
Efficient Linear Programming for Dense CRFs

Thalaiyasingam Ajanthan1, Alban Desmaison2, Rudy Bunel2, Mathieu Salzmann3, Philip H.S. Torr2,

and M. Pawan Kumar2,4

1Australian National University & Data61, CSIRO 2Department of Engineering Science, University of Oxford
3Computer Vision Laboratory, EPFL 4Alan Turing Institute

Abstract
The fully connected conditional random field (CRF) with

Gaussian pairwise potentials has proven popular and effec-

tive for multi-class semantic segmentation. While the en-

ergy of a dense CRF can be minimized accurately using a

linear programming (LP) relaxation, the state-of-the-art al-

gorithm is too slow to be useful in practice. To alleviate

this deficiency, we introduce an efficient LP minimization

algorithm for dense CRFs. To this end, we develop a proxi-

mal minimization framework, where the dual of each proxi-

mal problem is optimized via block coordinate descent. We

show that each block of variables can be efficiently opti-

mized. Specifically, for one block, the problem decomposes

into significantly smaller subproblems, each of which is de-

fined over a single pixel. For the other block, the problem

is optimized via conditional gradient descent. This has two

advantages: 1) the conditional gradient can be computed

in a time linear in the number of pixels and labels; and 2)

the optimal step size can be computed analytically. Our

experiments on standard datasets provide compelling evi-

dence that our approach outperforms all existing baselines

including the previous LP based approach for dense CRFs.

1. Introduction

In the past few years, the dense conditional random field

(CRF) with Gaussian pairwise potentials has become popu-

lar for multi-class image-based semantic segmentation. At

the origin of this popularity lies the use of an efficient fil-

tering method [1], which was shown to lead to a linear time

mean-field inference strategy [12]. Recently, this filtering

method was exploited to minimize the dense CRF energy

using other, typically more effective, continuous relaxation

methods [6]. Among the relaxations considered in [6], the

linear programming (LP) relaxation provides strong theo-

retical guarantees on the quality of the solution [9, 15].

In [6], the LP was minimized via projected subgradient

descent. While relying on the filtering method, computing

the subgradient was shown to be linearithmic in the number

of pixels, but not linear. Moreover, even with the use of a

line search strategy, the algorithm required a large number

of iterations to converge, making it inefficient.

We introduce an iterative LP minimization algorithm for

a dense CRF with Gaussian pairwise potentials which has

linear time complexity per iteration. To this end, instead of

relying on a standard subgradient technique, we propose to

make use of the proximal method [20]. The resulting proxi-

mal problem has a smooth dual, which can be efficiently op-

timized using block coordinate descent. We show that each

block of variables can be optimized efficiently. Specifically,

for one block, the problem decomposes into significantly

smaller subproblems, each of which is defined over a single

pixel. For the other block, the problem can be optimized via

the Frank-Wolfe algorithm [8, 16]. We show that the condi-

tional gradient required by this algorithm can be computed

efficiently. In particular, we modify the filtering method

of [1] such that the conditional gradient can be computed

in a time linear in the number of pixels and labels. Besides

this linear complexity, our approach has two additional ben-

efits. First, it can be initialized with the solution of a faster,

less accurate algorithm, such as mean-field [12] or the dif-

ference of convex (DC) relaxation of [6], thus speeding up

convergence. Second, the optimal step size of our iterative

procedure can be obtained analytically, thus preventing the

need to rely on an expensive line search procedure.

We demonstrate the effectiveness of our algorithm on the

MSRC and Pascal VOC 2010 [7] segmentation datasets.

The experiments evidence that our algorithm is signifi-

cantly faster than the state-of-the-art LP minimization tech-

nique of [6]. Furthermore, it yields assignments whose

energies are much lower than those obtained by the base-

lines [6, 12]. Altogether, our framework constitutes the

first efficient and effective minimization algorithm for

dense CRFs with Gaussian pairwise potentials. Our code

is available at https://github.com/oval-group/

DenseCRF and a more detailed version of the paper can be

found at https://arxiv.org/abs/1611.09718.

2. Preliminaries
Before introducing our method, let us first provide some

background on the dense CRF model and its LP relaxation.

Dense CRF energy function. A dense CRF is defined on

a set of n random variables X = {X1, . . . , Xn}, where

each random variable Xa takes a label xa ∈ L, with |L| =
m. For a given labelling x, the energy associated with a

3298

https://github.com/oval-group/DenseCRF
https://github.com/oval-group/DenseCRF
https://arxiv.org/abs/1611.09718

pairwise dense CRF can be expressed as

E(x) =
n
∑

a=1

φa(xa) +
n
∑

a=1

n
∑

b=1,b 6=a

ψab(xa, xb) , (1)

where φa and ψab denote the unary potentials and pairwise

potentials, respectively. The unary potentials define the data

cost and the pairwise potentials the smoothness cost.

Gaussian pairwise potentials. Similarly to [6, 12], we

consider Gaussian pairwise potentials, which have the fol-

lowing form:
ψab(xa, xb) = µ(xa, xb)

∑

c

w(c) k
(

f (c)a , f
(c)
b

)

, (2)

k(fa, fb) = exp

(

−‖fa − fb‖
2

2

)

.

Here, µ(xa, xb) is referred to as the label compatibility

function and the mixture of Gaussian kernels as the pixel

compatibility function. The weights w(c) ≥ 0 define the

mixture coefficients, and f
(c)
a ∈ IRd(c)

encodes features as-

sociated to the random variable Xa, where d(c) is the fea-

ture dimension. For semantic segmentation, each pixel in

an image corresponds to a random variable. In practice, as

in [6, 12], we then use the position and RGB values of a

pixel as features, and assume the label compatibility func-

tion to be the Potts model, that is, µ(xa, xb) = ✶[xa 6= xb].
These potentials have proven useful to obtain fine grained

labellings in segmentation tasks [12].

Integer programming formulation. An alternative way

of representing a labelling is by defining indicator variables

ya:i ∈ {0, 1}, where ya:i = 1 if and only if xa = i. Us-

ing this notation, the energy minimization problem can be

written as the following Integer Program (IP):

min
y

E(y) =
∑

a

∑

i

φa:i ya:i +
∑

a,b 6=a

∑

i,j

ψab:ij ya:i yb:j ,

(3)s.t.
∑

i

ya:i = 1 ∀ a ∈ {1 . . . n} ,

ya:i ∈ {0, 1} ∀ a ∈ {1 . . . n}, ∀ i ∈ L .

Here, we use the shorthand φa:i = φa(i) and ψab:ij =
ψab(i, j). The first set of constraints ensure that each ran-

dom variable is assigned exactly one label. Note that the

value of the objective function is equal to the energy of the

labelling encoded by y.

Linear programming relaxation. By relaxing the binary

constraints of the indicator variables in (3) and using the

fact that the label compatibility function is the Potts model,

the linear programming relaxation [9] of (3) is defined as

min
y

Ẽ(y) =
∑

a

∑

i

φa:i ya:i +
∑

a,b 6=a

∑

i

Kab

|ya:i − yb:i|

2
,

(4)
s.t. y ∈M =

{

y

∑

i ya:i = 1, a ∈ {1 . . . n}
ya:i ≥ 0, a ∈ {1 . . . n}, i ∈ L

}

,

where Kab =
∑

c w
(c) k

(

f
(c)
a , f

(c)
b

)

. For integer la-

bellings, the LP objective Ẽ(y) has the same value as the

IP objective E(y). The above relaxation is the same as the

standard LP relaxation [4] for the Potts model and it pro-

vides an integrality gap of 2. The result in [17] means that

it is unlikely (unless the Unique Games Conjecture is false)

that a better relaxation can be designed for this problem.

Using standard solvers to minimize this LP would require

the introduction of O(n2) variables (see Appendix A.1),

making it intractable. Therefore the non-smooth objective

of Eq. (4) has to be optimized directly. This was handled

using projected subgradient descent in [6], which also turns

out to be inefficient in practice. In this paper, we introduce

an efficient algorithm to tackle this problem while maintain-

ing linear scaling in both space and time complexity.

3. Proximal minimization for LP relaxation

Our goal is to design an efficient minimization strategy

for the LP relaxation in (4). To this end, we propose to

use the proximal minimization algorithm [20]. This guar-

antees monotonic decrease in the objective value, enabling

us to leverage faster, less accurate methods for initializa-

tion. Furthermore, the additional quadratic regularization

term makes the dual problem smooth, enabling the use of

more sophisticated optimization methods. In the remainder

of this paper, we detail this approach and show that each

iteration has linear time complexity. In practice, our al-

gorithm converges in a small number of iterations, thereby

making the overall approach computationally efficient.

The proximal minimization algorithm [20] is an iterative

method that, given the current estimate of the solution yk,

solves the problem

min
y

Ẽ(y) +
1

2λ

∥

∥y − yk
∥

∥

2
, (5)

s.t. y ∈M ,

where λ sets the strength of the proximal term.

Note that (5) consists of piecewise linear terms and a

quadratic regularization term. Specifically, the piecewise

linear term comes from the pairwise term |ya:i− yb:i| in (4)

that can be reformulated as max{ya:i − yb:i, yb:i − ya:i}.
The proximal term ‖y − yk‖2 provides the quadratic reg-

ularization. In this section, we introduce a new algorithm

that is tailored to this problem. In particular, we optimally

solve the Lagrange dual of (5) in a block-wise fashion.

3.1. Dual formulation

The dual problem has three variables, namely, α =
{α1

ab:i, α
2
ab:i | a, b 6= a, i ∈ L}, β = {βa | a ∈ {1 . . . n}}

and γ = {γa:i, a ∈ {1 . . . n}, i ∈ L}. Here, we introduce

two matrices that will be useful to write the dual problem

compactly. Specifically, the matrices A ∈ IRnm×p (where

p = 2n(n− 1)m) and B ∈ IRnm×n are defined such that

(Aα)a:i = −
∑

b 6=a

(

α1
ab:i − α

2
ab:i + α2

ba:i − α
1
ba:i

)

, (6)

(Bβ)a:i = βa .

3299

Algorithm 1 Proximal minimization of LP (PROX-LP)

Require: Initial solution y0 ∈M and the dual objective g
for k ← 0 . . .K do

Aα0 ← 0, β0 ← 0, γ0 ← 0 ⊲ Feasible initialization

for t← 0 . . . T do
(

βt,γt
)

← argmin
β,γ

g (αt,β,γ) ⊲ Sec. 3.2.1

ỹt ← λ
(

Aαt +Bβt + γt − φ
)

+ yk ⊲ Current primal solution, may be infeasible

Ast ← conditional gradient of g, computed using ỹt ⊲ Sec. 3.2.2

δ ← optimal step size given (st,αt, ỹt) ⊲ Sec. 3.2.2

Aαt+1 ← (1− δ)Aαt + δAst ⊲ Frank-Wolfe update on α

yk+1 ← PM (ỹt) ⊲ Project the primal solution to the feasible setM

This lets us write the Lagrange dual of (5) as

min
α,β,γ

g(α,β,γ) =
λ

2
‖Aα+Bβ + γ − φ‖2 (7)

+
〈

Aα+Bβ + γ − φ,yk
〉

− 〈1,β〉 ,

s.t. γa:i ≥ 0 ∀ a ∈ {1 . . . n} ∀ i ∈ L ,

α ∈ C =

{

α
α1
ab:i + α2

ab:i =
Kab

2 , a, b 6= a, i ∈ L
α1
ab:i, α

2
ab:i ≥ 0, a, b 6= a, i ∈ L

}

.

Given the dual variables, the corresponding primal variables

can be obtained using the KKT conditions [3] as

y = λ (Aα+Bβ + γ − φ) + yk . (8)

We refer the reader to Appendix A.1 in the supplementary

material for the details of this derivation.

3.2. Algorithm

The dual problem (7), in its standard form, can only

be tackled using projected gradient descent. However, by

separating the variables based on the type of the feasible

domains, we propose an efficient block coordinate descent

approach. Each of these blocks are amenable to more so-

phisticated optimization, resulting in a computationally ef-

ficient algorithm. As the dual problem is strictly convex

and smooth, the optimal solution is still guaranteed. For β

and γ, the problem decomposes over the pixels, as shown

in 3.2.1, therefore making it efficient. The minimization

with respect to α is over a compact domain, which can be

efficiently tackled using the Frank-Wolfe algorithm [8, 16].

Our complete algorithm is summarized in Algorithm 1. In

the following sections, we discuss each step in more detail.

3.2.1 Optimizing over β and γ

We first turn to the problem of optimizing over β and γ

while αt is fixed. Since the dual variable β is uncon-

strained, the minimum value of the dual objective g is at-

tained when ∇βg(α
t,β,γ) = 0. Differentiating with re-

spect to β and setting the derivatives to zero yields

β = BT
(

Aαt + γ − φ
)

/m . (9)

Note that, now, β is a function of γ. We therefore substi-

tute β in (7) and minimize over γ. Interestingly, the result-

ing problem can be optimized independently for each pixel,

with each subproblem being an m dimensional quadratic

program (QP) with nonnegativity constraints, where m is

the number of labels. For a pixel a, this QP has the form

min
γ

a

1

2
γT
aQγa +

〈

γa, Q
(

(Aαt)a − φa

)

+ yk
a

〉

, (10)

s.t. γa ≥ 0 .

Here, γa denotes the vector {γa:i | i ∈ L} and Q =
λ (I − 1/m) ∈ IRm×m, with I the identity matrix and 1

a matrix of all ones.

We use the algorithm of [27] to efficiently optimize every

such QP. In our case, due to the structure of the matrix Q,

the time complexity of an iteration is linear in the number

of labels. Hence, the overall time complexity of optimizing

over γ is O(nm). Once the optimal γ is computed for a

given αt, the corresponding optimal β is given by Eq. (9).

More details are provided in Appendix A.2.

3.2.2 Optimizing over α

We now turn to the problem of optimizing over α given βt

and γt. To this end, we use the Frank-Wolfe algorithm [8],

which has the advantage of being projection free. Further-

more, for our specific problem, we show that the required

conditional gradient can be computed efficiently and the op-

timal step size can be obtained analytically.

Conditional gradient computation. The conditional

gradient with respect to α is obtained by solving the lin-

earization problem

s = argmin
ŝ∈C

〈

ŝ,∇αg(α
t,βt,γt)

〉

. (11)

Here, ∇αg(α
t,βt,γt) denotes the gradient of the dual ob-

jective function with respect to α evaluated at (αt,βt,γt).
Importantly, we show that the conditional gradient has

an analytical form, given by

(As)a:i = −
∑

b

(

Kab✶[ỹ
t
a:i ≥ ỹ

t
b:i]−Kab✶[ỹ

t
a:i ≤ ỹ

t
b:i]

)

,

(12)

3300

where ỹt is the current (infeasible) primal solution com-

puted using Eq. (8). We refer the reader to Appendix A.3

for the detailed derivation.

Note that Eq. (12) has the same form as the LP subgradi-

ent (Eq. (20) in [6]). This is not a surprising result. In fact, it

has been shown that, for certain problems, there exists a du-

ality relationship between subgradients and conditional gra-

dients [2]. To compute this subgradient, the state-of-the-art

algorithm proposed in [6] has a time complexity linearith-

mic in the number of pixels. Unfortunately, since this con-

stitutes a critical step of both our algorithm and that of [6],

such a linearithmic cost greatly affects their efficiency. In

Section 4, however, we show that this complexity can be re-

duced to linear, thus effectively leading to a speedup of an

order of magnitude in practice.

Optimal step size. One of the main difficulties of using

an iterative algorithm, whether subgradient or conditional

gradient descent, is that its performance depends critically

on the choice of the step size. Here, we can analytically

compute the optimal step size that results in the maximum

decrease in the objective for the given descent direction. As

shown in Appendix A.4, the resulting step is given by

δ = P[0,1]

(

〈Aαt −Ast, ỹt〉

λ‖Aαt −Ast‖2

)

. (13)

Here, P[0,1] denotes the projection to the interval [0, 1], that

is, clipping the value to lie in [0, 1].

Memory efficiency. For a dense CRF, the dual variable α

requires O(n2m) storage, which becomes infeasible since

n is the number of pixels in an image. Note, however, that

α always appears in the product α̃ = Aα in Algorithm 1.

Therefore, we only store the variable α̃, which reduces the

storage complexity to O(nm).

3.2.3 Summary

To summarize, our method has the following desirable qual-

ities of an efficient iterative algorithm. First, it can benefit

from an initial solution obtained by a faster but less accu-

rate algorithm, such as mean-field or DC relaxation. Sec-

ond, with our choice of a quadratic proximal term, the dual

of the proximal problem can be efficiently optimized in a

block-wise fashion. Specifically, the dual variables β and γ

are computed efficiently by minimizing one small QP (of

dimension the number of labels) for each pixel indepen-

dently. The remaining dual variable α is optimized using

the Frank-Wolfe algorithm, where the conditional gradient

is computed in linear time, and the optimal step size is ob-

tained analytically. Overall, the time complexity of one iter-

ation of our algorithm is O(nm). To the best of our knowl-

edge, this constitutes the first LP minimization algorithm

for dense CRFs that has linear time iterations. We denote

this algorithm as PROX-LP.

4. Fast conditional gradient computation
The algorithm described in the previous section assumes

that the conditional gradient (Eq. (12)) can be computed

efficiently. Note that Eq. (12) contains two terms that are

similar up to sign and order of the label constraint in the

indicator function. To simplify the discussion, let us focus

on the first term and on a particular label i, which we will

not explicitly write in the remainder of this section. The

second term in Eq. (12) and the other labels can be handled

in the same manner. With these simplifications, we need to

efficiently compute an expression of the form

∀ a ∈ {1 . . . n}, v′a =
∑

b

k(fa, fb)✶[ya ≥ yb] , (14)

with ya, yb ∈ [0, 1] and fa, fb ∈ IRd for all a, b ∈ {1 . . . n}.
The usual way of speeding up computations involving

such Gaussian kernels is by using the efficient filtering

method [1]. This approximate method has proven accu-

rate enough for similar applications [6, 12]. In our case,

due to the ordering constraint ✶[ya ≥ yb], the symmetry is

broken and the direct application of the filtering method is

impossible. In [6], the authors tackled this problem using

a divide-and-conquer strategy, which lead to a time com-

plexity of O(d2n log(n)). In practice, this remains a pro-

hibitively high run time, particularly since gradient com-

putations are performed many times over the course of the

algorithm. Here, we introduce a more efficient method.

Specifically, we show that the term in Eq. (14) can be

computed in O(Hdn) time (where H is a small constant

defined in Section 4.2), at the cost of additional storage.

In practice, this leads to a speedup of one order of mag-

nitude. Below, we first briefly review the original filtering

algorithm and then explain our modified algorithm that ef-

ficiently handles the ordering constraints.

4.1. Original filtering method
In this section, we assume that the reader is familiar with

the permutohedral lattice based filtering method [1]. Due

to space constraint, only a brief overview is provided. We

refer the interested reader to the original paper [1].

In [1], each pixel a ∈ {1 . . . n} is associated with a tu-

ple (fa, va), which we call a feature point. The elements of

this tuple are the feature fa ∈ IRd and the value va ∈ IR.

Note that, in our case, va = 1 for all pixels. At the begin-

ning of the algorithm, the feature points are embedded in a

d-dimensional hyperplane tessellated by the permutohedral

lattice (the hexagon shape shown in Fig. 1). The vertices of

this permutohedral lattice are called lattice points.

Once the permutohedral lattice is constructed, the algo-

rithm performs three main steps: splatting, blurring and

slicing. During splatting, for each lattice point, the values

of the neighbouring feature points are accumulated using

barycentric interpolation. Next, during blurring, the val-

ues of the lattice points are convolved with a one dimen-

sional truncated Gaussian kernel along each feature dimen-

3301

Splat Blur Slice

Figure 1: The hexagon made of trianlges represents the per-

mutohedral lattice with d = 2, where the feature points are

denoted with squares and the lattice points with circles. Top

row: Original filtering method. The barycentric interpo-

lation is denoted by an arrow and k here is the truncated

Gaussian kernel. See para-3 in Sec. 4.1. Bottom row: Our

modified filtering method. Here, H = 3, and the figure

therefore illustrates 3 lattices. We write the bin number of

each feature point next to it. See para-2 in Sec. 4.2.

sion separately. Finally, during slicing, the resulting values

of the lattice points are propagated back to the feature points

using the same barycentric weights. These steps are ex-

plained graphically in the top row of Fig. 1. The pseudocode

of the algorithm is given in Appendix B.1. The time com-

plexity of this algorithm isO(dn) [1, 12], and the complex-

ity of the permutohedral lattice creation O(d2n). Since the

approach in [6] creates multiple lattices at every iteration,

the overall complexity of this approach is O(d2n log(n)).

Note that, in this original algorithm, there is no notion

of score ya associated with each pixel. In particular, during

splatting, the values va are accumulated to the neighbour-

ing lattice points without considering their scores. There-

fore, this algorithm cannot be directly applied to handle our

ordering constraint ✶[ya ≥ yb].

4.2. Modified filtering method

We now introduce a filtering-based algorithm that can

handle ordering constraints. To this end, we uniformly dis-

cretize the continuous interval [0, 1] into H different dis-

crete bins, or levels. Note that each pixel, or feature point,

belongs to exactly one of these bins, according to its corre-

sponding score. We then propose to instantiate H permuto-

hedral lattices, one for each level h ∈ {0 . . . H − 1}.

To handle the ordering constraints, we then modify the

splatting step in the following manner. A feature point be-

longing to bin q is splat to the permutohedral lattices cor-

responding to levels q ≤ h < H . Blurring is then per-

formed independently in each individual permutohedral lat-

tice. This guarantees that a feature point will only influ-

ence the values of the feature points that belong to the same

level or higher ones. In other words, a feature point b in-

fluences the value of a feature point a only if ya ≥ yb. Fi-

nally, during the slicing step, the value of a feature point

belonging to level q is recovered from the qth permutohe-

dral lattice. Our algorithm is depicted graphically in the

bottom row of Fig. 1. Its pseudocode is provided in Ap-

pendix B.2. Note that, while discussed for constraints of

the form ✶[ya ≥ yb], this algorithm can easily be adapted

to handle ✶[ya ≤ yb] constraints, which are required for the

second term in Eq. (12).

Overall, our modified filtering method has a time com-

plexity of O(Hdn) and a space complexity of O(Hdn).
Note that the complexity of the lattice creation is still

O(d2n) and can be reused for each of the H instances.

Moreover, as opposed to the method in [6], this operation

is performed only once, during the initialization step. In

practice, we were able to choose H as small as 10, thus

achieving a substantial speedup compared to the divide-

and-conquer strategy of [6]. By discretizing the interval

[0, 1], we add another level of approximation to the overall

algorithm. However, this approximation can be eliminated

by using a dynamic data structure (see Appendix B.2.1).

5. Related work

We review the past work on three different aspects of our

work in order to highlight our contributions.

Dense CRF. The fully-connected CRF has become in-

creasingly popular for semantic segmentation. It is particu-

larly effective at preventing oversmoothing, thus providing

better accuracy at the boundaries of objects. As a matter of

fact, in a complementary direction, many methods have now

proposed to combine dense CRFs with convolutional neural

networks [5, 22, 28] to achieve state-of-the-art performance

on segmentation benchmarks.

The main challenge that had previously prevented the

use of dense CRFs is their computational cost at inference,

which, naively, is O(n2) per iteration. In the case of Gaus-

sian pairwise potential, the efficient filtering method of [1]

proved to be key to the tractability of inference in the dense

CRF. While an approximate method, the accuracy of the

computation proved sufficient for practical purposes. This

was first observed in [12] for the specific case of mean-field

inference. More recently, several continuous relaxations,

such as QP, DC and LP, were also shown to be applicable

to minimizing the dense CRF energy by exploiting this fil-

tering procedure in various ways [6]. Unfortunately, while

tractable, minimizing the LP relaxation, which is known

to provide the best approximation to the original labelling

problem, remained too slow in practice [6]. Our algorithm

is faster both theoretically and empirically. Furthermore,

and as evidenced by our experiments, it yields lower energy

values than any existing dense CRF inference strategy.

3302

LP relaxation. There are two ways to relax the inte-

ger program (3) to a linear program, depending on the

label compatibility function: 1) the standard LP relax-

ation [4]; and 2) the LP relaxation specialized to the Potts

model [9]. There are many notable works on minimiz-

ing the standard LP relaxation on sparse CRFs. This in-

cludes the algorithms that directly make use the dual of

this LP [10, 11, 25] and those based on a proximal min-

imization framework [18, 21]. Unfortunately, all of the

above algorithms exploit the sparsity of the problem, and

they would yield an O(n2) cost per iteration in the fully-

connected case. In this work, we focus on the Potts model

based LP relaxation for dense CRFs and provide an algo-

rithm whose iterations have time complexity O(n). Even

though we focus on the Potts model, as pointed out in [6],

this LP relaxation can be extended to general label compat-

ibility functions using a hierarchical Potts model [14].

Frank-Wolfe. The optimization problem of structural

support vector machines (SVM) has a form similar to our

proximal problem. The Frank-Wolfe algorithm [8] was

shown to provide an effective and efficient solution to such

a problem via block-coordinate optimization [16]. Several

works have recently focused on improving the performance

of this algorithm [19, 23] and extended its application do-

main [13]. Our work draws inspiration from this structural

SVM literature, and makes use of the Frank-Wolfe algo-

rithm to solve a subtask of our overall LP minimization

method. Efficiency, however, could only be achieved thanks

to our modification of the efficient filtering procedure to

handle ordering constraints.

To the best of our knowledge, our approach constitutes

the first LP minimization algorithm for dense CRFs to have

linear time iterations. Our experiments demonstrate the im-

portance of this result on both speed and labelling quality.

Being fast, our algorithm can be incorporated in any end-to-

end learning framework, such as [28]. We therefore believe

that it will have a significant impact on future semantic seg-

mentation results, and potentially in other applications.

6. Experiments
In this section, we first discuss two variants that further

speedup our algorithm and some implementation details.

We then turn to the empirical results.

6.1. Accelerated variants

Empirically we observed that, our algorithm can be ac-

celerated by restricting the optimization procedure to affect

only relevant subsets of labels and pixels. These subsets can

be identified from an intermediate solution of PROX-LP. In

particular, we remove the label i from the optimization if

ya:i < 0.01 for all pixels a. In other words, the score of a

label i is insignificant for all the pixels. We denote this ver-

sion as PROX-LPℓ. Similarly, we optimize over a pixel only

if it is uncertain in choosing a label. Here, a pixel a is called

uncertain if maxi ya:i < 0.95. In other words, no label has

a score higher than 0.95. The intuition behind this strategy

is that, after a few iterations of PROX-LPℓ, most of the pix-

els are labelled correctly, and we only need to fine tune the

few remaining ones. In practice, we limit this restricted set

to 10% of the total number of pixels. We denote this accel-

erated algorithm as PROX-LPacc. As shown in our experi-

ments, PROX-LPacc yields a significant speedup at virtually

no loss in the quality of the results.

6.2. Implementation details
In practice, we initialize our algorithm with the solution

of the best continuous relaxation algorithm, which is called

DCneg in [6]. The parameters of our algorithm, such as the

proximal regularization constant λ and the stopping crite-

ria, are chosen manually. A small value of λ leads to eas-

ier minimization of the proximal problem, but also yields

smaller steps at each proximal iteration. We found λ = 0.1
to work well in all our experiments. We fixed the maximum

number of proximal steps (K in Algorithm 1) to 10, and

each proximal step is optimized for a maximum of 5 Frank-

Wolfe iterations (T in Algorithm 1). In all our experiments

the number of levels H is fixed to 10.

6.3. Segmentation results
We evaluated our algorithm on the MSRC and Pas-

cal VOC 2010 [7] segmentation datasets, and compare it

against mean-field inference (MF) [12], the best performing

continuous relaxation method of [6] (DCneg) and the subgra-

dient based LP minimization method of [6] (SG-LP). Note

that, in [6], the LP was initialized with the DCneg solution

and optimized for 5 iterations. Furthermore, the LP opti-

mization was performed on a subset of labels identified by

the DCneg solution in a similar manner to the one discussed

in Section 6.1. We refer to this algorithm as SG-LPℓ. For all

the baselines, we employed the respective authors’ imple-

mentations that were obtained from the web or through per-

sonal communication. Furthermore, for all the algorithms,

the integral labelling is computed from the fractional solu-

tion using the argmax rounding scheme.

For both datasets, we used the same splits and unary po-

tentials as in [12]. The pairwise potentials were defined us-

ing two kernels: a spatial kernel and a bilateral one [12].

For each method, the kernel parameters were cross vali-

dated on validation data using Spearmint [24] (with a bud-

get of 2 days). To be able to compare energy values, we

then evaluated all methods with the same parameters. In

other words, for each dataset, each method was run several

times with different parameter values. Note that, on MSRC,

cross-validation was performed on the less accurate ground

truth provided with the original dataset. Nevertheless, we

evaluated all methods on the accurate ground truth annota-

tions provided by [12].

The results for the parameters tuned for DCneg on the

MSRC and Pascal datasets are given in Table 1. Here MF5

3303

0 5 10 15 20 25 30 35 40

Time (s)

1

2

3

4

5

6

7

8

9

10

In
te
gr
al

en
er
gy

×10
6

MF
DCneg
SG-LP
SG-LPℓ

PROX-LP
PROX-LPℓ

PROX-LPacc

1 2 3

1.2

1.4

1.6

1.8

2

2.2

2.4

×10
6

0 50 100 150 200

Time (s)

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7

In
te
gr
al

en
er
gy

×10
5

MF
DCneg
SG-LP
SG-LPℓ

PROX-LP
PROX-LPℓ

PROX-LPacc

5 10 15 20

5.04

5.06

5.08

5.1

5.12

5.14

5.16

5.18

5.2
×10

5

Figure 2: Assignment energy as a function of time with the parameters tuned for DCneg for an image in (left) MSRC and

(right) Pascal. A zoomed-in version is shown next to each plot. Except MF, all other algorithms are initialized with DCneg.

Note that PROX-LP clearly outperforms SG-LPℓ by obtaining much lower energies in fewer iterations. Furthermore, the

accelerated versions of our algorithm obtain roughly the same energy as PROX-LP but significantly faster.

Algorithm MF5 MF DCneg
SG-

LPℓ

PROX-

LP

PROX-

LPℓ

PROX-

LPacc

Avg. E

(×103)

Avg. T

(s)
Acc. IoU

M
S

R
C

MF5 - 0 0 0 0 0 0 8078.0 0.2 79.33 52.30

MF 96 - 0 0 0 0 0 8062.4 0.5 79.35 52.32

DCneg 96 96 - 0 0 0 0 3539.6 1.3 83.01 57.92

SG-LPℓ 96 96 90 - 3 1 1 3335.6 13.6 83.15 58.09

PROX-LP 96 96 94 92 - 13 45 1274.4 23.5 83.99 59.66

PROX-LPℓ 96 96 95 94 81 - 61 1189.8 6.3 83.94 59.50

PROX-LPacc 96 96 95 94 49 31 - 1340.0 3.7 84.16 59.65

P
as

ca
l

MF5 - 13 0 0 0 0 0 1220.8 0.8 79.13 27.53

MF 2 - 0 0 0 0 0 1220.8 0.7 79.13 27.53

DCneg 99 99 - - 0 0 0 629.5 3.7 80.43 28.60

SG-LPℓ 99 99 95 - 5 12 12 617.1 84.4 80.49 28.68

PROX-LP 99 99 95 84 - 32 50 507.7 106.7 80.63 28.53

PROX-LPℓ 99 99 86 86 64 - 43 502.1 22.1 80.65 28.29

PROX-LPacc 99 99 86 86 46 39 - 507.7 14.7 80.58 28.45

Table 1: Results on the MSRC and Pascal datasets with the parameters tuned for DCneg. We show: the percentage of images

where the row method strictly outperforms the column one on the final integral energy, the average integral energy over the

test set, the average run time, the segmentation accuracy and the intersection over union score. Note that all versions of

our algorithm obtain much lower energies than the baselines. Interestingly, while our fully accelerated version does slightly

worse in terms of energy, it is the best in terms of the segmentation accuracy in MSRC.

denotes the mean-field algorithm run for 5 iterations. In

Fig. 2, we show the assignment energy as a function of time

for an image in MSRC (the tree image in Fig. 3) and for an

image in Pascal (the sheep image in Fig. 3). Furthermore,

we provide some of the segmentation results in Fig. 3.

In summary, PROX-LPℓ obtains the lowest integral en-

ergy in both datasets. Furthermore, our fully accelerated

version is the fastest LP minimization algorithm and always

outperforms the baselines by a great margin in terms of en-

ergy. From Fig. 3, we can see that PROX-LPacc marks most

of the crucial pixels (e.g., object boundaries) as uncertain,

and optimizes over them efficiently and effectively. Note

that, on top of being fast, PROX-LPacc obtains the highest

accuracy in MSRC for the parameters tuned for DCneg.

To ensure consistent behaviour across different energy

parameters, we ran the same experiments for the parameters

tuned for MF. In this setting, all versions of our algorithm

again yield significantly lower energies than the baselines.

Due to space constraint, results on MSRC for selected algo-

rithms are summarized in Table 2, and complete results for

this parameter setting are given in Appendix C.2.

Our observation that a lower energy does not necessarily

result in improved segmentation is an important one (simi-

lar behaviour was observed in [6, 26]). Indeed, this lack of

correlation between the dense CRF energy and the segmen-

tation accuracy highlights the importance of performing a

more thorough analysis of the dense CRF model.

6.4. Modified filtering method

We then compare our modified filtering method, de-

scribed in Section 4, with the divide-and-conquer strategy

3304

Image MF DCneg SG-LPℓ PROX-LP PROX-LPℓ Uncertain PROX-LPacc Ground truth

Figure 3: Qualitative results with the parameters tuned for DCneg for an image in (top) MSRC and (bottom) Pascal. The

uncertain pixels identified by PROX-LPacc are marked in white. Note that, in both images, all versions of our algorithm

obtain visually good segmentations. In addition, PROX-LPacc identifies the crucial pixels (object boundaries) as uncertain

and efficiently optimizes over them. Furthermore, in the MSRC image, the improvement of PROX-LPacc over the baselines is

clearly visible, and the final segmentation is virtually the same as the accurate ground truth. (Best viewed in color)

Algorithm
Avg. E

(×103)

Avg. T

(s)
Acc. IoU

MF 1053.6 13.0 83.86 59.75

DCneg 812.7 2.8 83.50 59.67

PROX-LPacc 295.9 7.9 83.03 58.97

Table 2: Results on MSRC with the parameters tuned for

MF. Our method obtains the lowest energy, however, as ex-

pected, since the parameters are tuned for MF, this infer-

ence strategy yields the best accuracy.

of [6]. To this end, we evaluated both algorithms on one

of the Pascal VOC test images (the sheep image in Fig. 3),

but varying the image size, the number of labels and the

Gaussian kernel standard deviation. Note that, to gener-

ate a plot for one variable, the other variables are fixed to

their respective standard values. The standard value for the

number of pixels is 187500, for the number of labels 21,

and for the standard deviation 1. For this experiment, the

conditional gradients were computed from a random primal

solution ỹt. In Fig. 4, we show the speedup of our modified

filtering approach over the one of [6] as a function of the

number of pixels and labels. As shown in Appendix C.4,

the speedup with respect to the kernel standard deviation is

roughly constant. The timings were averaged over 10 runs,

and we observed only negligible timing variations between

the different runs.

In summary, our modified filtering method is 10 − 65
times faster than the state-of-the-art algorithm of [6]. Fur-

thermore, note that all versions of our algorithm operate in

the region where the speedup is around 45− 65.

7. Discussion

We have introduced the first LP minimization algorithm

for dense CRFs with Gaussian pairwise potentials whose

iterations are linear in the number of pixels and labels.

Thanks to the efficiency of our algorithm and to the tight-

ness of the LP relaxation, our approach yields much lower

0.5 1 1.5 2

Number of pixels ×10
5

10

20

30

40

50

60

S
p
e
e
d
u
p

0 5 10 15 20

Number of labels

10

20

30

40

50

60

Spatial kernel (d = 2)

0.5 1 1.5 2

Number of pixels ×10
5

10

20

30

40

50

S
p
e
e
d
u
p

0 5 10 15 20

Number of labels

10

20

30

40

50

Bilateral kernel (d = 5)

Figure 4: Speedup of our modified filtering algorithm over

the divide-and-conquer strategy of [6] on a Pascal image.

Note that our speedup grows with the number of pixels and

is approximately constant with respect to the number of la-

bels. (Best viewed in color)

energy values than state-of-the-art dense CRF inference

methods. Furthermore, our experiments demonstrated that,

with the right set of energy parameters, highly accurate seg-

mentation results can be obtained with our algorithm. The

speed and effective energy minimization of our algorithm

make it a perfect candidate to be incorporated in an end-to-

end learning framework, such as [28]. This, we believe, will

be key to further improving the accuracy of deep semantic

segmentation architectures.

8. Acknowledgements

This work was supported by the EPSRC, the ERC grant

ERC- 2012-AdG 321162-HELIOS, the EPSRC/MURI

grant ref EP/N019474/1, the EPSRC grant EP/M013774/1,

the EPSRC programme grant Seebibyte EP/M013774/1, the

Microsoft Research PhD Scholarship, ANU PhD Scholar-

ship and Data61 Scholarship. Data61 (formerly NICTA) is

funded by the Australian Government as represented by the

Department of Broadband, Communications and the Digital

Economy and the Australian Research Council through the

ICT Centre of Excellence program.

3305

References

[1] A. Adams, J. Baek, and M. Davis. Fast high-dimensional

filtering using the permutohedral lattice. Computer Graphics

Forum, 2010. 1, 4, 5

[2] F. Bach. Duality between subgradient and conditional gradi-

ent methods. SIAM Journal on Optimization, 2015. 4

[3] S. Boyd and L. Vandenberghe. Convex optimization. Cam-

bridge university press, 2009. 3

[4] C. Chekuri, S. Khanna, J. Naor, and L. Zosin. A linear pro-

gramming formulation and approximation algorithms for the

metric labeling problem. SIAM Journal on Discrete Mathe-

matics, 2004. 2, 6

[5] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. Yuille. Semantic image segmentation with deep convo-

lutional nets and fully connected CRFs. ICLR, 2014. 5

[6] A. Desmaison, R. Bunel, P. Kohli, P. Torr, and P. Kumar.

Efficient continuous relaxations for dense CRF. ECCV, 2016.

1, 2, 4, 5, 6, 7, 8

[7] M. Everingham, L. Van Gool, C. Williams, J. Winn, and

A. Zisserman. The pascal visual object classes (VOC) chal-

lenge. IJCV, 2010. 1, 6

[8] M. Frank and P. Wolfe. An algorithm for quadratic program-

ming. Naval research logistics quarterly, 1956. 1, 3, 6

[9] J. Kleinberg and E. Tardos. Approximation algorithms for

classification problems with pairwise relationships: metric

labeling and markov random fields. Journal of the ACM,

2002. 1, 2, 6

[10] V. Kolmogorov. Convergent tree-reweighted message pass-

ing for energy minimization. PAMI, 2006. 6

[11] N. Komodakis, N. Paragios, and G. Tziritas. MRF energy

minimization and beyond via dual decomposition. PAMI,

2011. 6

[12] P. Krähenbühl and V. Koltun. Efficient inference in fully

connected CRFs with gaussian edge potentials. NIPS, 2011.

1, 2, 4, 5, 6

[13] R. Krishnan, S. Lacoste-Julien, and D. Sontag. Barrier

Frank-Wolfe for marginal inference. NIPS, 2015. 6

[14] P. Kumar and D. Koller. MAP estimation of semi-metric

MRFs via hierarchical graph cuts. UAI, 2009. 6

[15] P. Kumar, V. Kolmogorov, and P. Torr. An analysis of convex

relaxations for MAP estimation of discrete MRFs. JMLR,

2009. 1

[16] S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher.

Block-coordinate Frank-Wolfe optimization for structural

SVMs. ICML, 2012. 1, 3, 6

[17] R. Manokaran, J. Naor, P. Raghavendra, and R. Schwartz.

SDP Gaps and UGC Hardness for Multiway Cut, 0-

Extension and Metric Labeling. STOC, 2008. 2

[18] O. Meshi, M. Mahdavi, and A. Schwing. Smooth and strong:

MAP inference with linear convergence. NIPS, 2015. 6

[19] A. Osokin, J. Alayrac, I. Lukasewitz, P. Dokania, and

S. Lacoste-Julien. Minding the gaps for block Frank-Wolfe

optimization of structured SVMs. ICML, 2016. 6

[20] N. Parikh and S. Boyd. Proximal algorithms. Foundations

and Trends in Optimization, 2014. 1, 2

[21] P. Ravikumar, A. Agarwal, and M. Wainwright. Message-

passing for graph-structured linear programs: proximal pro-

jections, convergence and rounding schemes. ICML, 2008.

6

[22] A. Schwing and R. Urtasun. Fully connected deep structured

networks. CoRR, 2015. 5

[23] N. Shah, V. Kolmogorov, and C. Lampert. A multi-plane

block-coordinate Frank-Wolfe algorithm for training struc-

tural SVMs with a costly max-oracle. CVPR, 2015. 6

[24] J. Snoek, H. Larochelle, and R. Adams. Practical bayesian

optimization of machine learning algorithms. NIPS, 2012. 6

[25] M. Wainwright, T. Jaakkola, and A. Willsky. MAP estima-

tion via agreement on trees: message-passing and linear pro-

gramming. Information Theory, 2005. 6

[26] P. Wang, C. Shen, and A. van den Hengel. Efficient SDP

inference for fully-connected CRFs based on low-rank de-

composition. CVPR, 2015. 7

[27] X. Xiao and D. Chen. Multiplicative iteration for nonnega-

tive quadratic programming. Numerical Linear Algebra with

Applications, 2014. 3

[28] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet,

Z. Su, D. Du, C. Huang, and P. Torr. Conditional random

fields as recurrent neural networks. ICCV, 2015. 5, 6, 8

3306

