
Unsupervised Vanishing Point Detection and Camera Calibration

from a Single Manhattan Image with Radial Distortion

Michel Antunes1, João P. Barreto2, Djamila Aouada1, and Björn Ottersten1

1Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg,

{michel.antunes,djamila.aouada,bjorn.ottersten}@uni.lu
2Institute of Systems and Robotics (ISR), University of Coimbra,

jpbar@deec.uc.pt

Abstract

The article concerns the automatic calibration of a cam-

era with radial distortion from a single image. It is known

that, under the mild assumption of square pixels and zero

skew, lines in the scene project into circles in the image,

and three lines suffice to calibrate the camera up to an am-

biguity between focal length and radial distortion. The cali-

bration results highly depend on accurate circle estimation,

which is hard to accomplish, because lines tend to project

into short circular arcs. To overcome this problem, we show

that, given a short circular arc edge, it is possible to ro-

bustly determine a line that goes through the center of the

corresponding circle. These lines, henceforth called Lines

of Circle Centres (LCCs), are used in a new method that de-

tects sets of parallel lines and estimates the calibration pa-

rameters, including the center and amount of distortion, fo-

cal length, and camera orientation with respect to the Man-

hattan frame. Extensive experiments in both semi-synthetic

and real images show that our algorithm outperforms state-

of-the-art approaches in unsupervised calibration from a

single image, while providing more information.

1. Introduction

The 3D reconstruction of a scene from multiple images is

a widely investigated topic in computer vision [1, 16]. The

abundance of imagery in the internet has motivated recent

efforts toward single view reconstruction. The works in sin-

gle view reconstruction can be broadly divided into learn-

ing, e.g. [10], or geometrical based, e.g. [14]. The first cat-

egory usually requires 2D or 3D data for the learning task,

while the second uses assumptions about the layout of the

scene for restricting the reconstruction process. Learning

based approaches are nowadays showing very promising re-

Figure 1. Unsupervised calibration from a single image with ra-

dial distortion. Traditional approaches (top) start by estimating

circles from edges, and use these circles for performing the cal-

ibration. The quality of the estimated circles is usually low, and

this has significant impact in the calibration accuracy. We propose

a new framework (bottom) that simultaneously performs circle fit-

ting and VP estimation for accurate calibration.

sults. However, they usually only provide an approximation

of the scene being perceived [15, 10, 22]. The actual 3D

scene can only be recovered using geometric approaches.

Many geometric based approaches use the assumption of

orthogonality in man-made environments for computing a

3D model of the scene [6, 11, 14, 23]. They usually require

that the intrinsic camera calibration information is available

[14, 23], or the images do not exhibit significant radial dis-

tortion (RD) [11]. Nowadays, wide-angle-lenses incorpo-

rated into small cameras, e.g. GoPro, are ubiquitous, and

single image reconstruction techniques handling also this

type of imagery would be desirable. There are several meth-

ods and approaches for the calibration of cameras with RD

[25, 18]. However, they require multiple images and/or the

acquisition of a known object (e.g. checkerboard), which is,
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in many cases, not possible.

Table 1. Computed calibration parameters.
Solver cη η f R Assumptions

R3l [13, 24] X X ✗ ✗ no

R5l [21] ✗ X X X Manhattan

R7C (ours) X X X X Manhattan

Promising works for unsupervised single image calibra-

tion with RD were recently introduced [4, 13, 21, 24]. As

depicted in Fig. 1, all these works start by detecting cir-

cles1 in the image that are likely to be projections of scene

lines. They use minimal solvers in a consensus maximiza-

tion [4, 21] or energy minimization [13, 24] frameworks for

computing some of the calibration parameters (refer to Ta-

ble 1). It is rather obvious that the quality of the circle es-

timation in images with RD has a direct impact in the ac-

curacy of camera calibration. The major problem of scene

lines in images with RD is that the perceived arc is small,

and it is difficult to accurately estimate the circle parame-

ters even for low noise levels [2]. The works [13, 24] try to

overcome this issue by clustering circular arc edges that are

spatially separated. Nevertheless, dependence on the qual-

ity of the estimated circles for the calibration still remains.

1.1. Contributions

This paper proposes a new framework for simultane-

ously performing the circle fitting and vanishing point (VP)

estimation for accurate camera calibration using a single

image with RD (refer to Fig. 1). The contributions can be

summarized as follows:

1. Line of circle centers (LCC): Given a circular arc edge,

we show that the minor axis of the scattering ellipse,

herein called the LCC, provides a robust 1D restriction

for the location of the circle center. The LCC can be

understood as a circle pencil, and can also be repre-

sented by a line in the circle space P
3. We propose to

use the LCCs for the calibration;

2. VPs in images with RD: We analyse the geometry of

projection of parallel lines in images with RD, and

show that it defines a line in the circle space P
3. This

line can be efficiently computed from 4 LCCs belong-

ing to parallel lines in 3D;

3. Camera calibration using VPs and LCCs: We present

a method based on a minimal solution that uses 7 LCCs

for extracting the calibration parameters from the de-

tection of two orthogonal VP models. In contrast to

1As mentioned in [13], lines in 3D are projected into conic curves. The

weak assumption about the camera aspect ratio and skew improves the re-

sults, and the standard values (one and zero, respectively) are adequate for

obtaining an initial estimation that can be refined using iterative schemes.

In this case, the line projections can be represented by circles.

existing solutions (refer to Table 1), our method pro-

vides an estimate of the center cη and amount η of dis-

tortion, the focal length f , and the camera rotation R

with respect to the Manhattan frame.

2. Background

This section briefly reviews background concepts that

are used throughout the article.

2.1. Circle fitting

We detect circular arcs using the approach proposed in

[21], and denote a circular arc segment by e. The canonical

equation of a circle fitted to e is given by

(x− a)2 + (y − b)2 = R2,

where (x, y) is a generic data point in e, (a, b) is the cen-

ter and R is the radius of the circle. The standard circle

parameters a = (a, b, R) have several drawbacks [5], and

usually the algebraic parameters A =
[
A B C D

]T
are

applied:

AT
[
z x y 1

]T
= 0,

where z = x2 + y2, and with the constraints of A 6= 0 and

B2+C2−4AD>0. The conversion between algebraic and

geometric parameters can be consulted in [5]. For a given

circular arc, the standard parameters a will be used for rea-

soning in the image space, while the algebraic parameters

A will be used for geometric analyses in the circle space

P
3. The distance for measuring how well e containing n

points agrees with a is given by:

d(e,a)=






∑n
k=1

(√

(xk−a)2+(yk−b)2−R
)2

n






1/2

.

(1)

2.2. Plücker coordinates

The geometric analysis of the projection of lines in im-

ages with RD will be partially carried in the circle space

P
3. In this regard, we need to represent lines in 3D. As dis-

cussed in [17], a 3D line can be represented by a 6D vector

of Plücker coordinates. Given two 3D points P and Q, the

plücker coordinates are given by:

Π =






Π1

...

Π6




 ∼

[
D

M

]

∼

[
P−Q

P×Q

]

.

Two different lines Π and Π′ intersect if and only if:

Π⊙Π′ = DTM′ +D′TM = 0,
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and the lines need to satisfy the Plücker constraint

Π⊙Π = 0. (2)

The dual of the Plücker line Π is given by

Π∗ =

[
M

D

]

.

2.3. Lines through four lines

In [20], Teller and Hohmeyer describe how to compute

the lines that intersect four lines in 3D. The authors repre-

sent the 3D lines using Plücker coordinates, and explain that

each 3D line is mapped to a hyperplane in P
5. Four such hy-

perplanes in general position intersect a line in P
5, and in-

tersecting this line with the Plücker quadric determines the

incident lines. Since we use a different Plücker represen-

tation from the one used in [20], and also because we will

need to modify the solution presented in [20] for adding

a particular restriction, we briefly describe how the lines

intersecting four lines C1, C2, C3 and C4 represented in

Plücker coordinates can be computed.

First, the following matrix is constructed

M =
[
C∗

1
C∗

2
C∗

3
C∗

4

]T
.

Assuming that M is full rank, then the null-space of M has

two dimensions and can be parametrized as

I = tF+G, (3)

where F and G are unitary vectors, and t is a scalar. The

condition of Eq. 2 needs to be verified, meaning that I⊙I =
0. Using Eq. 3 comes that

(F⊙ F) t2 + 2 (F⊙G) t+G⊙G = 0,

from which t can be computed, and by substituting t in

Eq. 3, the incident lines I can be recovered.

3. Line of circle centers (LCC)

In this section, it is shown that the circle center of noise

free arc edge points is located on the minor axis of the scat-

tering ellipse, and that in case of noisy edge points, this line,

called LCC in this article, provides an accurate and robust

1D restriction about the location of the circle center.

3.1. Chord method for circle fitting

As explained in [5], a simple circle fitting approach is

the chord method. For any two points that lie on a circle,

the perpendicular bisector of the line connecting these two

points, called the chord, intersects the circle center. For

estimating the circle center, the chord method minimizes

the distance of the circle center to all perpendicular bisec-

tors, usually using a certain weighting factor [5]. The chord

(a) No noise (b) With noise (c) Error distance

Figure 2. Circle fitting and LCC. (a) The center of the ground truth

(gt) circle (green), related to the edge points in e, is located on the

minor axis (blue) of the scattering ellipse (magenta). We call c

the LCC. (b) In case of noise, the circle obtained using the Taubin

fit (red) is different from the gt, and c does not intersect the gt

center. (c) In Fig. 3, we compare the distance do between the gt

and Taubin centers, and the distance dc from the gt center to c.

method is not efficient and rarely used, but will give insights

that are relevant for constraining the circle fitting procedure.

Given a noise free circular arc, there is a particular bisec-

tor whose sum of corresponding chord weights is the high-

est (refer to the supplementary material). This is the line

that best divides the circular points in two parts. In case

of noise, there is a unique perpendicular bisector for each

point chord. Nevertheless, we show in the next section that

it is possible to compute a line that best divides the circle

points even under noise.

3.2. 1D restriction for circle fitting

As discussed previously, the problem of the projection

of scene lines in images with RD is that the perceived arc

is small, and circle fitting methods are inaccurate even for

small noise magnitudes [2]. To avoid the estimation of

all circle parameters for each arc edge a priori, we aim at

constraining the circle search space for each edge, and use

global information for the actual circle fitting.

Inspired by the chord method described in the previous

section, our objective is to compute a line that constrains

the location of the circle center. A cue is to use the line that

best divides the edge points in two parts. In case of noise,

this can be achieved using the minor axis of the scattering

ellipse (refer to Fig. 2). The scattering ellipse is defined by

the scatter matrix:

S =

[
sxx sxy
sxy syy

]

,

where sxx =
∑n

k=1
(xk − x̄)2, syy =

∑n
k=1

(yk − ȳ)2,

sxy=
∑n

k=1
(xk−x̄)(yk− ȳ), x̄ and ȳ are the coordinates of

the centroid. The scatter matrix S defines the spread of the

points around the centroid. The minor axis of the scattering

ellipse intersects the centroid of the edge points (x̄, ȳ) and

the angle can be computed as follows:

θ =
1

2
atan

(
2sxy

sxx − syy

)

.
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(b) distance dc

Figure 3. Taubin fit vs. LCC. Referring to Fig. 2, (a) distance of

gt and estimated centers; (b) distance of gt centers and LCCs c.

The analysis is carried for different noise levels (x-axis); number

of arc points (rows), from top to bottom: 20, 50 and 100 points, re-

spectively; and arc lengths (colors). For each combination of noise

level, number of points and arc length, 50k runs were realized and

the mean values are shown.

Refer to [5] where this equation is used for estimating a line

fitting a set of points. We call the minor axis of the scatter-

ing ellipse the LCC, because we will use it as a 1D restric-

tion for the location of the circle centers to be estimated.

3.3. Robustness of the LCC

This section analyses the suitability of using the LCC for

constraining the location of the circle center. This is done by

comparing the accuracy and robustness with the popular cir-

cle fitting method called the Taubin fit [19]. Refer to Fig. 3

for synthetic comparison experiments. A careful analysis of

the graphics shows that the distance dc of the ground truth

center to the LCCs is always smaller than the distance do
between the ground truth and estimated centers, and that

the LCCs are much more robust to increasing noise magni-

tude and decreasing arc length. The next sections show how

global information can be used for determining a circle on

this pencil for fitting a circular arc edge.

4. VPs in images with radial distortion

This section concerns the geometric analysis of the pro-

jection of parallel scene lines in images with RD. We show

that a VP defines a line in the circle space P3, and that it can

be estimated using 4 LCCs.

(a) 3 circles (red, green and blue) define the calibration plane (yellow)

(b) 3 circles (red, green and blue) that are the projection of parallel scenes

lines lie on a line (black) on the calibration plane (yellow)

(c) 4 LCCs (red, green, blue and magenta) define a line (black) on the

calibration plane (yellow)

Figure 4. Line projections in images with radial distortion. The

calibration plane Ψ and VP model L in the circle space P
3 can be

computed using circles or LCCs.

4.1. Calibration plane

We consider the case of cameras with zero skew, uni-

tary aspect ratio and RD that can be described by the 1-

parameter division model [8]. In this case, the matrix of

intrinsic parameters is:

K =





f 0 cx
0 f cy
0 0 1



 , (4)

where f is the focal length, and cη =
[
cx cy

]T
is the dis-

tortion center and principal point. An undistorted point u is

distorted into point d as

d = h(u) = cη −
2cη − 2u

1 +
√

1− 4ηr2
, (5)

where r2 = (ux − cx)
2 + (uy − cy)

2, and η quantifies

the amount of distortion in pixels. As discussed in the

seminal paper of Barreto and Daniilidis [3], a line n =
[
nx nz ny

]T
in the scene is projected into a circle that

is given by the following equation

Λ







η
nx − 2cxη
ny − 2cyη

nz +
(
c2x + c2y

)
η







T

︸ ︷︷ ︸

A







(x2 + y2)
x
y
1






= 0, (6)
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where Λ= (nz + cxnx + cyny). Note that the circle A of

Eq. 6 defines a point in the circle space P3. Given that there

are three unknowns, from three circles in general position,

the calibration parameters cx, cy and η can be recovered.

Referring to Fig. 4(a), this can be geometrically interpreted

as the three circles defining a plane, henceforth called the

calibration plane, that is given by

Ψ =
[
c2x + c2y − 1/η cx cy 1

]T
. (7)

4.2. VPs in images with radial distortion

As mentioned previously, a set of parallel lines in the

scene project into a pencil of lines intersecting a VP. In case

of images with RD and with intrinsic calibration as in Eq. 4,

the projection of 3D lines are given by circles. In this case,

the geometry of VPs is slightly different.

Let us consider the projection of two parallel scene lines

n1 and n2 that intersect the VP p =
[
px py 1

]T
in the

undistorted image plane. Consider the projections in the

distorted image plane as a1 and a2. The corresponding cir-

cle centers (a1, b1) and (a2, b2), respectively, define a line

(refer to Fig. 4(b)):

l =





a1
b1
1



×





a2
b2
1



 =





−2η(cx − px)
−2η(cy − py)

2η(−c2x + pxcx − c2y + pycy) + 1



 .

Let us now consider a third projection of a scene line n3 that

also intersects p. It can be shown that lT
[
a3 b3 1

]T
=0.

This means that the projection of parallel lines in 3D will

have the corresponding circle centers on a particular line l,

which depends on the center and the amount of distortion,

and the direction of the lines in 3D.

Let us now analyse the intersection points of a1 and a2.

There is the distorted VP given by

pd = h(p),

where h() is the RD function in Eq. 5. Computing the dis-

tance d from pd to l comes that

d = lTpd =

√

1− 4ηr2

2η(−c2x + pxcx − c2y + pycy) + 1
.

Note that there is only a particular combination of r and

positive η (pincushion distortion) for which there is a single

intersection point (d = 0), in all other cases there are two

(d>0). We are concerned with wide-angle lenses (negative

η), and henceforth assume that there are always two inter-

section points. Given that the circle centers of a1 and a2 lie

on the same line l, then the second intersection point is the

reflection of pd about l:

pd
r = 2cη − pd +D,

where

D = −
1

ηr2

[
cx − px
cy − py

]

.

Remark that pd
r can also be obtained using the backward

projection function. As conclusion, the projection of paral-

lel lines in images with RD defines a line l where the circle

centers are located, and two intersection points pd and pd
r

that are reflected with respect to l.

The previous analysis also means that the images of a

set of lines with the same direction in 3D is a circle pencil.

Using Eq. 6, the family of line images with the same VP

defines a line in the space of circles P
3 that is computed

using Plücker coordinates (refer to Fig. 4(b)):

L=











cxpy − cypx
(c2x − c2y)(cy − py)− 2c2xcy + pyη

−1 + 2cxcypx
c3x − pxc

2

x + cxc
2

y − 2pycxcy + pxc
2

y − pxη
−1

2c2x − 2pxcx + 2c2y − 2pycy − η−1

cx − px
cy − py











.

(8)

It can be shown that the line l, and the points pd and pd
r can

be recovered from L.

4.3. Four LCCs define a VP

We have discussed in the previous section that the pro-

jection of parallel lines define a line L in the calibration

plane Ψ. In this regard, the projection of two parallel scene

lines (circles) is enough to compute L and the VP geometry

(refer to Fig. 4(b)).

Let us now consider the LCCs. Referring to Fig. 4(c)

and as discussed in Sec. 3, from each circular arc edge it is

possible to compute a LCC, which serves as a 1D restric-

tion for the location of the circle center. This line c can also

be understood as a circle pencil, and defines a 3D line C

in the circle space P
3. As shown in Fig. 4(c), every point

on C defines a different circle in the image space. From

the paper of Teller and Hohmeyer [20] briefly discussed in

Sec. 2.3, we know that four generic 3D lines are required

for determining incident lines. Following this, using four

LCCs it is possible to compute L and the complete VP ge-

ometry. Note that the method of Teller and Hohmeyer [20]

usually provides two solutions. The one that minimizes the

consistency function described in Sec. 5.3 is selected. Fi-

nally, the intersection of L with the LCCs defines the circle

parameters fitting the corresponding edge points.

5. Camera Calibration using LCCs

This section presents a method for detecting VPs and cal-

ibrating a camera from a single image using LCCs.
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5.1. Calibration plane from two VPs

We have seen in Sec. 4.3 that from four LCCs belonging

to parallel scene lines, the VP geometry represented by the

line L can be estimated (refer to Eq. 8). In order to estimate

the calibration plane, we need two such lines. This section

shows how the calibration plane Ψ can be computed from

two sets of arc edges that belong to parallel lines in 3D.

Let us suppose we are given four LCCs C1, C2, C3 and

C4 that belong to parallel scene lines, from which L1 is

computed using the method described in Sec. 4.3. For ob-

taining a second VP model L2, we could use again four

LCCs belonging to a different VP. Note however that this

would not be a minimal solution for computing Ψ, because

we would have 4 LCCs plus L1, which makes in total five

lines, and only four are required (refer to Sec. 4.3). Follow-

ing this, we propose to compute L2 using three LCCs C5,

C6 and C7 and the (co-planarity) restriction that it should

also intersect R = L1. This is done by modifying the solu-

tion of Teller and Hohmeyer in Sec. 2.3 as follows:

1. Construct the matrix M =
[
C∗

5
C∗

6
C∗

7

]T
;

2. Define I = uE + vF + G, since the null-space of M

has now three dimensions;

3. By defining I⊙R = 0, it can be shown that

u = X + Y v, (9)

where

X=−

(G3R1 +G1R6 −G2R5 +G4R4 +G5R3 −G6R2)

(E3R1 + E1R6 − E2R5 + E4R4 + E5R3 −R6R2)

Y =−

(F3R1 + F1R6 − F2R5 + F4R4 + F5R3 − F6R2)

(E3R1 + E1R6 − E2R5 + E4R4 + E5R3 −R6R2)

4. By substituting Eq. 9 in 2., and considering I⊙ I = 0,

the lines piercing C5, C6, C7 and R can be computed.

Using L1 and L2, the plane Ψ can be estimated, and the

parameters cx, cy and η can be extracted using Eq. 7.

5.2. Focal length from the Manhattan assumption

Given L1 and L2, it is possible to calculate the two VPs

p1 and p2 in the undistorted image plane using Eq. 8. As-

suming that p1 and p2 are orthogonal, then the focal length

f can be determined [9]:

f =

√

−p1xp
2
x − p1yp

2
y

p1zp
2
z

.

Finally, it can be shown that the third orthogonal VP be-

longing to the Manhattan frame is given by [9]:

p3 =
[
f2 f2 1

] (
p1 × p2

)
.

Figure 5. The function fC(L) of Eq. 10 finds the 3D point A on

L that minimizes the orthogonal distance from the line C.

5.3. Consistency function

In order to measure how well a VP model L fits the

points of an arc edge e with LCC C, we need to compute

a circle from C that agrees with L (refer to Fig. 5). As

shown in [12], the point on L that minimizes the orthogonal

distance from C can be computed using the function

fC(L) =
ML × (DC ×D×) + (−(MC)

T
D×)D

L

||D×||2
,

(10)

where D× = DL×DC . The consistency function between

e and L is then given by

D(e,L) = d(e, fC(L)), (11)

where d() is defined in Eq. 1.

5.4. Method for camera calibration

We propose a RANSAC based framework for camera

calibration by extracting dominant VPs using LCCs. We

start by detecting circular arc edges, and for each arc edge

compute the corresponding LCC, as discussed in Sec. 3.

Then, a minimal sample set of 7 LCCs is drawn, of which 4
are taken to compute the VP model L1 and the remaining 3
are used for computing L2. From L1 and L2, we can com-

pute the calibration parameters and Manhattan frame, as de-

scribed in Sec. 5.1 and Sec. 5.2. From each RANSAC iter-

ation, a hypothesis H= {cx, cy, η, f,R} is obtained, where

R represents the camera rotation. The hypothesis that max-

imizes the inlier consensus is selected. An edge e is con-

sidered as inlier of H if the consistency error of Eq. 11 is

below a pre-defined threshold for L1, L2 or L3. After the

RANSAC selection, we perform a non-linear refinement of

the calibration parameters. The idea is to simultaneously

optimize the calibration plane of Eq. 7, the focal length f ,

and the rotation R parametrized by the exponential map.

6. Experimental comparisons

This section concerns the experimental comparison of

our method, described in the previous section, with state-

of-the-art approaches. We denote our RANSAC based
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Figure 6. Comparison of R7C and R7C+NL (ours) with R3l.

Figure 7. Calibration of images from YUD using R7C+NL. 2
examples are shown (rows); (left) edges; (middle) VP labelling,

different colors identify different VPs; (right) undistorted image.

Figure 8. Calibration of images from [21] using R7C+NL. 2
examples are shown (rows); (left) edges; (middle) VP labelling;

(right) undistorted image.

calibration method using a minimal sample of 7 LCCs

by R7C and the variant using non-linear optimization as

R7C+NL. Our method provides an estimate of cx, cy ,

η, f and R. We use an inlier threshold of 2 pixels and run

RANSAC until 4000 valid solutions are found. A valid so-

lution verifies the following: η<0,f >0, and the distortion

center is located at most 200 pixels from the image center.

6.1. Comparison with R3l

In this section, we compare our method against the solver

described in [13] that uses 3 line projections for estimating

the calibration parameters cx, cy and η. Note that f and R

are not computed using this approach. We fit a circle us-

ing the Taubin fit [19] to each arc edge, and run RANSAC

until 4000 valid solutions are found. The solution that max-

imizes the number of inliers is selected. Remark that the

consistency function in Eq. 11 is modified, and instead of

using Eq. 10 for finding a circle that agrees with a VP model

L, we project the estimated circle onto the calibration plane

hypothesis Ψ and use this projection as the new circle. We

refer to this approach as R3l. The methods are tested us-

ing the York Urban Database (YUD) [7] that consists of

102 images of man-made environments, to which we artifi-

cially added RD. The experimental comparison is presented

in Fig. 6. By avoiding hard decision on the circle parameters

using LCCs, and by estimating the calibration using global

VP information, we improve the quality of the estimation

of the calibration parameters. Fig. 7 shows two cases of VP

detection and image undistortion.

6.2. Comparison with R5l [21]

In this section, we compare our method against the solver

described in [21] that uses 5 line projections for computing

η, f and R. Remark that this approach assumes that the dis-

tortion center is the center of the image. We refer to this

method as R5l and to the variant using a maximum like-

lihood estimator R5l+MLE. The methods are compared

using the dataset presented in [21] that consists of 102 im-

ages with RD. The images were pre-calibrated by placing

the distortion center and principal point fixed at the center

of the image, obtaining a focal length of 446 pixels and dis-

tortion of −1.5909×10−6 pixels. Fig. 8 shows two cases of

VP detection and image undistortion, while the quantitative

experimental comparison is presented in Fig. 9. As can be

seen, our method provides better estimations of the amount

of RD, and slightly better estimation of the focal length. In

contrast to R5l and R5l+MLE, we achieve this without

any constraint about the location of the distortion center.

Finally, we also show in Fig. 9 the distribution of our esti-

mation of the distortion center. It can be seen that cy has an

offset with respect to the image center location. .

The current drawback of our approach with respect to

[21] is the computational complexity. Their minimal so-

lution is of dimension 5, and the authors suggest to run

RANSAC until 4000 valid solutions are found, which on

average involves the evaluation of 120k hypotheses. In our

case, the minimal sample dimension is 7. We also run

RANSAC until 4000 valid solutions are found, which in-

volves on average 650k iterations.

7. Experiments with images from the Internet

Fig. 10 shows experiments on images of man-made envi-

ronments mined from the internet. These promising results

show that it is possible to accurately detect VPs and cali-

brate a camera from a single image with RD.
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Figure 9. Comparison of R5l and R5l+MLE with our methods R7C and R7C+NL. (a) and (b) Cumulative histogram of the relative

errors; (c) our distortion center estimation compared to the center of the image assumption used in R5l and R5l+MLE [21] (red lines).

Figure 10. Detection of VPs and calibration of images mined from the internet. 6 examples are shown (columns); (top) input, (second row)

VP labeling; (third row) zoom out for better visualizing the line projections and VP locations; and (last row) undistorted images.

8. Conclusions

We presented an automatic approach for the detection of

VPs and camera calibration from a single image with RD.

The core of the framework is (1) a theory that shows how

to compute LCCs for circular arc edges, which are robust to

noise and small arcs; (2) a theoretical analysis of the geom-

etry of projection of parallel lines in images with RD; and

(3) the use of LCCs for estimating camera parameters using

the Manhattan prior. The effectiveness of the approach is

proved using images downloaded from the Internet.
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