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Abstract

In this paper, we propose a novel benchmark for eval-

uating local image descriptors. We demonstrate that the

existing datasets and evaluation protocols do not specify

unambiguously all aspects of evaluation, leading to ambi-

guities and inconsistencies in results reported in the litera-

ture. Furthermore, these datasets are nearly saturated due

to the recent improvements in local descriptors obtained by

learning them from large annotated datasets. Therefore, we

introduce a new large dataset suitable for training and test-

ing modern descriptors, together with strictly defined eval-

uation protocols in several tasks such as matching, retrieval

and classification. This allows for more realistic, and thus

more reliable comparisons in different application scenar-

ios. We evaluate the performance of several state-of-the-

art descriptors and analyse their properties. We show that

a simple normalisation of traditional hand-crafted descrip-

tors can boost their performance to the level of deep learn-

ing based descriptors within a realistic benchmarks evalu-

ation.

1. Introduction

Local feature descriptors remain an essential component

of image matching and retrieval systems and it is an ac-

tive area of research. With the success of learnable repre-

sentations and the availability of increasingly-large labelled

datasets, research on local descriptors has seen a renais-

sance. End-to-end learning allows to thoroughly optimise

descriptors for available benchmarks, significantly outper-

forming fully [20] or semi-handcrafted features [21, 32].

Surprisingly however, the adoption of these purportedly

better descriptors has been limited in applications, with

Table 1. Contradicting conclusions reported in literature while

evaluating the same descriptors on the same benchmark (Oxford

[22]). Rows report inconsistent evaluation results due to variations

of the implicit parameters e.g. of feature detectors.

LIOP > SIFT [24, 36] , SIFT > LIOP [39]

BRISK > SIFT [18, 24] , SIFT > BRISK [19]

ORB > SIFT [29] , SIFT > ORB [24]

BINBOOST > SIFT [19, 32] , SIFT > BINBOOST [5, 39]

ORB > BRIEF [29] , BRIEF > ORB [19]

SIFT [20] still dominating the field. We believe that is due

to the inconsistencies in reported performance evaluations

based on the existing benchmarks [22, 38]. These datasets

are either small, or lack diversity to generalise well to var-

ious applications of descriptors. The progress in descrip-

tor technology and application requirements has not been

matched by a comparable development of benchmarks and

evaluation protocols. As a result, while learned descriptors

may be highly optimised for specific scenarios, it is unclear

whether they work well in more general cases e.g. outside

the specific dataset used to train them. In fact, just compar-

ing descriptors based on published experiments is difficult

and inconclusive as demonstrated in Table 1.

In this paper, we introduce a novel benchmark suite for

local feature descriptors, significantly larger, with clearly

defined protocols and better generalisation properties, that

can supersede the existing datasets. This is inspired by

the success of the Oxford matching dataset [22], the most

widely-adopted and still very popular benchmark for the

evaluation of local features, despite consisting of only 48

images. This is woefully insufficient for evaluating mod-

ern descriptors in the era of deep learning and large scale

datasets. While some larger datasets exist, as discussed in

section 2, these have other important shortcomings in terms

of data and task diversity, evaluation metrics and experi-

mental reproducibility. We address these shortcomings by
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identifying and satisfying crucial requirements from such a

benchmark in section 3.

Data diversity is considered especially important for

evaluating various properties of descriptors. To this end, we

collect a large number of multi-image sequences of different

scenes under real and varying capturing conditions, as dis-

cussed in section 4. Scenes are selected to be representative

of different use cases and captured under varying viewpoint,

illumination, or temporal conditions, including challenging

nuisance factors often encountered in applications. The im-

ages are annotated with ground-truth transformations, that

allow to identify unique correspondences necessary to as-

sess the quality of matches established by descriptors.

Reproducibility and fairness of comparisons is crucial

in benchmarks. This is addressed by eliminating the influ-

ence of detector parameters. Hence, the benchmark is based

on extracted local image patches rather than whole images,

which brings important benefits: i) it allows to compare de-

scriptors modulus the choice of detectors, ii) it simplifies

the process and makes the experiments reproducible, and,

importantly, iii) it avoids various biases, e.g. the number or

size of measurement regions or semi-local geometric con-

straints that make the results from image-based benchmarks

incomparable (section 2).

Task diversity is another requirement rarely addressed

in exisiting evaluation benchmarks. To this end, we de-

fine three complementary benchmarking tasks in section 5:

patch verification (classification of patch pairs), image

matching, and patch retrieval. These are representative of

different use cases and, as we show in the experiments, de-

tectors rank differently depending on the task considered.

While this work is focused on local descriptors, the pro-

posed dataset contains groundtruth, including pairwise ge-

ometric transformations, that will allow future evaluations

of feature detectors as well. We believe that this bench-

mark will enable the community to gain new insights in

state-of-the-art local feature matching since it is more di-

verse and significantly larger than any existing dataset used

in this field. We assess various methods including simple

baselines, handcrafted ones, and state-of-the-art learned de-

scriptors in section 6. The experimental results show that

descriptor performance and their ranking may vary in dif-

ferent tasks, and differs from the results reported in the lit-

erature. This further highlights the importance of introduc-

ing a large, varied and reproducible evaluation benchmark

for local descriptors.

All benchmark data and code implementing the evalua-

tion protocols are made publicly available1.

1https://github.com/hpatches

2. Review of existing benchmarks

In this section we review existing datasets and bench-

marks for the evaluation of local descriptors and discuss

their main shortcomings.

2.1. Image­based benchmarks

In image matching benchmarks, descriptors are used to

establish correspondences between images of the same ob-

jects or scenes. Local features, extracted from each image

by a co-variant detector, are matched by comparing their de-

scriptors, typically with a nearest-neighbor approach. Then,

putative matches are assessed for compatibility with the

known geometric transformation between images (usually

an homography) and the relative number of correspon-

dences is used as the evaluation measure.

The most widely-adopted benchmark for evaluating de-

scriptors and detectors is the Oxford matching dataset [22].

It consists of image sequences of 8 scenes, each containing

6 images, and ground-truth homographies. While the Ox-

ford dataset contains images that are all captured by a cam-

era, Generated Matching dataset [14] is obtained by gener-

ating images using synthetic transformations, and contains

16 sequences of 48 images. However, the synthetic nature

of the transformations does not model all noise that typi-

cally occurs in the capturing process, thus making this data

less challenging than the Oxford data [4]. The DTU Robots

dataset [1] contains real images of 3D objects, captured us-

ing a robotic arm in controlled laboratory conditions, which

is suitable for certain application scenarios but of limited

diversity in the data. The Hanover dataset [11] investi-

gates high-resolution matching and contains images of up

to 8 megapixels with highly accurate ground-truth homo-

graphies. However, it is also limited by containing only 5

scenes. The Edge Foci dataset [42] consists of sequences

with very strong changes in viewing conditions, making

the evaluation somewhat specialized to extreme cases; fur-

thermore, the groundtruth for non-planar scenes does not

uniquely identify the correspondences since the transforma-

tions cannot be approximated well by homographies. Sim-

ilarly, the WxBs dataset [25] focuses on very wide baseline

matching, with extreme changes in geometry, illumination,

and appearance over time.

All these datasets share an important shortcoming that

leaves scope for variations in different descriptor evalua-

tions: there is no pre-defined set of regions to match. As a

consequence, results depend strongly on the choice of de-

tector (method, implementation, and parameters), making

the comparison of descriptors very difficult and unreliable.

This is demonstrated in table 1 where different papers reach

different conclusions even when they are evaluated on the

same data using the same protocol.

Defining centre locations of features to match does not

constrain the problem sufficiently either. For example, this
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Table 2. Effect of using a different ρ to scale the size of the

detected DoG keypoint to the size of the measurement region.

Columns 1|X represent matching scores between the first and the

X image in the sequence for different scaling factors ρ.

ρ 1| 2 1| 3 1| 4 1| 5 1|6

1 0.31 0.13 0.05 0.03 0.01

4 0.68 0.44 0.24 0.15 0.11

12 0.80 0.67 0.54 0.42 0.35

20 0.87 0.77 0.69 0.55 0.50

does not fix the region of the image used to compute the

descriptor, typically referred to as the measurement region.

Usually the measurement region is set to a fixed but arbitrar-

ily set scaling of the feature size, and this parameter is often

not reported or varies in papers. Unfortunately, this has a

major impact on performance [31]. Table 2 shows matching

scores for different scaling factors of the measurement re-

gion in the Oxford data.2 Variations of more than 50% mAP

occur; in fact, due to the planarity of such scenes, larger

measurement regions lead to improved matching results.

In order to control for the size of the measurement region

and other important parameters such as the amount of blur-

ring, resolution of the normalized patch used to compute a

descriptor [34], or use of semi-local geometric constraints,

we argue that a descriptor benchmark should be based on

image patches rather than whole images. Thus, all such am-

biguities are removed and a descriptor can be represented

and evaluated as a function f(x) ∈ R
D that maps a patch

x ∈ R
H×H×3 to a D-dimensional feature vector. This type

of benchmark is discussed next.

2.2. Patch­based benchmarks

Patch based benchmarks consist of patches extracted

from interest point locations in images. The patches are

then normalised to the same size, and annotated pair- or

group-wise with labels that indicate positive or negative ex-

amples of correspondence. The annotation is typically es-

tablished by using image groundtruth, such as geometric

transformations between images. In case of image based

evaluations the process of extracting, normalising and la-

belling patches leaves scope for variations and its parame-

ters differ between evaluations.

The first popular patch-based dataset was Photo-

Tourism [38]. Since its introduction, the many benefits of

using patches for benchmarking (section 5.3) became ap-

parent. PhotoTourism introduced a simple and unambigu-

ous evaluation protocol, which we refer to as patch verifica-

tion: given a pair of patches, the task is to predict whether

they match or not, which reduces the matching task to a

binary classification problem. This formulation is particu-

larity suited for learning-based methods, including CNNs

and metric learning in particular due to the large number

2mAP is computed on the Leuven sequence in the Oxford matching

dataset using the DoG detector and SIFT descriptor.

Table 3. Comparison of existing datasets and the proposed

HPatches dataset.

dataset pat
ch

div
er

se

re
al

la
rg

e
m

ulti
ta

sk

Photo Tourism [37] X X X

DTU [1] X X

Oxford-Affine [22] X X

Synth. Matching [14] X X

CVDS [9] X X X

Edge Foci [42] X X

RomePatches [26] X X

RDED [10] X X

HPatches X X X X X

patches available in this dataset. The main limitation of

PhotoTourism is its scarce data diversity (there are only

three scenes: Liberty, Notre-Dame and Yosemite), task di-

versity (there is only the patch verification task), and fea-

ture type diversity (only DoG features were extracted). The

CVDS dataset [9] addresses the data diversity issue by ex-

tracting patches from five MPEG-CDVS: Graphics, Paint-

ings, Video, Buildings and Common Objects. Despite its

notable variety, experiments have shown that the state-of-

the-art descriptors achieve high performance scores on this

data [3]. The RomePatches dataset [26] consider a query

ranking task that reflects image retrieval scenario, but is lim-

ited to 10K patches, which makes it an order of magnitude

smaller than PhotoTourism.

2.3. Metrics

In addition to choosing data, patches, and tasks, the

choice of evaluation metric is also important. For classifi-

cation, the Receiver Operating Characteristic (ROC) curves

have often been used [12, 13] as the basis for compari-

son. However, patch matching is intrinsically highly un-

balanced, with many more negative than positive corre-

spondence candidates; ROC curves are less representative

for unbalanced data and, as a result, a strong performance

in ROC space does not necessarily generalise to a strong

performance in applications, such as the nearest-neighbor

matching [30, 39, 5, 33]. Several papers [38, 32, 33] re-

ported at a single point on the ROC curve (FPR95, i.e. the

false positive rate at 95% true positive recall) which is more

appropriate for unbalanced data than the equal error rate

or the area under the ROC curve; however, this reduces

the information provided by the whole curve. Precision-

Recall and mean Average Precision (mAP) are much better

choices of metrics for unbalanced datasets – for example

DBRIEF [33] is excellent in ROC space but has very low

(≈ 0.01) mAP the Oxford dataset [19].

3. Benchmark design

We address the shortcomings of the existing dataset, dis-

cussed in section 2, by identifying the following require-

ments:
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Figure 1. Examples of image sequences; note the diversity of

scenes and nuisance factors, including viewpoint, illumination, fo-

cus, reflections and other changes.

• Reproducible, patch-based: descriptor evaluation should

be done on patches to eliminate the detector related-

factors. This leads to a standardisation across different

works and makes results directly comparable.

• Diverse: representative of many different scenes and im-

age capturing conditions.

• Real: real data have been found to be more challenging

than a synthesized one due to nuisance factors that cannot

be modelled in image transformations.

• Large: to allow accurate and stable evaluation, as well

as to provide substantial training sets for learning based

descriptors.

• Multitask: representative of several use cases, from

matching image pairs to image retrieval. This allows

cross-task comparison of descriptors performance within

the same data.

Based on these desired properties, we introduce a new

large-scale dataset of image sequences (section 4) annotated

with homographies. This is used to generate a patch-based

benchmark suite for evaluating local image descriptors (sec-

tion 5). Table 3 compares the proposed dataset to existing

benchmarks in terms of the properties stated above.

4. Images and patches

Images are collected from various sources, including ex-

isting datasets. We have captured 51 sequences by a cam-

era, 33 scenes are from [16], 12 scenes from [1], 5 scenes

from [10], 4 scenes from [22], 2 scenes from [35] and 1

REF E1 E2 E3 E4 H1 H2 H3 H4 T1 T2 T3 T4

Figure 2. Example of the geometric noise visualized with the ex-

tracted patches for the EASY, HARD and TOUGH distributions.

scene from [40]. Some of the sequences are illustrated in

fig. 1. In 57 scenes the main nuisance factors are photomet-

ric changes and the remaining 59 sequences show signifi-

cant geometric deformations due to viewpoint change.

A sequence includes a reference image and 5 target im-

ages with varying photometric of geometric changes. The

sequences are captured such that the geometric transforma-

tions between images can be well approximated by homo-

graphies from the reference image to each of the target im-

ages. The homographies are estimated following [22].

Patches are extracted using the following protocol. Sev-

eral scale invariant interest point detectors i.e. DoG,

Hessian-Hessian and Harris-Laplace are used to extract

features3 for scales larger than 1.6px, which give stable

points. Near-duplicate regions are discarded based on their

intersection-over-union (IoU) overlap (> 0.5) and one re-

gion per cluster is randomly retained. This keeps regions

that overlap less than 0.5 IoU. Approximately 1,300 regions

per image are then randomly selected.

For each sequence, patches are detected in the reference

image and projected on the target images using the ground-

truth homographies. This sidesteps the limitations of the

detectors, which may fail to provide corresponding regions

in every target images due to significant viewpoint or illu-

mination variations. Furthermore, it allows to extract more

patches thus better evaluate descriptors in such scenarios.

Regions that are not fully contained in all target images are

discarded. Hence, a set of corresponding patches contains

one from each image in the sequence. In practice, when

a detector extracts corresponding regions in different im-

ages, it does so with a certain amount of noise. In order

3VLFeat implementations of detectors are used.
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Figure 3. The average overlap accuracy of Hessian and Hessian-

Affine detector on the viewpoint sequences of the [23]. Line color

encodes dataset and line style a detector. The selected overlaps of

the EASY and HARD variants are visualised with a dotted line.

to simulate this noise, detections are perturbed using three

settings: EASY, HARD and TOUGH. This is obtained by

applying a random transformation T : R
2 → R

2 to the

region before projection. Assuming that the region cen-

tre is the coordinate origin, the transformation includes ro-

tation R(θ) by angle θ, anisotropic scaling by s/
√

a and

s
√

a, and translation by [m tx, m ty], thus the translation

is proportional to the detection scale m. The transforma-

tion parameters are uniformly sampled from the intervals

θ ∈ [−θmax, θmax], tx, ty ∈ [−tmax, tmax], log2(s) ∈
[−smax, smax], log2(a) ∈ [−amax, amax], whose values

for each setting are given in table 4. These settings reflect

the typical overlap accuracy of the Hessian and Hessian-

Affine detectors on Oxford matching benchmark. There,

images in each sequence are sorted by increasing trans-

formation, resulting in increased detector noise. Figure 3

shows that the EASY, HARD, and TOUGH groups corre-

spond to regions extracted in images 1-2, 3-4 and 5-6 of

such sequences.

Table 4. Range of geometric noise distributions, in units of a patch

scale.
Variant θmax tmax smax amax

EASY 10
◦ 0.15 0.15 0.2

HARD 20
◦ 0.3 0.3 0.4

TOUGH 30
◦ 0.45 0.5 0.45

Detected regions are scaled with a factor of 5 (see sec-

tion 2). The smallest patch size in the reference image is

16 × 16px since only regions from detection scales above

1.6px are considered. In each region the dominant orienta-

tion angle is estimated using a histogram of gradient orien-

tations [20]. Regions are rectified by normalizing the de-

tected affine region to a circle using bilinear interpolation

and extracting a square of 65 × 65 pixels. Example of ex-

tracted patches are shown in fig. 2, where the effect of the

increasing detector noise is clearly visible.

5. Benchmark tasks

In this section, we define the benchmark metrics, tasks

and their evaluation protocols for: patch verification, image

matching and patch retrieval.

The tasks are designed to imitate typical use cases of

local descriptors. Patch verification (section 5.2) is based

on [38] and measures the ability of a descriptor to classify

whether two patches are extracted from the same measure-

ment. Image matching (section 5.3), inspired by [22], tests

to what extent a descriptor can correctly identify correspon-

dences in two images. Finally, patch retrieval (section 5.4)

tests how well a descriptor can match a query patch to a pool

of patches extracted from many images, including many

distractors. This is a proxy to local feature based image

indexing [27, 26].

5.1. Evaluation metrics

We first define the precision and recall evaluation metric

used in HPatches. Let y = (y1, . . . , yn) ∈ {−1, 0, +1}n

be labels of a ranked list of patches returned for a patch

query, indicating negative, to ignore, and positive match,

respectively. Then precision and recall at rank i are

given by4 Pi(y) =
∑i

k=1
[yk]+/

∑i

k=1
|yk| and Ri(y) =

∑i

k=1
[yk]+/

∑N

k=1
[yk]+; the average precision (AP) is

given by AP (y) =
∑

k:yk=+1
Pk(y)/

∑N

k=1
[yk]+. The

main difference w.r.t. the standard definition of PR is the

entries that can be ignored i.e. yi = 0 which will be

used for retrieval task in section 5.4. In this case, let

K ≥
∑N

k=1
[yk]+ be the total number of positives; recall

is computed as Ri(y; K) =
∑i

k=1
[yk]+/K and AP as

AP (y; K) =
∑

k:yk=+1
Pk/K which corresponds to trun-

cated PR curves).

5.2. Patch verification

In patch verification descriptors are used to classify

whether two patches are in correspondence or not. The

benchmark starts from a list P = ((xi, x
′

i, yi), i =
1, . . . , N) of positive and negative patch pairs, where

xi, x
′

i ∈ R
65×65×1 are patches and yi = ±1 is their label.

The dataset is used to evaluate a matching approach A
that, given any two patches xi, x

′

i, produces a confidence

score si ∈ R that the two patches correspond. The quality

of the approach is measured as the average precision of the

ranked patches, namely AP (yπ1
, . . . , yπN

) where π is the

permutation that sorts the scores in decreasing order (i.e.

sπ1
≥ sπ2

≥ · · · ≥ sπn
) to apply the formulas from sec-

tion 5.1.

The benchmark uses four sets of patch pairs extracted

by varying the projection noise as discussed in section 4

that is EASY, HARD or TOUGH as well as a set of negative

pairs that are either sampled from images within the same

sequence or from different sequences. The overall perfor-

mance of the method A is then computed as the mean AP

for the six patch sets. In total, we generate 2 × 105 positive

pairs and 1 × 106 negative pairs per a set.

4Here [z]+ = max{0, z}.
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Note that the benchmark only requires scores si com-

puted by the algorithm A; in particular, this unifies the eval-

uation of a descriptor with a custom similarity metric, in-

cluding a learned one.

This evaluation protocol is similar to [38]. However,

whereas the ROC [13] is used there, AP is preferred

here [30] since the dataset is highly unbalanced, with the

vast majority (106) of patch pairs being negative. The latter

is more representative of typical matching scenarios.

5.3. Image matching

In image matching, descriptors are used to match patches

from a reference image to a target one. In this task an image

is a collection of N patches Lk = (xik, i = 1, . . . , N).

Consider a pair of images D = (L0, L1), where L0 is the

reference and L1 the target. Thus, after matching, xi0 is in

correspondence with xi1.

The pair D is used to evaluate an algorithm A that, given

a reference patch xi0 ∈ L0, determines the index σi ∈
{1, . . . , N} of the best matching patch xσi1 ∈ L1, as well

as the corresponding confidence score si ∈ R. Then, the

benchmark labels the assignment σi as yi = 2[σi
?

= i] − 1,

and computes AP (yπ1
, . . . , yπN

; N), where π is the permu-

tation that sorts the scores in decreasing order (note that the

number of positive results is fixed to N ; see section 5.1).

We group sequences based on whether they vary by

viewpoint or illumination and each group is instantiated

with EASY, HARD and TOUGH patches. The overall per-

formance of an algorithm A is computed as the mean AP

for all such image pairs and variants.

Note that the benchmark only requires the indexes σi and

the scores si computed by the algorithm A for each im-

age pair D. Typically, these can be computed by extracting

patch descriptors and comparing with a similarity metric.

This evaluation protocol is designed to closely resemble

the one from [22]. A notable difference is that, since the

patch datasets are constructed in such a way that each ref-

erence patch has a corresponding patch in each target im-

age, the maximum recall is always 100%. Note also that,

similarly to the verification task, the benchmark evaluates

the combined performance of the descriptor and similarity

score provided by the tested algorithm.

5.4. Patch retrieval

In patch retrieval descriptors are used to find patch cor-

respondences in a large collection of patches, a large portion

of which are distractors, extracted from confounder images.

Consider a collection P = (x0, (xi, yi), i = 1, . . . , N) con-

sisting of a query patch x0, extracted from a reference im-

age L0, and all patches from images Lk, k = 1, . . . , K in

the same sequence (matching images), as well as many con-

founder images.

Table 5. Basic properties of the selected descriptors. For binary de-

scriptors, the dimensionality is in bits (∗), otherwise in number of

single precision floats. The computational efficiency is measured

in thousands of descriptors extracted per second.

Descr. M
S

T
D

R
E

S
Z

S
IF

T

R
S

IF
T

B
R

IE
F

B
B

O
O

S
T

O
R

B

D
C

-S

D
C

-S
2

S

D
D

E
S

C

T
F

-M

T
F

-R

Dims 2 36 128 128
∗

256
∗

256
∗

256 256 512 128 128 128

Patch Sz 65 65 65 65 32 32 32 64 64 64 32 32

Speed CPU 67 3 2 2 333 2 333 0.3 0.2 0.1 0.6 0.6

Speed GPU 10 5 2.3 83 83

In the retrieval protocol, a patch xi is given a positive

label yi = +1 if it corresponds to the query patch x0, and

negative yi = −1 otherwise. Since there is exactly one cor-

responding patch in each image Lk of the same sequence,

there are exactly K positive patches in D. However, re-

trieved patches xi that do not correspond to the query patch

x0 but at least belong to a matching image Lk are ignored

(yi = 0). The idea is that such patches are not detrimental

for the purpose of retrieving the correct image, and such in-

nocuous errors may occur frequently in the case of repeated

structures in images.

The collection P is used to evaluate an algorithm A that

assigns to each patch xi a confidence score si ∈ R that the

patch matches the query x0. The benchmark then returns

AP (yπ1
, . . . , yπN

; K), where π is the permutation that sorts

the scores in decreasing order.

The benchmark extracts 1 × 104 collections P , each cor-

responding to different query patch x0 and its correspond-

ing 5 patches as well as 2 × 104 distractors randomly se-

lected from all sequences. Furthermore, there are three vari-

ants instantiated for EASY, HARD and TOUGH. The overall

performance of an algorithm A is computed as the mean AP

for all such collections and their variants.

The design of this benchmark is inspired by classical im-

age retrieval systems such as [27, 28, 26], which use patches

and their descriptors as entries in image indexes. A similar

evaluation may be performed by using the PhotoTourism

dataset, which includes ∼ 100K small sets of corresponding

patches. Unfortunately, since these small sets are not max-

imal, it is not possible to know that a patch does not have

a correct correspondence without the ground truth, which

makes the evaluation noisy.

6. Experimental results

In this section we evaluate local descriptors with the

newly introduced benchmark and discuss the results in rela-

tion to the literature.

6.1. Descriptors

We evaluate the following descriptors, summarized in ta-

ble 5. We include two baselines: MSTD, [µ, σ] which is

the average µ and standard deviation σ of the patch, and

RESZ, the vector obtained by resizing the patch to 6×6 pix-
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els and normalizing it by subtracting µ and dividing by σ.

For SIFT-based descriptors we include SIFT [20] and its

variant RSIFT [2]. From the family of binary descriptors

we test BRIEF [8], based on randomised intensity com-

parison, ORB [29], that uses uncorrelated binary tests, and

BBOOST [32], where binary tests are selected using boost-

ing. Finally, we evaluate several recent deep descriptors

including the siamese variants of DeepCompare [41] (DC-

S, DC-S2S) with one and two stream CNN architectures

for one or two patch crops, DeepDesc [30] (DDESC), which

exploits hard-negative mining, and the TFeat margin* (TF-

M) and ratio* (TF-R) of the TFeat descriptor [4], based on

shallow convolutional networks, triplet learning constraints

and fast hard negative mining. All the learning based de-

scriptors were trained on PhotoTourism data, which is dif-

ferent from our new benchmark.

It has been shown in [2, 7, 17] that descriptor normalisa-

tion often substantially improves the performance. Thus,

we also include post-processed variants of selected de-

scriptors by applying ZCA whitening [6, p. 299-300] with

clipped eigen values [15] followed by power law normalisa-

tion [2] and L2 normalization. ZCA projection is computed

on a subset of the dataset (note that ZCA is unsupervised).

The threshold for eigen clipping is estimated for each de-

scriptor separately to maximise its performance on a subset

of the dataset. The normalisation is not used for trivial base-

lines and for the binary descriptors.

Table 5 shows the dimensionality, size of the measure-

ment region in pixels, and extraction time of each descrip-

tor. DeepCompare [41] variants have the highest dimen-

sionality of 256 and 512, otherwise the other real value de-

scriptors are of 128 dimensions except MSTD and RESZ.

All binary descriptors are of 256 bits. In terms of speed,

the binary descriptors BRIEF and ORB are 4 times faster

than the most efficient CNN based features i.e.TF-. Other

descriptors are at least an order of magnitude slower. Note

that MSTD and RESZ are implemented in Matlab therefore

their efficiency should be interpreted with caution.

6.2. Results

The descriptors are evaluated on three benchmark tasks:

patch verification, image matching, and patch retrieval, as

defined in section 5. In all plots in fig. 4, the colour of

the marker indicates the amount of geometric noise, i.e.

EASY, HARD, and TOUGH, as discussed in section 4. There

are two variants of the experimental settings for each task,

as explained in the discussion below, and the type of the

marker corresponds to the experimental settings. The bars

are the means of the six runs given by three variants of noise

with two additional settings each. Dashed bar borders and

+ indicate ZCA projected and normalised features.

Verification. ZCA projected and normalized +TF-R,

+DC-S2S, are closely followed by other TF-, +DDESC

and +DC-S, with slightly lower scores for post processed

SIFT and binary descriptors. The post processing gives a

significant boost to DC- as well as SIFT but a smaller im-

provements to TF- based descriptors. Good performance of

CNN features is expected as such descriptors are optimized

together with their distance metric to perform well in the

verification task. The experiment was run for negative pairs

formed by patches from the same sequence SAMESEQ and

from different sequences DIFFSEQ. The ones from SAME-

SEQ are considered more challenging as the textures in dif-

ferent parts of the image are often similar. In fact the results

are consistently lower for SAMESEQ. This shows that, not

only the noise in positive data poses a challenge, but the

performance can also vary depending on what source the

negative examples come from.

Matching. The ranking of descriptors changes for this task.

Although normalized +DDESC still performs well, surpris-

ingly, +RSIFT comes in front of other descriptors. +TF-

also give good matching performance. Overall mAP scores

are much lower than for the verification task as the ratio

of positive to negative examples is significantly lower here

and all the negative ones come from the same sequence.

Also the gap between SIFT and deep descriptors is nar-

row compared to the verification. Another interesting ob-

servation is that the results for sequences with photometric

changes (ILLUM) are consistently lower than for the view-

point change (VIEWPT). This is different to what was ob-

served in evaluations on Oxford data [22]. It seems that

more progress has been made on geometric invariance in

contrast to the robustness to photometric changes. The pro-

posed HPatches dataset includes many sequences with ex-

treme illumination changes.

Retrieval. Top performers in the retrieval scenario are the

same as for matching. In particular, SIFT variants are close

behind +DDESC. The overall performance is slightly bet-

ter compared to matching which can again be explained by

distractors originating from the same sequence in matching

and different sequences in retrieval.

Multitask. There are several interesting observations

across the tasks. First, the ranking of the descriptors

changes, which confirms that multiple evaluation met-

rics are needed. Second, SIFT variants, especially when

followed by normalisation, perform very well. In fact,

+RSIFT is the second-best descriptor in both image match-

ing and patch retrieval. MSTD gives good scores on verifi-

cation but completely fails for matching and retrieval, as

both rely on nearest neighbour matching. Good perfor-

mance on verification clearly does not generalise well to the

other tasks, which much better reflect the practical applica-

tions of descriptors. This further highlights the need for

using a multitask benchmark to complement training and

testing on PhotoTourism, which is done in vast majority of

recent papers and is similar to the verification task here. The

5179



EASY HARD TOUGH

DIFFSEQ SAMESEQ

0 20 40 60 80 100

RESZ

MSTD

BRIEF

RSIFT

ORB

SIFT

BBOOST

DC-S

+SIFT

+RSIFT

DC-S2S

DDESC

+DC-S

+DDESC

TF-M

TF-R

+TF-M

+DC-S2S

+TF-R 83.24%

83.03%

82.69%

81.92%

81.90%
81.65%

81.63%

79.51%
78.23%

76.70%

74.35%

70.04%

66.67%

65.12%

60.15%

58.53%

58.07%

48.75%

48.11%

Patch Verification mAP [%]

VIEWPT ILLUM

0 20 40 60 80 100

MSTD

RESZ

BRIEF

BBOOST

ORB

DC-S

SIFT

RSIFT

DC-S2S

DDESC

TF-R

+DC-S

+DC-S2S

TF-M

+SIFT

+TF-M

+TF-R

+DDESC

+RSIFT 36.77%

35.44%

34.37%

34.29%
32.76%

32.64%

32.34%

31.65%

30.61%

28.05%

27.69%
27.22%

25.47%

24.92%
15.32%

14.77%

10.50%

7.16%

0.10%

Image Matching mAP [%]

0 20 40 60 80 100

MSTD

RESZ

BRIEF

ORB

BBOOST

SIFT

RSIFT

DC-S2S

DC-S

TF-R

+DC-S2S

TF-M

+DC-S

DDESC

+TF-M

+TF-R

+SIFT

+RSIFT

+DDESC 44.55%

43.84%

40.36%

40.23%

40.02%

39.83%

39.68%

39.40%
38.23%

37.69%
34.84%

34.76%

33.56%

31.98%
22.45%

18.85%

16.03%

13.12%

1.20%

Patch Retrieval mAP [%]

Figure 4. Verification, matching and retrieval results. Colour of the marker indicates EASY, HARD, and TOUGH noise. The type of the

marker corresponds to the variants of the experimental settings (see section 6.2). Bar is a mean of the 6 variants of each task. Dashed bar

borders and + indicate ZCA projected and normalised features.

difference in performance for EASY and TOUGH geometric

distortions, as well as for the illumination changes, is up to

30%, which shows there is still scope for improvement in

both areas.

The performance of deep descriptors and SIFT varies

across the tasks although +DDESC [30] is close to the top

scores in each category, however it is the slowest to cal-

culate. In matching and retrieval, ZCA and normalisation

bring the performance of SIFT to the top level. Compared

to some deep descriptors, SIFT seems less robust to high

degrees of geometric noise, with large spread for EASY and

TOUGH benchmarks. This is especially evident on the patch

verification task, where SIFT is outperformed by most of

the other descriptors for the TOUGH data.

The binary descriptors are outperformed by the origi-

nal SIFT by a large margin for the image matching and

patch retrieval task in particular, which may be due to its

discriminative power and better robustness to the geomet-

ric noise. The binary descriptors are competitive only for

the patch verification task. However, the binary descriptors

have other advantages, such as compactness and speed, so

they may still be the best choice in applications where ac-

curacy is less important than speed. Also +TF perform rel-

atively well, in particular when considering their efficiency.

Post-processing normalisation, in particular square root,

has a significant effect. For most of the descriptors, the nor-

malised features perform much better than the original ones.

Finally, patch verification achieves on average much

higher mAP score compared to the other tasks. This can

be seen mainly from the relatively good performance of the

trivial MSTD descriptor. This confirms that patch verifica-

tion task is insufficient on its own and other tasks are crucial

in descriptor evaluation.

7. Conclusions

With the advent of deep learning, the development of

novel and more powerful local descriptors has accelerated

tremendously. However, as we have shown in this paper, the

benchmarks commonly used for evaluating such descriptors

are inadequate, making comparisons unreliable. In the long

run, this is likely to be detrimental to further research. In or-

der to address this problem, we have introduced HPatches,

a new public benchmark for local descriptors. The new

benchmark is patch-based, removing many of the ambi-

guities that plagued the existing image-based benchmarks

and favouring rigorous, reproducible, and large scale exper-

imentation. This benchmark also improves on the limited

data and task diversity present in other datasets, by consid-

ering many different scene and visual effects types, as well

as three benchmark tasks close to practical applications of

descriptors.

Despite the multitask complexity of our benchmark

suite, using the evaluation is easy as we provide open-

source implementation of the protocols which can be used

with minimal effort. HPatches can supersede datasets such

as PhotoTourism and the older but still frequently used Ox-

ford matching dataset, addressing their shortcomings and

providing a valuable tool for researchers interested in local

descriptors.
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