances to VAEs.

The distribution of c is multinomial, for which the Dirichlet

distribution is its conjugate prior, and as such this integra-

tion is tractable. To perform inference for the parameters θ

and c we perform block Gibbs sampling, iterating between
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(a) α = 0.99 (b) α = 2 (c) α = 50

Figure 3. Dirichlet distribution with various values of α. Smaller

values of α tend to concentrate the mass in the corners (in this sim-

plex example and in general as the dimensions increase). These

smaller values reduce the chance of generating new autoencoder

components.

optimizing for θ for each VAE and updating the assign-

ments in c. Optimization uses the variational autoencoder’s

trick by minimizing the loss in Equation 1. To update c, we

perform the following Gibbs sampling:

• The conditional probability that an instance i belongs

to VAE c:

p(ci = c|c\i,xi, α) =
ηc(xi)

n− 1 + α
(2)

where ηc(xi) is the occupation number of cluster c,
excluding instance i for n instances. We define,

ηc(xi) = (n− 1)pθc
(ci = c|xi),

and

pθc
(ci = c|xi) =

exp
(

Ezc∼qφc(z|x)
[log pθc

(xi|zc)]
)

∑

j exp
(

Ezj∼qφj(z|x)

[

log pθj
(xi|zj)

])

which in evaluates how likely an instance xi is to be

assigned to the cth VAE using latent samples zc.

• The probability that instance i is not well represented

by any of the existing autoencoders and a new encoder

has to be generated:

p(ci = c|c\i,xi, α) =
α

n− 1 + α
. (3)

Note that in principle, ηc(xi) is the a measure calculated

by excluding the ith instance in the observations so that its

membership is calculated with respect to its ”similarity” to

other members of the cluster. However, here we use cth
VAE as an estimate of this occupation number for perfor-

mance reasons. This is justified so long as the influence of

a single observation on the latent representation of an en-

coder is negligible. In Equation 2 when a sample for the

new assignment is drawn from this multinomial distribution

there is a chance for completely different VAE to fit this

new instance. If the new VAE is not successful in fitting,

the instance will be assigned to its original VAE with high

probability in the subsequent iteration.

The entire learning process is summarised in Algorithm

1. To improve performance, at each iteration of our ap-

proach, we keep track of the cth VAE assignment changes

in a set Ac. This allows us to efficiently update each

VAE using a backpropagation operation for the new assign-

ments. We perform two operations after VAE assignments

are done: (1) forget, and (2) learn. In forgetting stage, we

tend to unlearn the instances that were assigned to the given

VAE. It is done by performing a gradient update with neg-

ative learning-rate, i.e. reverse backpropagation. In the

learning stage on the other hand, we update the parame-

ters of the given VAE with positive learning-rate, as is com-

monly done using backpropagation. This alternation allows

for structurally similar instances that can share latent vari-

ables to be learned with a single VAE, while forgetting those

that are not well suited.

To reconstruct an input x with an infinite mixture, the

expected reconstruction is defined as:

E[x] =
∑

c

pθc
(ci = c|xi)Eqφ(zc|x) [x|zc] . (4)

That is, we use each VAE to reconstruct the input and

weight it with the probability of that VAE (this probability

is inversely proportionate to the variance of each VAE).

5. Semi-Supervised Learning using Infinite au-

toencoders

Many of deep neural networks’ greatest successes have

been in supervised learning, which depends on the availabil-

ity of large labeled datasets. However, in many problems

such datasets are unavailable and alternative approaches,

such as combination of generative and discriminative mod-

els, have to be employed. In semi-supervised learning,

where the number of labeled instances is small, we employ

our infinite mixture of VAEs to assist supervised learning.

Inspired by the mixture of experts [30, Chapter 11] we for-

mulate the problem of predicting output y∗ for the test ex-

ample x
∗ as,

p(y∗|x∗) =

C∑

c

p(y∗|x∗,ωc)
︸ ︷︷ ︸

deep discriminative

× pθc
(ci = c|xi)

︸ ︷︷ ︸

deep generative

.

This formulation for prediction combines the discriminative

power of a deep learner with parameter set ωc, and a flexi-

ble generative model. For a given test instance x∗, each dis-

criminative expert produces a tentative output that is then

weighted by the generative model. As such, each discrimi-

native expert learns to perform better with instances that are

more structurally similar from the generative model’s per-

spective.

During training we minimize the negative log of the

discriminative term (log loss) weighted by the generative
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Figure 4. Our framework for infinite mixture of VAEs and semi-

supervised learning. We share the parameters of the discriminative

model at the lower levels for more efficient training and prediction.

For each VAE in the mixture we have an expert (e.g. softmax)

before the output. Thicker arrows indicate more probable connec-

tion.

weight. Each instance’s weight–as calculated by the infinite

autoencoder–acts as an additional coefficient for the gra-

dient in the backpropagation. It leads to similar instances

getting stronger weights in the neural net during training.

Moreover, it should be noted that the generative and dis-

criminative models can share deep parameters ωc and θc at

some level. In particular in our implementation, we only

consider parameters of the last layer to be distinct for each

discriminative and generative component. We summarize

our framework in Figure 4.

While combining an unsupervised generative model and

a supervised discriminative models is not itself novel, in our

problem the generative model can grow to capture the com-

plexity of the data. In addition, since we share the param-

eters of the discriminative and generative models, each un-

supervised learner does not need to learn all the aspects of

the input. In fact, in many classification problems with im-

ages, each pixel value hardly matters in the final decision.

As such, by sharing parameters unsupervised model incurs

a heavier loss when the distribution of the latent variables

does not encourage the correct final decision. This sharing

is done by reusing the parameters that are initialized with

labels.

6. Experiments

In this section, we examine the performance of our

approach for semi-supervised classification on various

datasets. We investigate how the combination of the gener-

ative and discriminative networks is able to perform semi-

supervised learning effectively. Since convergence of Gibbs

sampling can be very slow we first pre-train the base VAE

with all the unlabeled examples. Each autoencoder is

trained with a two dimensional latent variable z and ini-

tialized randomly. Hence each new VAE is already capable

of reconstructing the input to a certain extent. During the

sampling steps, this VAE becomes more specialized in a

particular structure of the inputs. To further facilitate sam-

pling, we set the number of clusters equal to the number of

classes and use 100 random labeled examples to fine-tune

VAE assignments. At each iteration, if there is no instance

assigned to a VAE, it will be removed. As such, the mix-

ture grows and shrinks with each iteration as instances are

assigned to VAEs. We report the results over 3 trials.

For comparing the autoencoder’s ability to internally

capture the structure of the input, we compared latent repre-

sentation obtained by a single VAE and the expected latent

representation from our approach in Equation 4 and sub-

sequently trained a support vector machine (SVM) with it.

For computing expectations, we used 20 samples from the

latent variable space.

Once the generative model is learned with all the unla-

belled instances using the infinite mixture model in Section

4, we randomly select a subset of labeled instances for train-

ing the discriminative model. Throughout the experiments,

we share the parameters in the discriminative architecture

from the input to the last layer so that each expert is repre-

sented by a softmax.

We report classification results in various problems in-

cluding handwritten binary images, natural images and 3D

shapes. Although the performance of our semi-supervised

learning approach depends on the choice of the discrimina-

tive model, we observe our approach outperforms baselines

particularly with smaller labeled instances. For all train-

ings–either discriminative or generative–we set the max-

imum number of iterations to 1000 with batch size 500
for the stochastic gradient descent with constant learning

rate 0.001. For VAEs we use the Adam [16] updates with

β1 = 0.9, β2= 0.999. However, we set a threshold on

the changes in the loss to detect convergence and stop the

training. Except for the binary images where we use a bi-

nary decoder (pθ(x|z) is binomial), our decoder is continu-

ous ((pθ(x|z) is Gaussian) in which samples from the latent

space is used to regenerate the input to compute the loss.

In problems when the input is too complex for the au-

toencoder to perform well, we share the output of the last

layer of the discriminative model with the VAEs.

6.1. MNIST Dataset

MNIST dataset1 contains 60, 000 training and 10, 000
test images of size 28 × 28 of handwritten digits. Some

random images from this dataset are shown in Figure 5(a).

We use original VAE algorithm (single VAE) with 100 iter-

ation and 50 hidden variables to learn a representation for

these digits with binary distribution for the input pθ(x|z).
As shown in Figure 5(b), these reconstructions are very un-

clear and at times wrong (6th column where 7 is wrongly

reconstructed as 9). Using this VAE as base, we train an

infinite mixture of our generative model. After 10 iterations

with α = 2, the expected reconstruction E [x] is depicted

1http://yann.lecun.com/exdb/mnist/
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(a) Original Images

(b) VAE reconstruction (number of hidden variables 50)

(c) VAE reconstruction (number of hidden variables 1024)

(d) Infinite Mixture reconstruction (number of clusters 18 using base VAE with number of hidden variables 50)

Figure 5. An illustration of the autoencoder’s input reconstruction. First row is the original images. Reconstructions in Figure 5(b) and

5(c) are obtained from using a single VAE. Images in the last row are obtained from the proposed mixture model of 18 VAEs each with 50
hidden units. As seen, reconstructed images are clearer in Figure 5(d).

Method C # hidden units Error

Infinite Mixture

2 100 9.17

10 100 5.12

17 100 4.9

VAE
1 100 5.92

1 1024 5.1

Table 1. Reconstruction error for MNIST dataset as the norm of

the difference of the input image and the expected reconstruction

comparing our approach with the original VAE.

in Figure 5(d). We use 2 samples to compute E[x] for cth
VAE. As observed, this reconstruction is visually better and

the mistake in the 6th column is fixed. Further, Figure 5(c)

shows using VAE with 1024 hidden units. It is interesting

to note that even though our proposed model has smaller

number of hidden units (900 vs 1024), the reconstruction is

better using our model.

In Table 1 we summarize reconstruction error (that is,

‖x − E [x] ‖) for using our approach versus the original

VAE. As seen, our approach performs similarly with the

VAE when the number of hidden units are almost similar

(1000 vs 1024). As seen, with higher number of VAEs, we

are able to reduce the reconstruction error significantly.

To test our approach in a semi-supervised setting, we use

a deep Convolutional Neural Net (CNN). Our deep CNN ar-

chitecture consists of two convolutional layers with 32 fil-

ters of 5×5 and Rectified Linear Unit (ReLU) activation and

max-pooling of 2× 2 after each one. We added a fully con-

nected layer with 256 hidden units followed by a dropout

layer and then the softmax output layer. As shown in Table

2, our infinite mixture with 17 base VAEs has been able to

outperform most of the state-of-the-art methods. Only re-

cently proposed Virtual Adversarial Network [29] performs

better than ours with small training examples.

Method/Labels 100 1000 All

Pseudo-label [23] 10.49 3.64 0.81

EmbedNN [45] 16.9 5.73 3.59

DGN [17] 3.33± 0.14 2.40± 0.02 0.96

Adversarial [9] 0.78

Virtual Adversarial [29] 2.66 1.50 0.64± 0.03

AtlasRBF [32] 8.10± 0.95 3.68± 0.12 1.31

PEA [2] 5.21 2.64 2.30

Γ-Model [34] 4.34± 2.31 1.71± 0.07 0.79± 0.05

Baseline CNN 8.62± 1.87 4.16± 0.35 0.68± 0.02

Infinite Mixture 3.93± 0.5 2.29± 0.2 0.6± 0.02

Table 2. Test error for MNIST with 17 clusters and 100 hidden

variables. Only [29] reports better performance than ours

6.2. Dogs Experiment

ImageNet is a dataset containing 1, 461, 406 natural im-

ages manually labeled according to the WordNet hierarchy

to 1000 classes. We select a subset of 10 breeds of dogs

for our experiment. These 10 breeds are: “Maltese dog,

dalmatian, German shepherd, Siberian husky, St Bernard,

Samoyed, Border collie, bull mastiff, chow, Afghan hound”

with 10, 400 training and 2, 600 test images. For an illus-

tration of the latent space and how the mixture of VAEs is

able to represent the uncertainty in the hidden variables we

use this dogs subset. We fine-tune a pre-trained AlexNet

[20] as the base discriminative model and share the param-

eters with the generative model. In particular, we use the

4096-dimensional output of the 7th fully connected layer

(fc7) as the input for both softmax experts and the VAE au-

toencoders. We trained the generative model with all the

unlabeled dog instance and used 1000 hidden units for each

VAE and set α = 2 and stopped with 14 autoencoders.

We randomly select 5 images of dogs (from this Ima-

geNet subset) and 5 images of anything else (non-dogs from
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Figure 6. Two dimensional latent space found from training our infinite mixture of VAEs on Dogs dataset. We randomly selected 5 dog

images and 5 images of anything else and plotted their latent representation in each VAE (z1 for the first dimension and z2 for the second

one). The position of each circle represents the mean of the density for the given image in this space and its radius is the variance (µ and σ

in Figure 1, respectively). As shown, representation of non-dogs (blue circles) are generally clustered far away from the dogs (red circles).

Moreover, dogs have smaller variance than non-dogs, hence the VAEs are uncertain about the representation of images that were not seen

during training.

Method/Labels 100 1000 4000 All

AlexNet [20] 69.59± 3.21 86.72± 0.66 89.88± 0.03 90.26± 0.25

Infinite Mixture 75.81± 1.83 89.28± 0.19 90.68± 0.05 91.69± 0.17

Latent VAE+SVM 49.81± 1.87 63.28± 0.64 74.8± 0.2 79.6± 0.7

Latent Mixture+SVM 58.1± 2.63 72.28± 0.2 79.8± 0.18 83.9± 0.24

Table 3. Test accuracy of AlexNet on the dogs dataset compared to our proposed approach in the first two rows. Second two rows compare

the latent representations obtained from a single VAE compared to ours.

Flicker with Creative Common License) for the illustration

in Figure 6. We plot the 2-dimensional latent representa-

tion of these images in 5 VAEs of the learnt mixture. In

each plot, the mean of the density of the latent variable z

determines the position of the center of the circle and the

variance is shown as its radius (we use the mean variance

of the bivariate Gaussian for better illustration in a circle).

These values are calculated from each VAE network as µ
and σ in Figure 1. As shown, the images of non-dogs are

generally clustered together in this latent space which in-

dicate they are recognized to be different. In addition, the

variance of the non-dogs are generally higher than the dogs.

As such, even when the mean of non-dogs are not discrim-

inative enough (the dogs and non-digs are not sufficiently

well clustered apart in that VAE) we are uncertain about

the representations that are not dogs. This uncertainty leads

to lower probability for the assignment to the given VAE

(from Equation 3) and subsequently smaller weights when

learning a mixture of experts model.

In Table 3 the accuracy of AlexNet on this dogs subset

is shown and compared with our infinite mixture approach.

As seen infinite mixture performs better, particularly with

smaller labeled instances. In addition, latent representation

of the infinite mixture (computed as an expectation) when

used in a SVM significantly outperforms a single VAE. This

illustrates the ability of our model in better capturing under-

lying representations.

Method/Labels 1000 4000 All

Spike-and-slab [10] 31.9

Maxout [11] 9.38

GDI [33] 8.27

Conv-Large [34, 39] 23.3± 30.61 9.27

Γ-Model [34] 20.09± 0.46 9.27

Residual Network [12] 10.08± 1.12 8.04± .21 7.5± 0.01

Infinite Mixture of VAEs 8.72± 0.45 7.78± 0.13 7.5± 0.02

Table 4. Test error on CIFAR10 with various number of labeled

training examples. The results reported in [34] did not include im-

age augmentations. Although the original approach in [39] seems

to offer up to 2% error reduction with augmentation.

6.3. CIFAR Dataset

The CIFAR-10 dataset [19] is composed of 10 classes of

natural 32× 32 RGB images with 50, 000 images for train-

ing and 10, 000 images for testing. Our experiments show

single VAE does not perform well for encoding this dataset

as is also confirmed here [22]. However, since our objec-

tive is to perform semi-supervised learning, we use Residual

network (ResNet) [12] as a successful model in image rep-

resentation for discriminative learning to share the param-

eters with our generative model. This model is useful for

complex problems where the unsupervised approach may

not be sufficient. In addition, autoencoders seek to preserve

the distribution of the pixel values required in reconstruct-

ing the images while this information has a minimum im-

pact on the final classification prediction. Therefore, such

parameter sharing in which generative model is combined

5894



50 100 250 500 750 1000 1995 2000 3991
Number of labeled instances

70

75

80

85

90

95
A

cc
ur

ac
y

Our Approach
Single Softmax
3D Shapenet
DeepPano

Figure 7. ModelNet10 compared to 3D Shapenet [46] and Deep-

Pano [37] averaged over 3 trials.

with the classifier is necessary for better prediction.

As such we fine-tune a ResNet and use output of the

127th layer as the input for the VAE. We use a 2000 hidden

nodes and α = 2 to train an infinite mixture with 15 VAEs.

For training we augmented the training images by padding

images with 4 pixels on each side and random cropping.

Table 4 reports the test error of running our approach

on this dataset. As shown, our infinite mixture of VAEs

combined with the powerful discriminative model outper-

forms the state-of-the-art in this dataset. When all the train-

ing instances are used the performance of our approach is

the same as the discriminative model. This is because with

larger labeled training sizes, the instance weights provided

by the generative model are averaged and lose their impact,

therefore all the experts become similar. With smaller la-

beled examples on the other hand, each softmax expert spe-

cializes in a particular aspect of the data.

6.4. 3D ModelNet

The ModelNet datasets were introduced in [46] to evalu-

ate 3D shape classifiers. ModelNet has 151, 128 3D models

classified into 40 object categories, and ModelNet10 is a

subset based on classes in the NYUv2 dataset [38]. The

3D models are voxelized to fit a 30 × 30 × 30 grid and

augmented by 12 rotations. For the discriminative model

we use a convolutional architecture similar to that of [27]

where we have a 3D convolutional layer with 32 filters of

size 5 and stride 2, convolution of size 3 and stride 1, max-

pooling layer with size 2 and a 128-dimensional fully con-

nected layer. Similar to the CIFAR-10 experiment, we share

the parameters of the last fully connected layer between the

infinite mixture of VAEs and the discriminative softmax.

As shown in Figure 7, when using the whole dataset our

infinite mixture and the best result from [27] match at 92%
accuracy. However, as we reduce the number of labeled

training examples it is clear that our approach outperforms

a single softmax classifier.

Method/Labels 100 1000 All

VAE latent+SVM 64.21 79.09 82.71

Mixture latent+SVM 74.01 83.26 85.68

Table 5. ModelNet10 accuracy of latent variable representation for

training SVM using a single VAE versus expected latent variable

in our approach.

Additionally, Table 5 shows the accuracy comparison of

the latent representation obtained from the samples from

our infinite mixture and a single VAE as measured by the

performance of SVM. As seen, the expected latent repre-

sentation in our approach is significantly more discrimina-

tive and outperforms single VAE. This is because, we take

into account the variations in the input and adapt to the com-

plexity of the input. While a single VAE has to capture the

dataset in its entirety, our approach is free to choose and

fit. Our experiments with both 2D and 3D images show the

initial convolutional layers play a crucial rule for the VAEs

to be able to encode the input into a latent space where the

mixture of experts best perform. This 3D model further il-

lustrate the decision function mostly depends on the internal

structure of the generative model rather than reconstruction

of the pixel values. When we share the parameters of the

discriminative model with the generative infinite mixture of

VAEs and learn the mixture of experts, we combine various

representations of the data for better prediction.

7. Conclusion

In this paper, we employed Bayesian non-parametric

methods to propose an infinite mixture of variational au-

toencoders that can grow to represent the complexity of the

input. Furthermore, we used these autoencoders to create a

mixture of experts model for semi-supervised learning. In

both 2D images and 3D shapes, our approach provides state

of the art results in various datasets.

We further showed that such mixtures, where each com-

ponent learns to represent a particular aspect of the data,

are able to produce better predictions using fewer total

parameters than a single monolithic model. This applies

whether the model is generative or discriminative. More-

over, in semi-supervised learning where the ultimate objec-

tive is classification, parameter sharing between discrimi-

native and generative models was shown to provide better

prediction accuracy.

In future works we plan to extend our approach to use

variational inference rather than sampling for better ef-

ficiency. In addition, a new variational loss that mini-

mizes the joint probability of the input and output in a

Bayesian paradigm may further increase the prediction ac-

curacy when the number of labeled examples is small.
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