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Abstract

Reflections are a common artifact in images taken

through glass windows. Automatically removing the re-

flection artifacts after the picture is taken is an ill-posed

problem. Attempts to solve this problem using optimization

schemes therefore rely on various prior assumptions from

the physical world. Instead of removing reflections from

a single image, which has met with limited success so far,

we propose a novel approach to suppress reflections. It is

based on a Laplacian data fidelity term and an l0 gradient

sparsity term imposed on the output. With experiments on

artificial and real-world images we show that our reflection

suppression method performs better than the state-of-the-

art reflection removal techniques.

1. Introduction

Images taken through glass or windows often contain un-

desirable reflections. It is possible to minimize their ef-

fect by using special hardware, multiple images, or man-

ual post-processing. For example, professional photogra-

phers use polarizing filters to mitigate, if not eliminate,

reflection artifacts. Similarly, using multiple photographs

taken with small displacements makes the problem easier to

tackle [5, 6, 11, 14, 18, 20, 21, 24]. However, given the skill

and resources of an average user, none of these methods are

feasible. For everyday photography done with consumer

grade cameras, we need single image reflection removal.

Barrow and Tenenbaum [2] first presented a linear model

assumption for an image Y that contains reflections as a

sum of two other images (or layers) as follows:

Y = T+R, (1)

where Y 2 R
n×m is the observed image and T,R are the

transmission and reflection layers, respectively. Since we

have one equation for two unknowns, this problem is highly

ill-posed. Methods to solve the problem have to impose

constraints based on assumptions from the physical world

and prior knowledge.

(a) Original Image (b) Our result

Figure 1. Our reflection suppression method applied on a real-

world image taken through a glass window. Notice how we suc-

ceed in suppressing the reflections and yet preserve the details of

the original image.

Existing approaches for reflection removal from a single

image rely on natural image priors to formulate objective

functions. Depending on the nature of these priors, all meth-

ods have their specific limitations. We discuss these limita-

tions with experiments conducted on synthetic images.

Instead of trying to separate transmission and reflection

from the original image, we develop an algorithm whose

output is an image where reflections are suppressed (see

Fig. 1). This makes the problem more tractable. We pro-

pose a novel and efficient optimization function, which is

based on an l0 prior on the gradient sparsity of the trans-

mission layer. Additionally, we propose a data fidelity term

that penalizes the difference between the Laplacian of the

input image and the desired transmission layer.

We show that our formulation provides better reflection

suppression and color reproduction results than the state-of-

the-art in single image reflection removal on both real and

synthetic images. Our main contributions are:

• We propose a novel and computationally tractable sin-

gle image reflection suppression algorithm based on

an l0 gradient sparsity prior and on a Laplacian data

fidelity term.

• We conduct quantitative experiments on synthetic im-

ages that we create based on reflection model assump-
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tions. We show that we are better than the state-of-the-

art by a significant margin.

• We show better qualitative results in real-world images

with respect to previous approaches in single-image re-

flection removal.

The paper is organized as follows. In Section 2 we give

a detailed description of the related work in reflection re-

moval. In Section 3 we present our method and provide jus-

tifications for our choices. In Section 4 we provide compar-

isons with state-of-the-art methods, and finally, in Section 5

we conclude the paper.

2. Background

We separate the previous research in reflection removal

into two categories. We first present the methods that use

multiple images as input, then we present the methods that

use a single image to remove reflections.

2.1. Multiple-image Reflection Removal

A substantial amount of work on reflection removal re-

lies on multiple captured images. The works of Kong et

al. [8] and Schechner et al. [16] build upon a physical re-

flection model and use several images taken with different

polarization angles to estimate the reflection layer. Simi-

larly, Farid and Adelson [4] use Independent Component

Analysis to estimate the mixing matrix of two images taken

with different polarization angles.

Agrawal et al. [1] rely on two photos of the same scene,

taken with and without a flash. They use a gradient pro-

jection scheme based on a gradient coherence model that

allows removal of reflections and highlights from flash im-

ages. Sirinukulwattana et al. [19] exploit the fact that the

reflections vary in multiple images captured from slightly

different viewpoints. They impose a constraint on the dis-

parity map which smooths specific areas of the reflection

layer while simultaneously preserving the sharpness of the

transmission.

Some approaches rely on video sequences to decorrelate

the motion between the transmission and reflection layers

[14, 18, 21]. Xue et al. [24] utilize the motion differences

to decompose the input image to an initial transmission and

reflection layer. From the initial layers they extract motion

fields. They repeat the process of updating the transmis-

sion and reflection layers, and estimating the motion fields,

until convergence. Gai et al. [5] simultaneously estimate

layer motions and linear mixing coefficients with a sparse

blind separation algorithm. Guo et al. [6] use rank con-

straints and structural priors to exploit the correlation of the

transmission layers from multiple images. In [11, 20] the

authors use SIFT-flow to calculate the motion from photos

taken from different view-points. Using a motion score they

classify edges as belonging to either transmission or reflec-

tion layers, which helps solve an optimization scheme to

separate the layers.

2.2. Single-image Reflection Removal

Single image reflection removal, which is the focus of

this paper, is of practical importance because in most situa-

tions the user will not have access to multiple images. How-

ever, as stated above, it is a highly ill-posed problem. Ex-

isting works therefore rely on sparse gradient priors to dis-

tinguish between transmission and reflection edges [9, 10].

Levin and Weiss [9] solve a constrained optimization prob-

lem by imposing a Laplacian mixture prior over the image

gradients. In their work though, user-intervention is re-

quired to label image gradients as belonging to either the

transmission or reflection layer.

The work of Li and Brown [12] automatically extracts

the two layers by optimizing an objective function which

imposes a smooth gradient prior over the reflection layer

and a sparse gradient prior over the transmission. This gra-

dient prior is based on the observation that reflections are of-

ten less in focus, i.e., have weaker gradients, than the trans-

mitted image. Similarly, Wan et al. [22] compute the Depth

of Field per pixel with the use of Kullback-Leibler diver-

gence to build reflection and transmission edge maps. With

these maps they use the method of [9] to extract the two

layers. The work of Shih et al. [17] tries to exploit ghost-

ing artifacts that are typical of images captured through a

window in order to solve a deblurring-based optimization

problem.

The performance of the methods that depend on only one

image is, in general, limited in real-world scenarios. This

is to be expected, due to the highly ill-posed nature of the

problem. In addition, the methods proposed so far are of-

ten computationally inefficient. In this paper, we propose a

method that suppresses reflections from a single input im-

age and propose a solution that is superior to the state-of-

the-art.

3. Our Algorithm

We rely on two main observations in our method for

reflection suppression. The first observation is that, com-

pared to transmission edges, reflection edges are of smaller

magnitude and they are less in focus. This is often true in

real-life scenarios. The camera focuses on the background

objects, whose distance to the camera is usually different

from the reflection components. Formally, we can express

our first assumption with the following image formation

model [12, 15]:

Y = W ◦T+ (1−W) ◦ (k ⇤R), (2)

where ◦ denotes element-wise multiplication, k is the blur-

ring kernel and ⇤ denotes the convolution operation. W is a
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matrix that weighs the contribution of the transmission layer

at each pixel. It is important to note here that for real im-

ages, W is not usually constant, but depends on the lighting

conditions and on the position of the camera relative to the

image plane (see [8] for a detailed discussion).

In the rest of the paper we make the simplifying assump-

tion that Wi,j = w, 8i, j. Even though this constant blend-

ing factor assumption can be incorrect in real-world scenar-

ios, it is a reasonable approximation that makes the problem

tractable, considering that we only have one image at our

disposal from which to suppress reflection artifacts.

Our second observation is that in most cases, humans

have an uncanny ability to tell apart reflections, likely be-

cause we rely on several visual cues, including, as we re-

mark, Gestalt continuity of structures in images [3]. As il-

lustrated in Fig. 1a, the human visual system discounts the

intensity modulations due to the reflection in the upper-right

quadrant of the image. While harder to formalize, this ob-

servation helps us choose the prior term.

To account for these two observations, we build upon

the successful image smoothing approach of Xu et al. [23].

In their work, the authors smooth the image by imposing

a constraint on the number of non-zero gradients on the

output. Their approach globally eliminates a substantial

amount of gradients of small magnitudes while simultane-

ously retaining large magnitude edges. The optimization

problem they solve has the form:

T
∗ = argmin

T

kT−Yk2
2
+ λC(T), (3)

where

C(T) = #{(i, j) | |rxTi,j |+ |ryTi,j | 6= 0}. (4)

The combination of the data fidelity term with the l0 prior

on the image gradients ensures that the algorithm removes

edges in increasing order of magnitudes. The larger the reg-

ularization parameter λ is, the more gradients are removed.

The prior term C(T) encourages smoothing of the image

while maintaining the continuity of large structures. How-

ever, its combination with the data-fidelity term kT−Yk2
2

eliminates most of the high frequency details from the im-

age, which is desirable for smoothing, but not for reflection

suppression. We want to not only preserve the continuity of

large structures but also retain as much of the transmission

layer details. We thus revisit the data fidelity term.

To avoid losing important high frequency details from

the image, we propose a Laplacian-based data fidelity term

to modify the objective function of Eq. (3). The Laplacian

of an image is defined as

L(Y) = rxxY +ryyY, (5)

which is equivalent to a convolution with the 3 ⇥ 3 kernel

kL = [0, 1, 0; 1,−4, 1; 0, 1, 0]. A fidelity term based on the

Laplacian better enforces consistency in structures of fine

details. Our proposed optimization problem thus takes the

following form:

T
∗ = argmin

T

kL(T)− L(Y)k2
2
+ λC(T), (6)

where C(T) is the same as in Eq. (4).

We demonstrate the effect of our proposed method in

Fig. 2. We create a synthetic blend of the letters ‘T’ (Fig. 2a,

transmission) and ‘R’ (Fig. 2b, reflection) with different

types of background texture. We use the model of Eq. (2)

with w = 0.7 and k a Gaussian blur with σ = 2. The re-

sulting blend is shown in Fig. 2c. We compare our method

(Fig. 2f) with the approach of Xu et al. [23] (Fig. 2e).

We also provide results for standard Total Variation (TV)

smoothing [13] (Fig. 2d). In Fig. 2g we show the super-

posed middle scan lines of Figures 2d, 2e, and 2f for a more

detailed visualization of the outputs.

While conventional TV (l1-based) priors smooth edges,

the l0-based sparsity prior has the effect of flattening a sig-

nal in order to affect signal smoothness. We observe that

our proposed method with the Laplacian data fidelity term

more faithfully represents strong edges and detailed struc-

tures of the signal. At the same time, it retains more texture

from the transmission layer. The original approach of Xu

et al. [23] drastically smooths image details, even with very

small regularization parameter values. This behavior results

in severe loss of the transmission layer’s original texture.

The TV approach, on the other hand, uniformly reduces the

gradient magnitudes because of the soft thresholding oper-

ation. Even large magnitude edges are smoothed out by in-

creasing the regularization parameter. This is an unwanted

effect in reflection removal, where the goal is to maintain

strong edges.

We solve the optimization problem in Eq. (6) with half-

quadratic splitting as done by Xu et al. [23]. We intro-

duce auxiliary variables H and V, corresponding to rxT

and ryT respectively. By defining G = [H;V] and

r = [rx;ry], the objective function can be compactly

written as

T
∗,G∗ = argmin

T,G

kL(T)− L(Y)k2
2
+ λC(G)+

+ βkrT−Gk2
2
, (7)

where

C(G) = C(H,V) = #{(i, j) | |Hi,j |+ |Vi,j | 6= 0}. (8)

The problem in Eq. (7) is solved by alternately minimiz-

ing over either G or T, while keeping the other fixed. In

the following, we provide the details on how to efficiently

optimize each sub-problem.
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(a) Transmission layer (b) Reflection layer (c) Synthetic blend,

w = 0.7, σ = 2

(d) l1, λ = 0.5 (e) Xu et al. [23]

λ = 0.05

(f) Proposed, λ = 0.05
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Xu et al.
Proposed

(g) 1-d image scanline from the middle of the synthetic blend.

Figure 2. Comparison of different smoothing techniques on a 2-d

toy example. Fig. 2a and Fig. 2b are combined to obtain Fig. 2c.

Fig. 2d shows the result of l1 smoothing [13], Fig. 2e shows the

result of Xu et al. [23], and Fig. 2f the result of our proposed

method. Our method is better able to retain the original texture

content from the transmission layer. Fig. 2g shows a single scan-

line from Fig. 2d, Fig. 2e, and Fig. 2f overlapped one on top of the

other. Note how our proposed method can suppress the reflection

component as well as or better than the method of Xu et al. [23].

3.1. Sub-problem 1

The optimization problem over T, keeping G fixed, is

given by

T
∗ = argmin

T

kL(T)− L(Y)k2
2
+ βkrT−Gk2

2
. (9)

The function is quadratic and can be solved analytically us-

ing the Fast Fourier Transform (FFT). The FFT diagonalizes

the Laplacian and gradient operators and the linear system

is solved in the Fourier domain with point-wise divisions.

However, a spatial shift can occur using this approach

(also reported by Li and Brown [12]), because the Lapla-

cian data fidelity term is insensitive to any global shift on

the pixel values. In other words, for any constant signal

C 2 R
n×m, it holdsL(T+C) = L(T) . Li and Brown [12]

try to compensate for this shift by re-normalizing the output

to fall within a range. However, due to the large dimension-

ality of the problem and numerical inconsistencies, a solu-

tion based on a constant global shift is not suitable. This

may explain the color shifts we observe in the results of Li

and Brown [12] shown in the second column of Fig. 6.

To overcome this problem, we instead use gradient de-

scent, applying Adam [7], an accelerated first-order gradi-

ent descent method, to minimize Eq. (9). The gradient of

the objective function in Eq. (9) is given by

rT = 2LT (L(T)− L(Y)) + 2βrT (rT−G), (10)

where LT andrT denote the transposed Laplacian and gra-

dient operators, respectively.

3.2. Sub-problem 2

This sub-problem is equivalent to the second sub-

problem in [23]. We state it here for the sake of complete-

ness. The objective function over G is given by

G
∗ = argmin

G

krT−Gk2
2
+

λ

β
C(G). (11)

The objective of Eq. (11) can be spatially decomposed over

the elements of H and V and efficiently optimized. For

each pixel (i, j) the analytic solution of Eq. (11) is given by

(Hi,j , Vi,j) =

(

(0, 0), (rxTi,j)
2 + (ryTi,j)

2  λ/β

(rxTi,j ,ryTi,j), otherwise
.

(12)

A proof of Eq. (12) is given by Xu et al. [23]. We sum-

marize our proposed optimization method in Alg. 1.

4. Experiments

As discussed in Section 2.2, there are only a few algo-

rithms that attempt single-image reflection removal. We

compare our method against the state-of-the-art methods of

Li and Brown [12] and Wan et al. [22] for a collection of

synthetic and real-world images. Of the other methods, the

method of Levin and Weiss [9] requires user labeling, while

the method of Shih et al. [17] is computationally intractable

for the image sizes (greater than 0.5 million pixels) we use

in our experiments. Moreover, it assumes that the reflection
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Algorithm 1: Reflection Suppression with Laplacian

l0 Minimization

Input: Y, λ, β0, βmax, κ
Initialize: T Y, β  β0

while β  βmax do

Update G using Eq. (12) ;

Update T using Adam and Eq. (10) ;

β  κβ;
end

Output: Final image T

image contains strong ghosting, which does not cover all

the real-world scenarios.

For the method of Li and Brown [12] we fix the regular-

ization parameters to λlb = 100. This value is a good com-

promise between retaining transmission components and re-

moving reflections (see discussion in [12]). The results of

Wan et al. [22] were provided by the authors using the de-

fault parameters described in their paper. For the Adam

optimizer of our method we use the default parameters as

described by Kingma and Ba [7].

For our algorithm, we fix the regularization parameter

to λours = 0.002. We observe empirically that a range of

values in the interval [0.001, 0.005] is a good starting point

for images with reflections. We show the effect of the reg-

ularization parameter on the output of our method in Fig. 3.

The larger the parameter, the more reflection components

are removed. But simultaneously, more details from the

transmission layer are also lost. We fix the parameters of

Alg. 1 to β0 = 2λours, βmax = 105 and κ = 2 as in Xu

et al. [23]. Source code is available at http://ivrl.

epfl.ch/research/reflection_removal.

4.1. Synthetic Images

We create synthetic images to simulate reflections using

the model of Eq. (2) with constant W = w. We fix the

kernel k to a Gaussian with σ = 2 and we use two blend-

ing weights w = {0.7, 0.5}. In Fig. 4 we show the images

we use as transmission (Figs. 4a, 4c) and reflection layers

(Figs. 4b, 4d) for the synthetic experiments. Our method

better suppresses the unwanted effect of the reflection com-

ponents compared to the competing methods. This is shown

quantitatively in Table 1 in terms of PSNR and SSIM, where

we are better than the competing methods by a significant

margin.

The method of Li and Brown [12] has the ten-

dency to produce dark outputs and false colors (see

Figs. 5b, 5f, 5j, 5n), a fact that strongly affects its evalua-

tion on the objective metrics. The method of Wan et al. [22]

better reproduces color, however it creates unwanted arti-

facts and excessive smoothing in the transmission layer (see

Figs. 5c, 5g, 5k, 5o).

(a) Input (b) Proposed, λ = 0.001

(c) Proposed, λ = 0.005 (d) Proposed, λ = 0.009

Figure 3. Effect of the regularization parameter on our reflection

suppression method. The larger the parameter, the more reflection

components are removed. However, more details from the trans-

mission layer are also lost. Best viewed on screen.

(a) T1 (b) R1

(c) T2 (d) R2

Figure 4. Images used as transmission (left column) and reflection

layers (right column) for the synthetic experiments.

Even in the limit case of w approaching 0.5, when all

methods perform poorly, our method still performs bet-

ter than the state-of-the-art (see the third and fifth row of
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(a) T1 +R1, w = 0.7, σ = 2 (b) [12] (c) [22] (d) Proposed

(e) T1 +R1, w = 0.5, σ = 2 (f) [12] (g) [22] (h) Proposed

(i) T2 +R2, w = 0.7, σ = 2 (j) [12] (k) [22] (l) Proposed

(m) T2 +R2, w = 0.5, σ = 2 (n) [12] (o) [22] (p) Proposed

Figure 5. Comparison of reflection removal methods on synthetic images. We use two blending weights w = {0.5, 0.7}. Compared to Li

and Brown [12] in the second column and Wan et al. [22] in the third column, our method (fourth column) gives superior color reproduction

and reflection suppression results. Best viewed on screen.
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(a) Input 1 (b) [12] (c) [22] (d) Proposed

(e) Input 2 (f) [12] (g) [22] (h) Proposed

(i) Input 3 (j) [12] (k) [22] (l) Proposed

(m) Input 4 (n) [12] (o) [22] (p) Proposed

(q) Input 5 (r) [12] (s) [22] (t) Proposed

Figure 6. Comparison of reflection removal methods on real-world images taken from the Internet. As in the case of artificial images

(Fig. 5), the method of Li and Brown [12] in the second column suffers from poor color reproduction, while the method of Wan et al. [22]

in the third column over-smooths the image. Our method in fourth column gives superior color reproduction and reflection suppression

results compared to both the state-of-the-art techniques. Best viewed on screen.
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(a) Input 1 (b) [12] (c) [22] (d) Proposed

(e) Input 2 (f) [12] (g) [22] (h) Proposed

Figure 7. Failure cases in reflection removal. In this figure, we show the cases where our technique fails to suppress reflections satisfactorily.

We pose our results next to the results from the state-of-the-art [12, 22] to show that they are equally unsuccessful in removing reflections.

In these images, the reflection components are too strong to be distinguished from the main transmission layer. Best viewed on screen.

PSNR SSIM PSNR SSIM PSNR SSIM

Fig. 5a 20.15 0.89 18.33 0.86 20.37 0.93

Fig. 5e 15.61 0.77 15.63 0.72 15.72 0.81

Fig. 5i 14.78 0.62 20.17 0.93 22.35 0.96

Fig. 5m 14.15 0.55 17.76 0.85 18.09 0.89

Li and Brown [12] Wan et al. [22] Proposed

Table 1. PSNR and SSIM values for the synthetic experiments. In

all cases our algorithm performs better than the state-of-the-art by

a significant margin.

Fig. 5). In this case, the reflection component is as strong

as the transmission and therefore is hard to suppress or re-

move. This is to be expected, because all methods rely

on the assumption that reflections are weaker and smoother

than the transmission signal. However, in real-world sce-

narios, these assumptions may not hold.

4.2. Real-World Images

We provide results on real-world reflection images

downloaded from the Internet. For these images, the com-

parison can only be visual, since we do not have any ground

truth. The results from the methods considered are shown in

Fig. 6. Similar to the synthetic experiments, our algorithm

is better able to suppress reflections and it preserves colors

in the transmission layer without producing additional arti-

facts. The method of Li and Brown [12] produces dark im-

ages, often without maintaing color fidelity. The method of

Wan et al. [22] introduces artifacts and over-smooths parts

of the transmission layer. In the cases where the reflections

are strong and sharp, we observe that none of the tested

algorithms can suppress or remove them, because in such

cases the assumptions reflection removal algorithms make

are not valid anymore. In Fig. 7 we show two examples of

strong reflections, where none of the algorithms succeeds.

Note however, that our results are still the closest to the orig-

inal images and do not contain any additional artifacts.

5. Conclusion

Reflection removal from a single image is a highly ill-

posed problem. In order to take into account visual conti-

nuity of reflection structures and simultaneously retain im-

portant details in the image, we formulate our optimiza-

tion problem using a Laplacian data fidelity term and an l0
prior term. We test our approach with experiments on artifi-

cial and real-world images and compare our results against

the state-of-the-art. Our approach performs better at sup-

pressing reflections than previous single-image reflection

removal algorithms.

There is a trade-off between suppressing reflection arti-

facts and simultaneously retaining high-frequency details.

While we clearly outperform the state-of-the-art, we ob-

serve that suppressing reflections from a single image re-

mains a hard problem. There is still room to develop a

general solution that works for a wide range of images. In

particular, it may be interesting to direct future research on

visual perception based reflection suppression.
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