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Abstract

Semantic segmentation and object detection research

have recently achieved rapid progress. However, the former

task has no notion of different instances of the same object,

and the latter operates at a coarse, bounding-box level. We

propose an Instance Segmentation system that produces a

segmentation map where each pixel is assigned an object

class and instance identity label. Most approaches adapt

object detectors to produce segments instead of boxes. In

contrast, our method is based on an initial semantic seg-

mentation module, which feeds into an instance subnetwork.

This subnetwork uses the initial category-level segmenta-

tion, along with cues from the output of an object detector,

within an end-to-end CRF to predict instances. This part

of our model is dynamically instantiated to produce a vari-

able number of instances per image. Our end-to-end ap-

proach requires no post-processing and considers the im-

age holistically, instead of processing independent propos-

als. Therefore, unlike some related work, a pixel cannot be-

long to multiple instances. Furthermore, far more precise

segmentations are achieved, as shown by our substantial

improvements at high AP r thresholds.

1. Introduction

Semantic segmentation and object detection are well-

studied scene understanding problems, and have recently

witnessed great progress due to deep learning [21, 12, 6].

However, semantic segmentation – which labels every pixel

in an image with its object class – has no notion of different

instances of an object (Fig. 1). Object detection does lo-

calise different object instances, but does so at a very coarse,

bounding-box level. Instance segmentation localises ob-

jects at a pixel level, as shown in Fig. 1, and can be thought

of being at the intersection of these two scene understanding

tasks. Unlike the former, it knows about different instances

of the same object, and unlike the latter, it operates at a pixel

level. Accurate recognition and localisation of objects en-

ables many applications, such as autonomous driving [8],

image-editing [46] and robotics [16].

Many recent approaches to instance segmentation are

based on object detection pipelines where objects are first

localised with bounding boxes. Thereafter, each bounding

box is refined into a segmentation [18, 19, 27, 32, 26]. An-

other related approach [11, 49] is to use segment-based re-

gion proposals [9, 35, 36] instead of box-based proposals.

However, these methods do not consider the entire image,

but rather independent proposals. As a result, occlusions

between different objects are not handled. Furthermore,

many of these methods cannot easily produce segmentation

maps of the image, as shown in Fig. 1, since they process

numerous proposals independently. There are typically far

more proposals than actual objects in the image, and these

proposals can overlap and be assigned different class labels.

Finally, as these methods are based on an initial detection

step, they cannot recover from false detections.

Our proposed method is inspired by the fact that instance

segmentation can be viewed as a more complex form of se-

mantic segmentation, since we are not only required to la-

bel the object class of each pixel, but also its instance iden-

tity. We produce a pixelwise segmentation of the image,

where each pixel is assigned both a semantic class and in-

stance label. Our end-to-end trained network, which out-

puts a variable number of instances per input image, be-

gins with an initial semantic segmentation module. The

following, dynamic part of the network, then uses infor-

mation from an object detector and a Conditional Random

Field (CRF) model to distinguish different instances. This

approach is robust to false-positive detections, as well as

poorly localised bounding boxes which do not cover the

entire object, in contrast to detection-based methods to in-

stance segmentation. Moreover, as it considers the entire

image when making predictions, it attempts to resolve oc-

clusions between different objects and can produce segmen-

tation maps as in Fig. 1 without any post-processing.

Furthermore, we note that the Average Precision (AP)

metric [13] used in evaluating object detection systems, and

itsAP r variant [18] used for instance segmentation, consid-

ers individual, potentially overlapping, object predictions in

isolation, as opposed to the entire image. To evaluate meth-

ods such as ours, which produce complete segmentation

maps and reason about occlusions, we also evaluate using

the “Matching Intersection over Union” metric.

Our system, which is based on an initial semantic seg-

mentation subnetwork, produces sharp and accurate in-
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(a) Object Detection (b) Semantic Segmentation (c) Instance Segmentation
Figure 1. Object detection (a) localises the different people, but at a coarse, bounding-box level. Semantic segmentation (b) labels every

pixel, but has no notion of instances. Instance segmentation (c) labels each pixel of each person uniquely. Our proposed method jointly

produces both semantic and instance segmentations. Our method uses the output of an object detector as a cue to identify instances, but is

robust to false positive detections, poor bounding box localisation and occlusions. Best viewed in colour.

stance segmentations. This is reflected by the substan-

tial improvements we achieve over state-of-the-art methods

at high AP r thresholds on the Pascal VOC and Semantic

Boundaries datasets. Furthermore, our network improves

on the semantic segmentation task while being trained for

the related task of instance segmentation.

2. Related Work

An early work on instance segmentation was by Winn

and Shotton [44]. A per-pixel unary classifier was trained

to predict parts of an object. These parts were then encour-

aged to maintain a spatial ordering, that is characteristic of

an instance, using asymmetric pairwise potentials in a Con-

ditional Random Field (CRF).

However, instance segmentation has become more com-

mon after the “Simultaneous Detection and Segmentation”

(SDS) work of Hariharan et al. [18]. This system was based

on the R-CNN pipeline [15]: Region proposals, generated

by the method of [1], were classified into object categories

with a Convolutional Neural Network (CNN) before apply-

ing bounding-box regression as post-processing. A class-

specific segmentation was then performed in this bounding

box to simultaneously detect and segment the object. Nu-

merous works [19, 7, 26] have extended this pipeline. How-

ever, approaches that segment instances by refining detec-

tions [18, 19, 7, 10, 26] are inherently limited by the qual-

ity of the initial proposals. This problem is exacerbated by

the fact that this pipeline consists of several different mod-

ules trained with different objective functions. Furthermore,

numerous post-processing steps such as “superpixel projec-

tion” and rescoring are performed. Dai et al. [11] addressed

some of these issues by designing one end-to-end trained

network that generates box-proposals, creates foreground

masks from these proposals and then classifies these masks.

This network can be seen as an extension of the end-to-end

Faster-RCNN [37] detection framework, which generates

box-proposals and classifies them. Additionally, Liu et al.

[32] formulated an end-to-end version of the SDS network

[18], whilst [27] iteratively refined object proposals.

On a separate track, algorithms have also been developed

that do not require object detectors. Zhang et al. [50, 51]

segmented car instances by predicting the depth ordering

of each pixel in the image. Unlike the previous detection-

based approaches, this method reasoned globally about all

instances in the image simultaneously (rather than individ-

ual proposals) with an MRF-based formulation. However,

inference of this graphical model was not performed end-to-

end as shown to be possible in [53, 2, 4, 29]. Furthermore,

although this method does not use object detections, it is

trained with ground truth depth and assumes a maximum

of nine cars in an image. Predicting all the instances in

an image simultaneously (rather than classifying individual

proposals) requires a model to be able to handle a variable

number of output instances per image. As a result, [38]

proposed a Recurrent Neural Network (RNN) for this task.

However, this model was only for a single object category.

Our proposed method not only outputs a variable number of

instances, but can also handle multiple object classes.

Liang et al. [28] developed another proposal-free method

based on the semantic segmentation network of [5]. The

category-level segmentation, along with CNN features, was

used to predict instance-level bounding boxes. The number

of instances of each class was also predicted to enable a final

spectral clustering step. However, this additional informa-

tion predicted by Liang’s network could have been obtained

from an object detector. Arnab et al. [3] also started with an

initial semantic segmentation network [2], and combined

this with the outputs of an object detector using a CRF to

reason about instances. This method was not trained end-

to-end though, and could not really recover from errors in

bounding-box localisation or occlusion.

Our method also has an initial semantic segmentation

subnetwork, and uses the outputs of an object detector.

However, in contrast to [3] it is trained end-to-end to im-

prove on both semantic- and instance-segmentation perfor-

mance (to our knowledge, this is the first work to achieve

this). Furthermore, it can handle detector localisation er-
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Figure 2. Network overview: Our end-to-end trained network consists of semantic- and instance-segmentation modules. The intermediate

category-level segmentation, along with the outputs of an object detector, are used to reason about instances. This is done by instance

unary terms which use information from the detector’s bounding boxes, the initial semantic segmentation and also the object’s shape. A

final CRF is used to combine all this information together to obtain an instance segmentation. The output of the semantic segmentation

module is a fixed size W ×H × (K + 1) tensor where K is the number of object classes, excluding background, in the dataset. The final

output, however, is of a variable W ×H × (D + 1) dimensions where D is the number of detected objects (and one background label).

rors and occlusions better due to the energy terms in our

end-to-end CRF. In contrast to detection-based approaches

[18, 19, 11, 32], our network requires no additional post-

processing to create an instance segmentation map as in

Fig. 1(c) and reasons about the entire image, rather than

independent proposals. This global reasoning allows our

method to produce more accurate segmentations. Our pro-

posed system also handles a variable number of instances

per image, and thus does not assume a maximum number

of instances like [50, 51].

3. Proposed Approach

Our network (Fig. 2) contains an initial semantic seg-

mentation module. We use the semantic segmentation re-

sult, along with the outputs of an object detector, to compute

the unary potentials of a Conditional Random Field (CRF)

defined over object instances. We perform mean field infer-

ence in this random field to obtain the Maximum a Poste-

riori (MAP) estimate, which is our labelling. Although our

network consists of two conceptually different parts – a se-

mantic segmentation module, and an instance segmentation

network – the entire pipeline is fully differentiable, given

object detections, and trained end-to-end.

3.1. Semantic Segmentation subnetwork

Semantic Segmentation assigns each pixel in an image a

semantic class label from a given set, L. In our case, this

module uses the FCN8s architecture [33] which is based on

the VGG [40] ImageNet model. For better segmentation re-

sults, we include mean field inference of a CRF as the mod-

ule’s last layer. This CRF contains the densely-connected

pairwise potentials described in [23] and is formulated as

a recurrent neural network as in [53]. Additionally, we in-

clude the Higher Order detection potential described in [2].

This detection potential has two primary benefits: Firstly,

it improves semantic segmentation quality by encouraging

consistency between object detections and segmentations.

Secondly, it also recalibrates detection scores. This detec-

tion potential is similar to the one previously proposed by

[25], [41], [45] and [48], but formulated for the differen-

tiable mean field inference algorithm. We employ this po-

tential as we are already using object detection information

for identifying object instances in the next stage. We de-

note the output at the semantic segmentation module of our

network as the tensor Q, where Qi(l) denotes the probabil-

ity (obtained by applying the softmax function on the net-

work’s activations) of pixel i taking on the label l ∈ L.

3.2. Instance Segmentation subnetwork

At the input to our instance segmentation subnetwork,

we assume that we have two inputs available: The semantic

segmentation predictions, Q, for each pixel and label, and a

set of object detections. For each input image, we assume

that there are D object detections, and that the ith detection

is of the form (li, si, Bi) where li ∈ L is the detected class

label, si ∈ [0, 1] is the confidence score and Bi is the set of

indices of the pixels falling within the detector’s bounding

box. Note that the number D varies for every input image.

The problem of instance segmentation can then be

thought of as assigning every pixel to either a particular ob-

ject detection, or the background label. This is based on

the assumption that every object detection specifies a po-

tential object instance. We define a multinomial random

variable, V , at each of the N pixels in the image, and

V = [V1 V2 . . . VN ]T . Each variable at pixel i, Vi, is as-

signed a label corresponding to its instance. This label set,

{0, 1, 2, ..., D} changes for each image sinceD, the number

of detections, varies for every image (0 is the background

label). In the case of instance segmentation of images, the
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(a) Semantic Segmentation (b) Instance Segmentation
Figure 3. Instance segmentation using only the “Box” unary po-

tential. This potential is effective when we have a good initial se-

mantic segmentation (a). Occlusions between objects of the same

class can be resolved by the pairwise term based on appearance

differences. Note that we can ignore the confident, false-positive

“bottle” detections (b). This is in contrast to methods such as

[7, 18, 19, 26] which cannot recover from detection errors.

quality of a prediction is invariant to the permutations of the

instance labelling. For example, labelling the “blue person”

in Fig. 1(c) as “1” and the “purple person” as “2” is no dif-

ferent to labelling them as “2” and “1” respectively. This

condition is handled by our loss function in Sec. 3.4.

Note that unlike works such as [50] and [51] we do not

assume a maximum number of possible instances and keep

a fixed label set. Furthermore, since we are considering ob-

ject detection outputs jointly with semantic segmentation

predictions, we have some robustness to high-scoring false

positive detections unlike methods such as [7, 19, 32] which

refine object detections into segmentations.

We formulate a Conditional Random Field over our in-

stance variables, V , which consists of unary and pairwise

energies. The energy of the assignment v to all the vari-

ables, V, is

E(V = v) =
∑

i

U(vi) +
∑

i<j

P (vi, vj). (1)

The unary energy is a sum of three terms, which take into

account the object detection bounding boxes, the initial se-

mantic segmentation and shape information,

U(vi) = −ln[w1ψBox(vi) + w2ψGlobal(vi)+

w3ψShape(vi)], (2)

and are described further in Sections 3.2.1 through 3.2.3.

w1, w2 and w3 are all weighting co-efficients learned via

backpropagation.

3.2.1 Box Term

This potential encourages a pixel to be assigned to the in-

stance corresponding to the kth detection if it falls within

the detection’s bounding box. This potential is proportional

to the probability of the pixel’s semantic class being equal

to the detected class Qi(lk) and the detection score, sk.

ψBox(Vi = k) =

{

Qi(lk)sk if i ∈ Bk

0 otherwise
(3)

(a) Only Box term (b) Box and Global terms
Figure 4. The “Global” unary potential (b) is particularly effective

in cases where the input detection bounding box does not cover the

entire extent of the object. Methods which are based on refining

bounding-box detections such as [18, 19, 7, 11] cannot cope with

poorly localised detections. Note, the overlaid detection boxes are

an additional input to our system.

As shown in Fig. 3, this potential performs well when the

initial semantic segmentation is good. It is robust to false

positive detections, unlike methods which refine bounding

boxes [7, 18, 19] since the detections are considered in light

of our initial semantic segmentation, Q. Together with the

pairwise term (Sec. 3.2.4), occlusions between objects of

the same class can be resolved if there are appearance dif-

ferences in the different instances.

3.2.2 Global Term

This term does not rely on bounding boxes, but only the seg-

mentation prediction at a particular pixel,Qi. It encodes the

intuition that if we only know there are d possible instances

of a particular object class, and have no further localisa-

tion information, each instance is equally probable, and this

potential is proportional to the semantic segmentation con-

fidence for the detected object class at that pixel:

ψGlobal(Vi = k) = Qi(lk). (4)

As shown in Fig. 4, this potential overcomes cases where

the bounding box does not cover the entire extent of the ob-

ject, as it assigns probability mass to a particular instance

label throughout all pixels in the image. This is also ben-

eficial during training, as it ensures that the final output is

dependent on the segmentation prediction at all pixels in the

image, leading to error gradients that are more stable across

batches and thus more amenable to backpropagation.

3.2.3 Shape Term

We also incorporate shape priors to help us reason about oc-

clusions involving multiple objects of the same class, which

may have minimal appearance variation between them, as

shown in Fig. 5. In such cases, a prior on the expected shape

of an object category can help us to identify the foreground

instance within a bounding box. Previous approaches to in-

corporating shape priors in segmentation [22, 7, 43] have

involved generating “shape exemplars” from the training

dataset and, at inference time, matching these exemplars to

object proposals using the Chamfer distance [39, 31].

444



(a) Without shape term (b) With Shape term
Figure 5. The “Shape” unary potential (b) helps us to distinguish

between the green and purple sheep, which the other two unary

potentials cannot. Input detections are overlaid on the images.

We propose a fully differentiable method: Given a set of

shape templates, T , we warp each shape template using bi-

linear interpolation into T̃ so that it matches the dimensions

of the kth bounding box, Bk. We then select the shape prior

which matches the segmentation prediction for the detected

class within the bounding box, QBk
(lk), the best accord-

ing to the normalised cross correlation. Our shape prior is

then the Hadamard (elementwise) product (⊙) between the

segmentation unaries and the matched shape prior:

t∗ = argmax
t∈T̃

∑

QBk
(lk)⊙ t

∥

∥QBk
(lk)

∥

∥ ‖t‖
(5)

ψ(VBk
= k) = QBk

(lk)⊙ t∗. (6)

Equations 5 and 6 can be seen as a special case of max-

pooling, and the numerator of Eq. 5 is simply a convolution

that produces a scalar output since the two arguments are of

equal dimension. Additionally, during training, we can con-

sider the shape priors T as parameters of our “shape term”

layer and backpropagate through to the matched exemplar

t∗ to update it. In practice, we initialised these parameters

with the shape priors described in [43]. This consists of

roughly 250 shape templates for each of five different as-

pect ratios. These were obtained by clustering foreground

masks of object instances from the training set.

Here, we have only matched a single shape template to

a proposed instance. This method could be extended in fu-

ture to matching multiple templates to an instance, in which

case each shape exemplar would correspond to a part of the

object such as in DPM [14].

3.2.4 Pairwise term

The pairwise term consists of densely-connected Gaussian

potentials [23] and encourages appearance and spatial con-

sistency. The weights governing the importance of these

terms are also learnt via backpropagation, as in [53]. We

find that these priors are useful in the case of instance seg-

mentation as well, since nearby pixels that have similar ap-

pearance often belong to the same object instance. They are

often able to resolve occlusions based on appearance differ-

ences between objects of the same class (Fig. 3).

(a) Original

ground truth, G
(b) Prediction, P (c) “Matched”

ground truth, G∗

Figure 6. Due to the problem of label permutations, we “match”

the ground truth with our prediction before computing the loss

when training.

3.3. Inference of our Dynamic Instance CRF

We use mean field inference to approximately minimise

the Gibbs Energy in Eq. 1 which corresponds to finding the

Maximum a Posteriori (MAP) labelling of the correspond-

ing probability distribution, P (V = v) = 1

Z
exp (−E(v))

where Z is the normalisation factor. Mean field inference is

differentiable, and this iterative algorithm can be unrolled

and seen as a recurrent neural network [53]. Following this

approach, we can incorporate mean field inference of a CRF

as a layer of our neural network. This enables us to train our

entire instance segmentation network end-to-end.

Because we deal with a variable number of instances for

every image, our CRF needs to be dynamically instantiated

to have a different number of labels for every image, as ob-

served in [3]. Therefore, unlike [53], none of our weights

are class-specific. This weight-sharing not only allows us to

deal with variable length inputs, but class-specific weights

also do not make sense in the case of instance segmentation

since a class label has no particular semantic meaning.

3.4. Loss Function

When training for instance segmentation, we have a

single loss function which we backpropagate through our

instance- and semantic-segmentation modules to update all

the parameters. As discussed previously, we need to deal

with different permutations of our final labelling which

could have the same final result. The works of [50] and [51]

order instances by depth to break this symmetry. However,

this requires ground-truth depth maps during training which

we do not assume that we have. Proposal-based methods

[11, 18, 19, 32] do not have this issue since they consider a

single proposal at a time, rather than the entire image. Our

approach is similar to [38] in that we match the original

ground truth to our instance segmentation prediction based

on the Intersection over Union (IoU) [13] of each instance

prediction and ground truth, as shown in Fig. 6.

More formally, we denote the ground-truth labelling of

an image, G, to be a set of r segments, {g1, g2, . . . , gr},

where each segment (set of pixels) is an object instance
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and has an associated semantic class label. Our predic-

tion, which is the output of our network, P , is a set of s

segments, {p1, p2, . . . , ps}, also where each segment corre-

sponds to an instance label and also has an associated class

label. Note that r and s may be different since we may pre-

dict greater or fewer instances than actually present. Let

M denote the set of all permutations of the ground-truth,

G. As can be seen in Fig. 6, different permutations of the

ground-truth correspond to the same qualitative result. We

define the “matched” ground-truth, G∗, as the permutation

of the original ground-truth labelling which maximises the

IoU between the prediction, P , and ground truth:

G∗ = argmax
m∈M

IoU(m,P). (7)

Once we have the “matched” ground truth, G∗, (Fig. 6) for

an image, we can apply any loss function to train our net-

work for segmentation. In our case, we use the common

cross-entropy loss function. We found that this performed

better than the approximate IoU loss proposed in [24, 38].

Crucially, we do not need to evaluate all permutations

of the ground truth to compute Eq. 7, since it can be for-

mulated as a maximum-weight bipartite matching problem.

The edges in our bipartite graph connect ground-truth and

predicted segments. The edge weights are given by the

IoU between the ground truth and predicted segments if

they share the same semantic class label, and zero other-

wise. Leftover segments are matched to “dummy” nodes

with zero overlap.

Additionally, the ordering of the instances in our network

are actually determined by the object detector, which re-

mains static during training. As a result, the ordering of

our predictions does not fluctuate much during training – it

only changes in cases where there are multiple detections

overlapping an object.

3.5. Network Training

We first train a network for semantic segmentation with

the standard cross-entropy loss. In our case, this network is

FCN8s [33] with a CRF whose inference is unrolled as an

RNN and trained end-to-end, as described in [53] and [2].

To this pretrained network, we append our instance segmen-

tation subnetwork, and finetune with instance segmentation

annotations and only the loss detailed in Sec. 3.4. For the

semantic segmentation subnetwork, we train with an initial

learning rate of 10−8, momentum of 0.9 and batch size of

20. The learning rate is low since we do not normalise the

loss by the number of pixels. This is so that images with

more pixels contribute a higher loss. The normalised learn-

ing rate is approximately 2 × 10−3. When training our in-

stance segmentation network as well, we lower the learning

rate to 10−12 and use a batch size of 1 instead. Decreas-

ing the batch size gave empirically better results. We also

clipped gradients (a technique common in training RNNs

[34]) with ℓ2 norms above 109. This threshold was set by

observing “normal” gradient magnitudes during training.

The relatively high magnitude is due to the fact that our

loss is not normalised. In our complete network, we have

two CRF inference modules which are RNNs (one each in

the semantic- and instance-segmentation subnetworks), and

gradient clipping facilitated successful training.

3.6. Discussion

Our network is able to compute a semantic and instance

segmentation of the input image in a single forward pass.

We do not require any post-processing, such as the patch

aggregation of [32], “mask-voting” of [11], “superpixel

projection” of [18, 19, 26] or spectral clustering of [28].

The fact that we compute an initial semantic segmentation

means that we have some robustness to errors in the ob-

ject detector (Fig. 3). Furthermore, we are not necessarily

limited by poorly localised object detections either (Fig. 4).

Our CRF model allows us to reason about the entire image

at a time, rather than consider independent object proposals,

as done in [18, 19, 11, 32, 26]. Although we do not train our

object detector jointly with the network, it also means that

our segmentation network and object detector do not suc-

cumb to the same failure cases. Moreover, it ensures that

our instance labelling does not “switch” often during train-

ing, which makes learning more stable. Finally, note that

although we perform mean field inference of a CRF within

our network, we do not optimise the CRF’s likelihood, but

rather a cross-entropy loss (Sec 3.4).

4. Experimental Evaluation

Sections 4.1 to 4.6 describe our evaluation on the Pas-

cal VOC Validation Set [13] and the Semantic Boundaries

Dataset (SBD) [17] (which provides per-pixel annotations

to 11355 previously unlaballed images from Pascal VOC).

Section 4.7 details results on Cityscapes [8].

4.1. Experimental Details

We first train a network for semantic segmentation, ther-

after we finetune it to the task of instance segmentation,

as described in Sec. 3.5. Our training data for the seman-

tic segmentation pretraining consists of images from Pas-

cal VOC [13], SBD [17] and Microsoft COCO [30]. Fi-

nally, when finetuning for instance segmentation, we use

only training data from either the VOC dataset, or from the

SBD dataset. We train separate models for evaluating on

the VOC Validation Set, and the SBD Validation Set. In

each case, we remove validation set images from the initial

semantic segmentation pretraining set. We use the publicly

available R-FCN object detection framework [12], and en-

sure that the images used to train the detector do not fall

into our test sets for instance segmentation.
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4.2. Evaluation Metrics

We report the mean Average Precision over regions

(AP r) as defined by [18]. The difference betweenAP r and

the AP metric used in object detection [13] is that the Inter-

section over Union (IoU) is computed over predicted and

ground-truth regions instead of bounding boxes. Further-

more, the standard AP metric uses an IoU threshold of 0.5

to determine whether a prediction is correct or not. Here,

we use a variety of IoU thresholds since larger thresholds

require more precise segmentations. Additionally, we re-

port the AP r
vol which is the average of the AP r for 9 IoU

thresholds ranging from 0.1 to 0.9 in increments of 0.1.

However, we also observe that the AP r metric requires

an algorithm to produce a ranked list of segments and their

object class. It does not require, nor evaluate, the ability of

an algorithm to produce a globally coherent segmentation

map of the image, for example Fig. 1c. To measure this, we

propose the “Matching IoU” which matches the predicted

image and ground truth, and then calculates the correspond-

ing IoU as defined in [13]. This matching procedure is the

same as described in Sec. 3.4. This measure was originally

proposed in [47], but has not been used since in evaluating

instance segmentation systems.

4.3. Effect of Instance Potentials and End-to-End
training

We first perform ablation studies on the VOC 2012 Val-

idation set. This dataset, consisting of 1464 training and

1449 validation images has very high-quality annotations

with detailed object delineations which makes it the most

suited for evaluating pixel-level segmentations.

In Tab. 1, we examine the effect of each of our unary po-

tentials in our Instance subnetwork on overall performance.

Furthermore, we examine the effect of end-to-end training

the entire network as opposed to piecewise training. Piece-

wise training refers to freezing the pretrained semantic seg-

mentation subnetwork’s weights and only optimising the in-

stance segmentation subnetwork’s parameters. Note that

when training with only the “Box” (Eq. 3) unary poten-

tial and pairwise term, we also have to add in an additional

“Background” detection which encompasses the entire im-

age. Otherwise, we cannot classify the background label.

We can see that each unary potential improves overall in-

stance segmentation results, both in terms of AP r
vol and the

Matching IoU. The “Global” term (Eq. 4) shows particular

improvement over the “Box” term at the high AP r thresh-

old of 0.9. This is because it can overcome errors in bound-

ing box localisation (Fig. 4) and leverage our semantic seg-

mentation network’s accurate predictions to produce precise

labellings. The “Shape” term’s improvement in theAP r
vol is

primarily due to an improvement in the AP r at low thresh-

olds. By using shape priors, we are able to recover instances

which were occluded and missed out. End-to-end training

Table 1. The effect of the different CRF unary potentials, and end-

to-end training with them, on the VOC 2012 Validation Set.

AP r

AP r
vol

match

IoU0.5 0.7 0.9

Box Term

(piecewise)
60.0 47.3 21.2 54.9 42.6

Box+Global

(piecewise)
59.1 46.1 23.4 54.6 43.0

Box+Global+Shape

(piecewise)
59.5 46.4 23.3 55.2 44.8

Box Term

(end-to-end)
60.7 47.4 24.6 56.2 46.9

Box+Global

(end-to-end)
60.9 48.1 25.5 56.7 47.1

Box+Global+Shape

(end-to-end)
61.7 48.6 25.1 57.5 48.3

Table 2. Comparison of Instance Segmentation performance to re-

cent methods on the VOC 2012 Validation Set

Method
AP r

AP r
vol0.5 0.6 0.7 0.8 0.9

SDS [18] 43.8 34.5 21.3 8.7 0.9 –

Chen et al. [7] 46.3 38.2 27.0 13.5 2.6 –

PFN [28] 58.7 51.3 42.5 31.2 15.7 52.3

Arnab et al. [3] 58.3 52.4 45.4 34.9 20.1 53.1

MPA 1-scale [32] 60.3 54.6 45.9 34.3 17.3 54.5

MPA 3-scale [32] 62.1 56.6 47.4 36.1 18.5 56.5

Ours 61.7 55.5 48.6 39.5 25.1 57.5

also improves results at all AP r thresholds. Training with

just the “Box” term shows a modest improvement in the

AP r
vol of 1.3%. Training with the “Global” and “Shape”

terms shows larger improvements of 2.1% and 2.3% respec-

tively. This may be because the “Box” term only considers

the semantic segmentation at parts of the image covered by

object detections. Once we include the “Global” term, we

consider the semantic segmentation over the entire image

for the detected class. Training makes more efficient use of

images, and error gradients are more stable in this case.

4.4. Results on VOC Validation Set

We then compare our best instance segmentation model

to recent methods on the VOC Validation Set in Tab. 2. The

fact that our algorithm achieves the highest AP r at thresh-

olds above 0.7 indicates that our method produces more de-

tailed and accurate segmentations.

At an IoU threshold of 0.9, our improvement over the

previous state-of-the-art (MPA [32]) is 6.6%, which is a

relative improvement of 36%. Unlike [32, 18, 7], our

network performs an initial semantic segmentation which

may explain our more accurate segmentations. Other

segmentation-based approaches, [3, 28] are not fully end-

to-end trained. We also achieve the best AP r
vol of 57.5%.

The relatively small difference in AP r
vol to MPA [32] de-

spite large improvements at high IoU thresholds indicates
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Table 3. Comparison of Instance Segmentation performance on the

SBD Dataset

Method
AP r

AP r
vol

match

0.5 0.7 IoU

SDS [18] 49.7 25.3 41.4 –

MPA 1-scale [32] 55.5 – 48.3 –

Hypercolumn [19] 56.5 37.0 – –

IIS [26] 60.1 38.7 – –

CFM [10] 60.7 39.6 – –

Hypercolumn rescore [19] 60.0 40.4 – –

MPA 3-scale rescore [32] 61.8 – 52.0 –

MNC [11] 63.5 41.5 – 39.0

MNC, Instance FCN [9] 61.5 43.0 – –

IIS sp. projection, rescore [26] 63.6 43.3 – –

Ours (piecewise) 59.1 42.1 52.3 41.8

Ours (end-to-end) 62.0 44.8 55.4 47.3

Table 4. Semantic Segmentation performance before and after

finetuning for Instance Segmentation

Dataset
Mean IoU [%] before

Instance finetuning

Mean IoU [%] after

Instance finetuning

VOC 74.2 75.1

SBD 71.5 72.5

that MPA performs better at low IoU thresholds. Proposal-

based methods, such as [32, 18] are more likely to perform

better at low IoU thresholds since they output more pro-

posals than actual instances in an image (SDS evaluates

2000 proposals per image). Furthermore, note that whilst

MPA takes 8.7s to process an image [32], our method re-

quires approximately 1.1s on the same Titan X (Maxwell)

GPU. More detailed qualitative and quantitative results are

included in the supplementary material.

4.5. Results on SBD Dataset

We also evaluate our model on the SBD dataset, which

consists of 5623 training and 5732 validation images, as

shown in Tab. 3. Following other works, we only report

AP r results at IoU thresholds of 0.5 and 0.7. However,

we provide more detailed results in our supplementary ma-

terial. Once again, we show significant improvements over

other work at high AP r thresholds. Here, our AP r at 0.7

improves by 1.5% over the previous state-of-the-art [26].

Note that [26, 32, 19] perform additional post-processing

where their results are rescored using an additional object

detector. In contrast, our results are obtained by a single

forward pass through our network. We have also improved

substantially on the AP r
vol measure (3.4%) compared to

other works which have reported it. We also used the pub-

licly available source code, model and default parameters

of MNC [11] to evaluate the “Matching IoU”. Our method

improves this by 8.3%. This metric is a stricter measure of

segmentation performance, and our method, which is based

on an initial semantic segmentation and includes a CRF as

Table 5. Results on Cityscapes Test Set. Evaluation metrics and

results of competing methods obtained from the online server. The

“AP” metric of Cityscapes is similar to our AP
r

vol metric.

Method AP AP at 0.5 AP 100m AP 50m

Ours 20.0 38.8 32.6 37.6

SAIS [20] 17.4 36.7 29.3 34.0

Pixel Encoding [42] 8.9 21.1 15.3 16.7

part of training therefore performs better.

4.6. Improvement in Semantic Segmentation

Finetuning our network for instance segmentation, with

the loss described in Sec. 3.4 improves semantic segmen-

tation performance on both the VOC and SBD dataset, as

shown in Tab. 4. The improvement is 0.9% on VOC, and

1% on SBD. The tasks of instance segmentation and se-

mantic segmentation are highly related – in fact, instance

segmentation can be thought of as a more specific case of

semantic segmentation. As a result, finetuning for one task

improves the other.

4.7. Results on Cityscapes

Finally, we evaluate our algorithm on the Cityscapes

road-scene understanding dataset [8]. We evaluate on the

test set, consisting of 1525 images on the online server, and

use none of the 500 validation images for training. We use

an initial semantic segmentation subnetwork that is based

on the ResNet-101 architecture [52], and all of the instance

unary potentials described in Sec. 3.2.

As shown in Tab. 5, our method sets a new state-of-the-

art on Cityscapes, surpassing concurrent work [20] and the

best previous published work [42] by significant margins.

5. Conclusion

We have presented an end-to-end instance segmentation

approach that produces intermediate semantic segmenta-

tions, and shown that finetuning for instance segmentation

improves our network’s semantic segmentations. Our ap-

proach differs from other methods which derive their archi-

tectures from object detection networks [11, 32, 19] in that

our approach is more similar to a semantic segmentation

network. As a result, our system produces more accurate

and detailed segmentations as shown by our substantial im-

provements at high AP r thresholds. Moreover, our system

produces segmentation maps naturally, and in contrast to

other published work, does not require any post-processing.

Finally, our network produces a variable number of outputs,

depending on the number of instances in the image.
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