
Fast Fourier Color Constancy

Jonathan T. Barron

barron@google.com

Yun-Ta Tsai

yuntatsai@google.com

Abstract

We present Fast Fourier Color Constancy (FFCC), a

color constancy algorithm which solves illuminant esti-

mation by reducing it to a spatial localization task on a

torus. By operating in the frequency domain, FFCC pro-

duces lower error rates than the previous state-of-the-art by

13− 20% while being 250− 3000× faster. This unconven-

tional approach introduces challenges regarding aliasing,

directional statistics, and preconditioning, which we ad-

dress. By producing a complete posterior distribution over

illuminants instead of a single illuminant estimate, FFCC

enables better training techniques, an effective temporal

smoothing technique, and richer methods for error analy-

sis. Our implementation of FFCC runs at∼ 700 frames per

second on a mobile device, allowing it to be used as an ac-

curate, real-time, temporally-coherent automatic white bal-

ance algorithm.

1. Intro

A fundamental problem in computer vision is that of esti-

mating the underlying world that resulted in some observed

image [1, 5]. One subset of this problem is color constancy:

estimating the color of the illuminant of the scene and the

colors of the objects in the scene viewed under a white light.

Despite its apparent simplicity, this problem has yielded a

great deal of depth and challenge for both the human vision

and computer vision communities [17, 22]. Color constancy

is also a practical concern in the camera industry: produc-

ing a natural looking photograph without user intervention

requires that the illuminant be automatically estimated and

discounted, a process referred to as “auto white balance”

among practitioners. Though there is a profound histori-

cal connection between color constancy and consumer pho-

tography (exemplified by Edwin Land, the inventor of both

Retinex theory [26] and the Polaroid instant camera), “color

constancy” and “white balance” have come to mean differ-

ent things — color constancy aims to recover the veridical

world behind an image, while white balance aims to give an

image a pleasant appearance consistent with some aesthetic

or cultural norm. But with the current ubiquity of learning-

based techniques in computer vision, both problems reduce

to just estimating the “best” illuminant from an image, and

the question of whether that illuminant is objectively true

or subjectively attractive is just a matter of the data used

during training.

Despite their accuracy, modern learning-based color

constancy algorithms are not immediately suitable as prac-

tical white balance algorithms, as practical white balance

has several requirements besides accuracy:

Speed - An algorithm running in a camera’s viewfinder

must run at 30 FPS on mobile hardware. But a camera’s

compute budget is precious: demosaicing, face detection,

auto exposure, etc, must also run simultaneously and in real

time. Spending more than a small fraction (say, 5 − 10%)

of a camera’s compute budget on white balance is impracti-

cal, suggesting that our speed requirement is closer to 1− 5
milliseconds per frame.

Impoverished Input - Most color constancy algorithms are

designed for full resolution, high bit-depth input images, but

operating on such large images is challenging and costly in

practice. To be fast, the algorithm must work well on the

small, low bit-depth “preview” images (32× 24 or 64× 48
pixels, 8-bit) which are usually computed by specialized

camera hardware for this task.

Uncertainty - In addition to the illuminant, the algorithm

should produce some confidence measure or a complete

posterior distribution over illuminants, thereby enabling

convenient downstream integration with hand-engineered

heuristics or external sources of information.

Temporal Coherence - The algorithm should allow the es-

timated illuminant to be smoothed over time, to prevent

color composition in videos from varying erratically.

In this paper we present a novel color constancy al-

gorithm, which we call “Fast Fourier Color Constancy”

(FFCC). Viewed as a color constancy algorithm, FFCC is

13 − 20% more accurate than the state of the art on stan-

dard benchmarks. Viewed as a prospective white balance al-

gorithm, FFCC addresses our previously described require-

ments: Our technique is 250−3000× faster than the state of

the art, and is capable of running at 1.44 milliseconds per

frame on a standard consumer mobile platform using the

thumbnail images already produced by that camera’s hard-

1886

(a) Image A (b) Aliased Image B

Figure 1: CCC [4] reduces color constancy to a 2D local-

ization problem similar to object detection (1a). FFCC re-

peatedly wraps this 2D localization problem around a small

torus (1b), which creates challenges but allows for faster

illuminant estimation. See the text for details.

ware. FFCC produces a complete posterior distribution over

illuminants which allows us to reason about uncertainty and

enables simple and effective temporal smoothing.

We build on the “Convolutional Color Constancy“

(CCC) approach of [4], which is currently one of the top-

performing techniques on standard color constancy bench-

marks [12, 20, 30]. CCC works by observing that applying

a per-channel gain to a linear RGB image is equivalent to

inducing a 2D translation of the log-chroma histogram of

that image, which allows color constancy to be reduced to

the task of localizing a signature in log-chroma histogram

space. This reduction is at the core of the success of CCC

and, by extension, our FFCC technique; see [4] for a thor-

ough explanation. The primary difference between FFCC

is that instead of performing an expensive localization on a

large log-chroma plane, we perform a cheap localization on

a small log-chroma torus.

At a high level, CCC reduces color constancy to object

detection — in the computability theory sense of “reduce”.

FFCC reduces color constancy to localization on a torus in-

stead of a plane, and because this task has no intuitive ana-

logue in computer vision we will attempt to provide one1.

Given a large image A on which we would like to perform

object detection, imagine constructing a smaller n × n im-

age B in which each pixel in B is the sum of all values in A
separated by a multiple of n pixels in either dimension:

B(i, j) =
∑

k,l

A(i+ nk, j + nl) (1)

This amounts to taking A and repeatedly wrapping it around

a small torus (see Figure 1). Detecting objects this way may

yield a speedup as the image being processed is smaller, but

1 We cannot speak to the merit of this idea in the context of object

detection, and we present it here solely to provide an intuition of our work

on color constancy

it also raises new problems: 1) pixel values are corrupted

with superimposed shapes that make detection difficult, 2)

detections must “wrap” around the edges of this toroidal

image, and 3) instead of an absolute, global location we can

only recover an aliased, incomplete location. FFCC works

by taking the large convolutional problem of CCC (ie, face

detection on A) and aliasing that problem down to a smaller

size where it can be solved efficiently (ie, face detection

on B). We will show that we can learn an effective color

constancy model in the face of the difficulty and ambiguity

introduced by aliasing. This convolutional classifier will be

implemented and learned using FFTs, because the naturally

periodic nature of FFT convolutions resolves the problem of

detections “wrapping” around the edge of toroidal images,

and produces a significant speedup.

Our approach to color constancy introduces a number

of issues. The aforementioned periodic ambiguity result-

ing from operating on a torus (which we dub “illuminant

aliasing”) requires new techniques for recovering a global

illuminant estimate from an aliased estimate (Section 3).

Localizing the centroid of the illuminant on a torus is dif-

ficult, requiring that we adopt and extend techniques from

the directional statistics literature (Section 4). But our ap-

proach presents a number of benefits. FFCC improves accu-

racy relative to CCC by 17 − 24% while retaining its flex-

ibility, and allows us to construct priors over illuminants

(Section 5). By learning in the frequency-domain we can

construct a novel method for fast frequency-domain regu-

larization and preconditioning, making FFCC training 20×
faster than CCC (Section 6). Our model produces a com-

plete unimodal posterior over illuminants as output, allow-

ing us to construct a Kalman filter-like approach for pro-

cessing videos instead of independent images (Section 7).

2. Convolutional Color Constancy

Let us review the assumptions made in CCC and inher-

ited by our model. Assume that we have a photometrically

linear input image I from a camera, with a black level of

zero and with no saturated pixels2. Each pixel k’s RGB

value in image I is assumed to be the product of that pixel’s

“true” white-balanced RGB value W (k) and some global

RGB illumination L shared by all pixels:

∀k







I
(k)
r

I
(k)
g

I
(k)
b






=







W
(k)
r

W
(k)
g

W
(k)
b






◦





Lr

Lg

Lb



 (2)

The task of color constancy is to use the input image I to

estimate L, and with that produce W (k) = I(k)/L.

Given a pixel from our input RGB image I(k), CCC de-

2in practice, saturated pixels are identified and removed from all down-

stream computation, similarly to how color checker pixels are ignored.

887

(a) Input Image (b) Histogram (c) Aliased Histogram (d) Aliased Prediction (e) De-aliased Prediction (f) Output Image

Figure 2: An overview of our pipeline demonstrating the problem of illuminant aliasing. Similarly to CCC, we take an input

image (2a) and transform it into a log-chroma histogram (2b, presented in the same format as in [4]). But unlike CCC, our

histograms are small and toroidal, meaning that pixels can “wrap around” the edges (2c, with the torus “unwrapped” once

in every direction). This means that the centroid of a filtered histogram, which would simply be the illuminant estimate in

CCC, is instead an infinite family of possible illuminants (2d). This requires de-aliasing, some technique for disambiguating

between illuminants to select the single most likely estimate (2e, shown as a point surrounded by an ellipse visualizing the

output covariance of our model). Our model’s output (u, v) coordinates in this de-aliased log-chroma space corresponds to

the color of the illuminant, which can then be divided into the input image to produce a white balanced image (2f).

fines two log-chroma measures:

u(k) = log
(

I(k)g /I(k)r

)

v(k) = log
(

I(k)g /I
(k)
b

)

(3)

The absolute scale of L is assumed to be unrecoverable, so

estimating L simply requires estimating its log-chroma:

Lu = log (Lg/Lr) Lv = log (Lg/Lb) (4)

After recovering (Lu, Lv), assuming that L has a magnitude

of 1 lets us recover the RGB values of the illuminant:

Lr =
exp(−Lu)

z
Lg =

1

z
Lb =

exp(−Lv)

z

z =
√

exp(−Lu)2 + exp(−Lv)2 + 1 (5)

Framing color constancy in terms of predicting log-chroma

has several small advantages over the standard RGB ap-

proach (2 unknowns instead of 3, better numerical stability,

etc) but the primary advantage of this approach is that us-

ing log-chroma turns the multiplicative constraint relating

W and I into an additive constraint [15], and this in turn

enables a convolutional approach to color constancy. As

shown in [4], color constancy can be framed as a 2D spatial

localization task on a log-chroma histogram N , where some

sliding-window classifier is used to filter that histogram and

the centroid of that filtered histogram is used as the log-

chroma of the illuminant.

3. Illuminant Aliasing

We assume the same convolutional premise of CCC, but

with one primary difference to improve quality and speed:

we use FFTs to perform the convolution that filters the log-

chroma histogram, and we use a small histogram to make

that convolution as fast as possible. This change may seem

trivial, but the periodic nature of FFT convolution combined

with the properties of natural images has a significant effect,

as we will demonstrate.

Similarly to CCC, given an input image I we construct a

histogram N from I , where N(i, j) is the number of pixels

in I whose log-chroma is near the (u, v) coordinates corre-

sponding to histogram position (i, j):

N(i, j) =
∑

k

(

mod

(

u(k) − ulo

h
− i, n

)

< 1

∧ mod

(

v(k) − vlo
h

− j, n

)

< 1

)

(6)

Where i, j are 0-indexed, n = 64 is the number of bins,

h = 1/32 is the bin size, and (ulo , vlo) is the starting

point of the histogram. Because our histogram is too small

to contain the wide spread of colors present in most nat-

ural images, we use modular arithmetic to cause pixels to

“wrap around” with respect to log-chroma (any other stan-

dard boundary condition would violate our convolutional

assumption and would cause many image pixels to be ig-

nored). This means that, unlike standard CCC, a single

(i, j) coordinate in the histogram no longer corresponds to

an absolute (u, v) color, but instead corresponds to an infi-

nite family of (u, v) colors. Accordingly, the centroid of a

filtered histogram no longer corresponds to the color of the

illuminant, but instead is an infinite set of illuminants. We

will refer to this phenomenon as illuminant aliasing. Solv-

ing this problem requires that we use some technique to de-

alias an aliased illuminant estimate3. A high-level outline of

3It is tempting to refer to resolving the illuminant aliasing problem as

“anti-aliasing”, but anti-aliasing usually refers to preprocessing a signal to

prevent aliasing during some resampling operation, which does not appear

possible in our framework. “De-aliasing” suggests that we allow aliasing

to happen to the input, but then remove the aliasing from the output.

888

our FFCC pipeline that illustrates illuminant (de-)aliasing

can be seen in Fig. 2.

De-aliasing requires that we use some external informa-

tion (or some external color constancy algorithm) to dis-

ambiguate between illuminants. An intuitive approach is

to select the illuminant that causes the average image color

to be as neutral as possible, which we call “gray world de-

aliasing”. We compute average log-chroma values (ū, v̄) for

the entire image and use this to turn an aliased illuminant

estimate (L̂u, L̂v) into a de-aliased illuminant (L̂′

u, L̂
′

v):

ū = log
(
∑

k u
(k)
)

v̄ = log
(
∑

k v
(k)
)

(7)
[

L̂′

u

L̂′

v

]

=

[

L̂u

L̂v

]

− (nh)

⌊

1

nh

[

L̂u − ū

L̂v − v̄

]

+
1

2

⌋

(8)

Another approach, which we call “gray light de-aliasing”,

is to assume that the illuminant is as close to the center of

the histogram as possible. This de-aliasing approach sim-

ply requires carefully setting the starting point of the his-

togram (ulo , vlo) such that the true illuminants in natural

scenes all lie within the span of the histogram, and setting

L̂′ = L̂. We do this by setting ulo and vlo to maximize

the distance between the edges of the histogram and the

bounding box surrounding the ground-truth illuminants in

the training data4. Gray light de-aliasing is trivial to imple-

ment but, unlike gray world de-aliasing, it will systemati-

cally fail if the histogram is too small to fit all illuminants

within its span.

To summarize the difference between CCC [4] and our

approach with regards to illuminant aliasing, CCC (approx-

imately) performs illuminant estimation as follows:

[

L̂u

L̂v

]

=

[

ulo

vlo

]

+ h

(

argmax
i,j

(N ∗ F)

)

(9)

Where N ∗ F is performed using a pyramid convolution.

FFCC corresponds to this procedure:

P ← softmax (N ∗ F) (10)

(µ,Σ)← fit bvm(P) (11)
[

L̂u

L̂v

]

← de alias(µ) (12)

Where N is a small and aliased toroidal histogram, convolu-

tion is performed with FFTs, and the centroid of the filtered

histogram is estimated and de-aliased as necessary. By con-

structing this pipeline to be differentiable we can train our

model in an end-to-end fashion by propagating the gradients

4Our histograms are shifted toward green colors rather than centered

around a neutral color, as cameras are traditionally designed with an more

sensitive green channel which enables white balance to be performed by

gaining red and blue up without causing color clipping. Ignoring this prac-

tical issue, our approach can be thought of as centering our histograms

around a neutral white light

of some loss computed on the de-aliased illuminant predic-

tion L̂ back onto the learned filters F . The centroid fitting

in Eq. 11 is performed by fitting a bivariate von Mises dis-

tribution to a PDF, which we will now explain.

4. Differentiable Bivariate von Mises

Our architecture requires some mechanism for reducing

a toroidal PDF P (i, j) to a single estimate of the illumi-

nant. Localizing the center of mass of a histogram defined

on a torus is difficult: fitting a bivariate Gaussian may fail

when the input distribution “wraps around” the sides of the

PDF, as shown in Fig. 3. Additionally, for the sake of tem-

poral smoothing (Section 7) and confidence estimation, we

want our model to predict a well-calibrated covariance ma-

trix around the center of mass of P . This requires that our

model be trained end-to-end, which therefore requires that

our mean/covariance fitting be analytically differentiable

and therefore usable as a “layer” in our learning architec-

ture. To address these problems we present a variant of the

bivariate von Mises distribution [27], which we will use to

efficiently localize the mean and covariance of P in a man-

ner that allows for easy backpropagation.

The bivariate von Mises distribution (BVM) is a com-

mon parameterization of a PDF on a torus. There exist

several parametrizations which mostly differ in how “con-

centration” is represented (“concentration” having a sim-

ilar meaning to covariance). All of these parametriza-

tions present problems in our use case: none have closed

form expressions for maximum likelihood estimators [24],

none lend themselves to convenient backpropagation, and

all define concentration in terms of angles and therefore

require “conversion” to covariance matrices during color

de-aliasing. For these reasons we present an alternative

parametrization in which we directly estimate a BVM as

a mean µ and covariance Σ in a simple and differentiable

closed form expression. Though necessarily approximate,

our estimator is accurate when the distribution is well-

concentrated, which is generally the case for our task.

Our input is a PDF P (i, j) of size n × n, where i and

j are integers in [0, n − 1]. For convenience we define a

mapping from i or j to angles in [0, 2π) and the marginal

distributions of P with respect to i and j:

θ(i) =
2πi

n
Pi(i) =

∑

j

P (i, j) Pj(j) =
∑

i

P (i, j)

We also define the marginal expectation of the sine and co-

sine of the angle:

yi =
∑

i

Pi(i) sin(θ(i)) xi =
∑

i

Pi(i) cos(θ(i)) (13)

With xj and yj defined similarly.

889

Figure 3: We fit a bivariate von Mises distribution (shown

in solid blue) to toroidal PDFs P (i, j) to produce an aliased

illuminant estimate. Contrast this with fitting a bivariate

Gaussian (shown in dashed red) which treats the PDF as

if it lies on a plane. Both approaches behave similarly if

the distribution lies near the center of the unwrapped plane

(left) but fitting a Gaussian fails as the distribution begins to

“wrap around” the edge (middle, right).

Estimating the mean µ of a BVM from a histogram just

requires computing the circular mean in i and j:

µ =

[

ulo

vlo

]

+ h

[

mod
(

n
2π atan2(yi, xi), n

)

mod
(

n
2π atan2(yj , xj), n

)

]

(14)

Eq. 14 includes gray light de-aliasing, though gray world

de-aliasing can also be applied to µ after fitting.

We can fit the covariance of our model by simply “un-

wrapping” the coordinates of the histogram relative to the

estimated mean and treating these unwrapped coordinates

as though we are fitting a bivariate Gaussian. We define the

“unwrapped” (i, j) coordinates such that the “wrap around”

point on the torus lies as far away from the mean as possible,

or equivalently, such that the unwrapped coordinates are as

close to the mean as possible:

ī = mod

(

i−

⌊

µu − ulo

h

⌋

+
n

2
, n

)

j̄ = mod

(

j −

⌊

µv − vlo
h

⌋

+
n

2
, n

)

(15)

Our estimated covariance matrix is simply the sample co-

variance of P (̄i, j̄):

E [̄i] =
∑

i

Pi(i)̄i E [j̄] =
∑

j

Pj(j)j̄ (16)

Σ = h2









ǫ+
∑

i

Pi(i)̄i
2 − E [̄i]

2
∑

i,j

P (i, j)̄ij̄ − E [̄i] E [j̄]

∑

i,j

P (i, j)̄ij̄ − E [̄i] E [j̄] ǫ+
∑

j

Pj(j)j̄
2 − E [j̄]

2









(17)

We regularize the sample covariance matrix slightly by

adding a constant ǫ = 1 to the diagonal.

With our estimated mean and covariance we can com-

pute our loss: the negative log-likelihood of a Gaussian (ig-

noring scale factors and constants) relative to the true illu-

minant L∗:

f (µ,Σ) = log |Σ|+

([

L∗

u

L∗

v

]

− µ

)T

Σ
−1

([

L∗

u

L∗

v

]

− µ

)

(18)

Using this loss causes our model to produce a well-

calibrated complete posterior of the illuminant instead of

just a single estimate. This posterior will be useful when

processing video sequences (Section 7) and also allows us

to attach confidence estimates to our predictions using the

entropy of Σ (see the supplement).

Our entire system is trained end-to-end, which requires

that every step in BVM fitting and loss computation be an-

alytically differentiable. See the supplement for the analyt-

ical gradients for Eqs. 14, 17, and 18, which can be chained

together to backpropagate the gradient of f (·) onto the in-

put PDF P .

5. Model Extensions

The system we have described thus far (compute a peri-

odic histogram of each pixel’s log-chroma, apply a learned

FFT convolution, apply a softmax, fit a de-aliased bivariate

von Mises distribution) works reasonably well (Model A in

Table 1) but does not produce state-of-the-art results. This

is likely because this model reasons about pixels indepen-

dently, ignores all spatial information in the image, and does

not consider the absolute color of the illuminant. Here we

present extensions to the model which address these issues

and improve accuracy accordingly.

As explored in [4], a CCC-like model can be generalized

to a set of “augmented” images provided that these images

are non-negative and “scale with intensity” [14]. This lets

us apply certain filtering operations to image I and, instead

of constructing a single histogram from our image, con-

struct a “stack” of histograms constructed from the image

and its filtered versions. Instead of learning and applying

one filter, we learn a stack of filters and sum across chan-

nels after convolution. The general family of augmented

images used in [4] are expensive to compute, so we instead

use just the input image I and a local measure of absolute

deviation in the input image:

E(x, y, c) = 1
8

1
∑

i=−1

1
∑

j=−1

|I(x, y, c)− I(x+ i, y + j, c)| (19)

These two features appears to perform similarly to the four

features used in [4], while being cheaper to compute.

Just as a sliding-window object detector is often invariant

to the absolute location of an object in an image, the convo-

lutional nature of our baseline model makes it invariant to

any global shift of the color of the input image. This means

that our baseline model cannot rely on any statistical regu-

larities of the illumination by, say, modeling black body ra-

diation, the specific properties of commonly manufactured

light bulbs, or any varying spectral sensitivity across cam-

eras. Though CCC does not model illumination directly,

it appears to indirectly reason about illumination by using

the boundary conditions of its pyramid convolution to learn

890

(a) Pixel Filter (b) Edge Filter (c) Illum. Gain (d) Illum. Bias

Figure 4: A complete learned model (Model J in Table 1)

shown in centered (u, v) log-chroma space, with bright-

ness indicating larger values. Our learned filters are cen-

tered around the origin (the predicted white point) and our

illuminant gain and bias maps model the black body curve

and varying camera sensitivity as two wrap-around line seg-

ments (this dataset consists of images from two different

cameras).

a model which is not truly spatially varying and is there-

fore sensitive to absolute color. Because a torus has no

boundaries, our model is invariant to global input color, so

we must therefore introduce a mechanism for directly rea-

soning about illuminants. We use a per-illuminant “gain”

map G(i, j) and “bias” map B(i, j), which together apply

a per-illuminant affine transformation to the output of our

previously-described convolution at (aliased) color (i, j).
The bias B causes our model to prefer certain illuminants

over others, while the gain G causes the contribution of the

convolution at certain colors to be amplified.

Our two extensions (an augmented edge channel and an

illuminant gain/bias map) let us redefine the P in Eq. 10 as

P = softmax

(

B +G ◦
∑

k

(Nk ∗ Fk)

)

(20)

Where {Fk} are the set of learned filters for each augmented

channel’s histogram Nk, G is our learned gain map, and B
is our learned bias map. In practice we actually parametrize

Glog when training and define G = exp(Glog), which con-

straints G to be non-negative. Visualizations of G and B
and our learned filters can be seen in Fig. 4.

6. Fourier Regularization and Preconditioning

Our learned model weights ({Fk}, G,B) are all peri-

odic n × n images. To improve generalization, we want

these weights to be small and smooth. In this section we

present the general form of the regularization used during

training, and we show how this regularization lets us pre-

condition the optimization problem solved during training

to find lower-cost minima in fewer iterations. Because this

frequency-domain optimization technique applies generally

to any optimization problem concerning smooth and peri-

odic images, we will describe it in general terms.

Let us construct an optimization problem with respect to

a single n× n image Z consisting of a data term f(Z) and

a regularization term g(Z):

Z∗ = argmin
Z

(f (Z) + g (Z)) (21)

We require that the regularization g(Z) is the weighted sum

of squared periodic convolutions of Z with some filter bank.

In our experiments g(Z) is the weighted sum of the squared

difference between adjacent values (similar to a total varia-

tion loss [29]) and the sum of squared values:

g(Z) =λ1

∑

i,j

(

(Z (i, j)− Z (mod(i+ 1, n), j))
2

+ (Z (i, j)− Z (i,mod(j + 1, n)))
2)

+λ0

∑

i,j Z(i, j)2 (22)

Where λ1 and λ0 are hyperparameters that determine the

strength of each smoothness term. We require that λ0 > 0
to prevent divide-by-zero issues during preconditioning.

We use a variant of the standard FFT Fv (·) which bi-

jectively maps from some real n × n image to a real n2-

dimensional vector, instead of the complex n×n image pro-

duced by a standard FFT (See the supplement for a formal

description). With this, we can rewrite Eq. 22 as follows:

w =
1

n

√

λ1

(

|Fv ([1,−1])|
2
+ |Fv ([1;−1])|

2
)

+ λ0

g(Z) = Fv (Z)
T
diag (w)

2
Fv (Z) (23)

where the vector w is just some fixed function of the def-

inition of g(Z) and the values of the hyperparameters λ1

and λ0. The 2-tap difference filters in Fv ([1,−1]) and

Fv ([1;−1]) are padded to size (n × n) before the FFT.

With w we can define a mapping between our 2D image

space and a rescaled FFT vector space:

z = w ◦ Fv (Z) (24)

Where ◦ is an element-wise product. This mapping lets us

rewrite the optimization problem in Eq. 21 as:

Z∗ = F−1
v

(

1
w

(

argmin
z

(

f
(

F−1
v

(

z

w

))

+ ‖z‖
2
)

))

(25)

where F−1
v (·) is the inverse of Fv (·), and division is

element-wise. This reparametrization reduces the compli-

cated regularization of Z to a simple L2 regularization of z,

which has a preconditioning effect.

We use this technique during training to reparameterize

all model components ({Fk}, G,B) as rescaled FFT vec-

tors, each with their own values for λ0 and λ1. The ef-

fect of this can be seen in Fig. 5, where we show the loss

during our two training stages. We compare against naive

time-domain optimization (Eq. 21) and non-preconditioned

frequency-domain optimization (Eq. 25 with w = 1). Our

preconditioned reformulation exhibits a significant speedup

and finds minima with lower losses.

891

Logistic Loss BVM Loss

Figure 5: Loss traces for our two stages of training, for

three fold cross validation (each line represents a fold) on

the Gehler-Shi dataset using LBFGS. Our preconditioned

frequency domain optimization produces lower minima at

greater rates than are achieved by non-preconditioned opti-

mization in the frequency domain or naive optimization in

the time domain.

For all experiments (excluding our “deep” variants, see

the supplement), training is as follows: All model parame-

ters are initialized to 0, then we have a convex pre-training

step which optimizes Eq. 25 where f(·) is a logistic loss (de-

scribed in the supplement) using LBFGS for 16 iterations,

and then we optimize Eq. 25 where f(·) is the non-convex

BVM loss in Eq. 18 using LBFGS for 64 iterations.

7. Temporal Smoothing

Color constancy is usually studied in the context of indi-

vidual images, which are assumed to be IID. But a practical

white balance algorithm must run on a video sequence, and

must enforce some temporal smoothing of the predicted il-

luminant to avoid presenting the viewer with an erratically-

varying image in the viewfinder. This smoothing cannot

be too aggressive or else the viewfinder may appear unre-

sponsive when the illumination changes rapidly (a colorful

light turning on, the camera quickly moving outdoors, etc).

Additionally, when faced with multiple valid hypotheses (a

blue wall under white light vs a white wall under blue light,

etc) we may want to use earlier images to resolve ambi-

guities. These desiderata of stability, responsiveness, and

robustness are at odds with each other, and so some com-

promise must be struck.

Our task of constructing a temporally coherent illumi-

nant estimate is aided by the probabilistic nature of the out-

put of our per-frame model, which produces a posterior dis-

tribution over illuminants parametrized as a bivariate Gaus-

sian. Let us assume that we have some ongoing estimate

of the illuminant and its covariance (µt,Σt). Given the

observed mean and covariance (µo,Σo) provided by our

model we update our ongoing estimate by first convolving

it with an zero-mean isotropic Gaussian (encoding our prior

belief that the illuminant may change over time) and then

multiplying that “fuzzed” Gaussian by the observed Gaus-

sian:

Σt+1 =

(

(

Σt +

[

α 0
0 α

])

−1

+Σo

)

−1

(26)

µt+1 = Σt+1

(

(

Σt +

[

α 0
0 α

])

−1

µt +Σoµo

)

−1

Where α is a parameter that defines the expected vari-

ance of the illuminant over time. This update resembles

a Kalman filter but with a simplified transition model, no

control model, and variable observation noise.

This temporal smoothing is not used in our benchmarks,

but its effect can be seen in the supplemental video.

8. Results

We evaluate our technique using two standard color con-

stancy datasets: the Gehler-Shi dataset [20, 30] and the

Cheng et al. dataset [12] (see Tables 1 and 2). For the

Gehler-Shi dataset we present several ablations and vari-

ants of our model to show the effect of each design decision

and to investigate trade-offs between speed and accuracy.

Models labeled “full” were run on 384 × 256 16-bit im-

ages, while models labeled “thumb” were run on 48 × 32
8-bit images, which are the kind of images that a practi-

cal white-balance system embedded on a hardware device

might use. Models labeled “4 channel” use the four fea-

ture channels used in [4], while models labeled “2 chan-

nel” use the two channels we present in Section 5. We also

present models in which we only use the “pixel channel” I
or the “edge channel” E as input. All models have a his-

togram size of n = 64 except for Models K and L where

n is varied to show the impact of illuminant aliasing. Two

models use “gray world” de-aliasing, and the rest use “gray

light” de-aliasing. The former seems slightly less effective

than the latter unless chroma histograms are heavily aliased,

which is why we use it in Model K. Model C only has one

training stage that minimizes logistic loss for 64 iterations,

thereby removing the BVM fitting from training. Model E

fixes G(i, j) = 1 and B(i, j) = 0, thereby removing the

model’s ability to reason about the absolute color of the il-

luminant. Model B was trained only to minimize the data

term (ie, λ0 = λ1 = 0 in Eq. 22) while Model D uses L2

regularization but not total variation (ie, λ1 = 0 in Eq. 22).

Models N, O and P are variants of Model J in which, instead

of learning a fixed model ({Fk}, G,B) we express those

model parameters as the output of a small 2-layer neural

network. As inputs to this network we use image metadata,

which allows the model to reason about exposure time and

camera sensor type, and/or a CNN-produced feature vector

892

[34], which allows the model to reason about semantics (see

the supplement for details). For each experiment we tune all

λ hyperparameters to minimize the “average” error during

cross-validation, using cyclic coordinate descent.

Model P achieves the lowest-error results, with a 20% re-

duction in error on Gehler-Shi compared to the previously

best-performing published technique. This improvement in

accuracy also comes with a significant speedup compared to

previous techniques: ∼30 ms/image for most models, com-

pared to the 520 ms of CCC [4] or the 3 seconds (on a GPU)

of Shi et al. [31]. Model Q (our fastest model) has an accu-

racy comparable to [4] and [31] but takes only 1.1 millisec-

onds to process an image, making it hundreds or millions

of times faster than the current state-of-the art. Addition-

ally, our model appears to be faster to train than the state-

of-the-art, though training times for prior work are often not

available. All runtimes in Table 1 for our model were com-

puted on an Intel Xeon CPU E5-2680. Runtimes for the

“full” model were produced using a Matlab implementa-

tion, while runtimes for the “thumb” model were produced

using a Halide [28] CPU implementation (our Matlab im-

plementation of Model Q takes 2.37 ms/image). Runtimes

for our “+semantic” models are not presented as we were

unable to profile [34] accurately (CNN feature computation

appears to dominate runtime).

To demonstrate that our model is a viable automatic

white balance system for consumer photography, we ran our

Halide code on a 2016 Google Pixel XL using the thumb-

nail images computed by the device’s camera stack. This

implementation ran at 1.44ms per image, which is equiva-

lent to 30 frames per second using < 5% of the total com-

pute budget, thereby satisfying our previously-stated speed

requirements. A video of our system running in real-time

on a phone can be found in the supplement.

9. Conclusion

We have presented FFCC, a color constancy algorithm

that produces a 13 − 20% reduction in error and a 250 −
3000× speedup relative to prior work. In doing so we have

introduced the concept of convolutional color constancy on

a torus, and we have introduced techniques for illuminant

de-aliasing and differentiable bivariate von Mises fitting re-

quired for this toroidal approach. We have also presented a

novel technique for fast Fourier-domain optimization sub-

ject to a certain family of regularizers. FFCC produces a

complete posterior distribution over illuminants, which lets

us assess the model’s confidence and also enables a Kalman

filter-like temporal smoothing model. FFCC’s speed, ac-

curacy, and temporal consistency allows it to be used for

real-time white balance on a consumer camera.

Algorithm Mean Med. Tri.
Best Worst

Avg.
Test Train

25% 25% Time Time

Support Vector Regression [18] 8.08 6.73 7.19 3.35 14.89 7.21 - -

White-Patch [8] 7.55 5.68 6.35 1.45 16.12 5.76 0.16 -

Grey-world [9] 6.36 6.28 6.28 2.33 10.58 5.73 0.15 -

Edge-based Gamut [23] 6.52 5.04 5.43 1.90 13.58 5.40 3.6 1986

1st-order Gray-Edge [32] 5.33 4.52 4.73 1.86 10.03 4.63 1.1 -

2nd-order Gray-Edge [32] 5.13 4.44 4.62 2.11 9.26 4.60 1.3 -

Shades-of-Gray [16] 4.93 4.01 4.23 1.14 10.20 3.96 0.47 -

Bayesian [20] 4.82 3.46 3.88 1.26 10.49 3.86 97 764

Yang et al. 2015 [35] 4.60 3.10 - - - - 0.88 -

General Gray-World [3] 4.66 3.48 3.81 1.00 10.09 3.62 0.91 -

Natural Image Statistics [21] 4.19 3.13 3.45 1.00 9.22 3.34 1.5 10749

CART-based Combination [6] 3.90 2.91 3.21 1.02 8.27 3.14 - -

Spatio-spectral Statistics [11] 3.59 2.96 3.10 0.95 7.61 2.99 6.9 3159

LSRS [19] 3.31 2.80 2.87 1.14 6.39 2.87 2.6 1345

Interesection-based Gamut [23] 4.20 2.39 2.93 0.51 10.70 2.76 - -

Pixels-based Gamut [23] 4.20 2.33 2.91 0.50 10.72 2.73 - -

Bottom-up+Top-down [33] 3.48 2.47 2.61 0.84 8.01 2.73 - -

Cheng et al. 2014 [12] 3.52 2.14 2.47 0.50 8.74 2.41 0.24 -

Exemplar-based [25] 2.89 2.27 2.42 0.82 5.97 2.39 - -

Bianco et al. 2015 [7] 2.63 1.98 - - - - - -

Corrected-Moment [14] 2.86 2.04 2.22 0.70 6.34 2.25 0.77 584

Chakrabarti et al. 2015 [10] 2.56 1.67 1.89 0.52 6.07 1.91 0.30 -

Cheng et al. 2015 [13] 2.42 1.65 1.75 0.38 5.87 1.73 0.25 245

CCC [4] 1.95 1.22 1.38 0.35 4.76 1.40 0.52 2168

Shi et al. 2016 [31] 1.90 1.12 1.33 0.31 4.84 1.34 3.0 -

A) FFCC - full, pixel channel only, no illum. 2.88 1.90 2.05 0.50 6.98 2.08 0.0076 117

B) FFCC - full 2 channels, no regularization 2.34 1.33 1.55 0.51 5.84 1.70 0.031 96

C) FFCC - full 2 channels, no BVM loss 2.16 1.45 1.56 0.76 4.84 1.78 0.031 62

D) FFCC - full 2 channels, no total variation 1.92 1.11 1.27 0.28 4.89 1.30 0.028 104

E) FFCC - full, 2 channels, no illuminant 2.14 1.34 1.52 0.37 5.27 1.53 0.031 94

F) FFCC - full, pixel channel only 2.15 1.33 1.51 0.34 5.35 1.51 0.0063 67

G) FFCC - full, edge channel only 2.02 1.25 1.39 0.34 5.11 1.44 0.026 94

H) FFCC - full, 2 channels, no precond. 2.91 1.99 2.23 0.57 6.74 2.18 0.025 152

I) FFCC - full, 2 channels, gray world 1.79 1.01 1.22 0.29 4.54 1.24 0.029 98

J) FFCC - full, 2 channels 1.80 0.95 1.18 0.27 4.65 1.20 0.029 98

K) FFCC - full, 4 channels, n = 32, gray world 2.69 1.31 1.49 0.37 7.48 1.70 0.068 138

L) FFCC - full, 4 channels, n = 256 1.78 1.05 1.19 0.27 4.46 1.22 0.068 395

M) FFCC - full, 4 channels 1.78 0.96 1.14 0.29 4.62 1.21 0.070 96

N) FFCC - full, 2 channels, +semantics[34] 1.67 0.96 1.13 0.26 4.23 1.15 - -

O) FFCC - full, 2 channels, +metadata 1.65 0.86 1.07 0.24 4.44 1.10 0.036 143

P) FFCC - full, 2 channels, +metadata +semantics[34] 1.61 0.86 1.02 0.23 4.27 1.07 - -

Q) FFCC - thumb, 2 channels 2.01 1.13 1.38 0.30 5.14 1.37 0.0011 73

Table 1: Performance on the Gehler-Shi dataset [20, 30].

We present five error metrics and their average (the geomet-

ric mean) with the lowest error per metric highlighted in

yellow. We present the time (in seconds) for training each

model and for evaluating a single image, when available.

Algorithm Mean Med. Tri.
Best Worst

Avg.
25% 25%

White-Patch [8] 9.91 7.44 8.78 1.44 21.27 7.24

Pixels-based Gamut [23] 5.27 4.26 4.45 1.28 11.16 4.27

Grey-world [9] 4.59 3.46 3.81 1.16 9.85 3.70

Edge-based Gamut [23] 4.40 3.30 3.45 0.99 9.83 3.45

Shades-of-Gray [16] 3.67 2.94 3.03 0.98 7.75 3.01

Natural Image Statistics [21] 3.45 2.88 2.95 0.83 7.18 2.81

Local Surface Reflectance Statistics [19] 3.45 2.51 2.70 0.98 7.32 2.79

2nd-order Gray-Edge [32] 3.36 2.70 2.80 0.89 7.14 2.76

1st-order Gray-Edge [32] 3.35 2.58 2.76 0.79 7.18 2.67

Bayesian [20] 3.50 2.36 2.57 0.78 8.02 2.66

General Gray-World [3] 3.20 2.56 2.68 0.85 6.68 2.63

Spatio-spectral Statistics [11] 3.06 2.58 2.74 0.87 6.17 2.59

Bright-and-dark Colors PCA [12] 2.93 2.33 2.42 0.78 6.13 2.40

Corrected-Moment [14] 2.95 2.05 2.16 0.59 6.89 2.21

Color Dog [2] 2.83 1.77 2.03 0.48 7.04 2.03

Shi et al. 2016 [31] 2.24 1.46 1.68 0.48 6.08 1.74

CCC [4] 2.38 1.48 1.69 0.45 5.85 1.74

Cheng 2015 [13] 2.18 1.48 1.64 0.46 5.03 1.65

M) FFCC - full, 4 channels 1.99 1.31 1.43 0.35 4.75 1.44

Q) FFCC - thumb, 2 channels 2.06 1.39 1.53 0.39 4.80 1.53

Table 2: Performance on the dataset from Cheng et al.[12],

in the same format as Table 1, excluding runtimes. As was

done in [4] we present the average performance (the geo-

metric mean) over all 8 cameras in the dataset.

893

References

[1] E. H. Adelson and A. P. Pentland. The perception of shading

and reflectance. Perception As Bayesian Inference, 1996. 1

[2] N. Banic and S. Loncaric. Color dog - guiding the global

illumination estimation to better accuracy. VISAPP, 2015. 8

[3] K. Barnard, L. Martin, A. Coath, and B. Funt. A compari-

son of computational color constancy algorithms — part 2:

Experiments with image data. TIP, 2002. 8

[4] J. T. Barron. Convolutional color constancy. ICCV, 2015. 2,

3, 4, 5, 7, 8

[5] H. G. Barrow and J. M. Tenenbaum. Recovering Intrinsic

Scene Characteristics from Images. Academic Press, 1978.

1

[6] S. Bianco, G. Ciocca, C. Cusano, and R. Schettini. Auto-

matic color constancy algorithm selection and combination.

Pattern Recognition, 2010. 8

[7] S. Bianco, C. Cusano, and R. Schettini. Color constancy

using cnns. CVPR Workshops, 2015. 8

[8] D. H. Brainard and B. A. Wandell. Analysis of the retinex

theory of color vision. JOSA A, 1986. 8

[9] G. Buchsbaum. A spatial processor model for object colour

perception. Journal of the Franklin Institute, 1980. 8

[10] A. Chakrabarti. Color constancy by learning to predict chro-

maticity from luminance. NIPS, 2015. 8

[11] A. Chakrabarti, K. Hirakawa, and T. Zickler. Color con-

stancy with spatio-spectral statistics. TPAMI, 2012. 8

[12] D. Cheng, D. K. Prasad, and M. S. Brown. Illuminant es-

timation for color constancy: why spatial-domain methods

work and the role of the color distribution. JOSA A, 2014. 2,

7, 8

[13] D. Cheng, B. Price, S. Cohen, and M. S. Brown. Effective

learning-based illuminant estimation using simple features.

CVPR, 2015. 8

[14] G. D. Finlayson. Corrected-moment illuminant estimation.

ICCV, 2013. 5, 8

[15] G. D. Finlayson and S. D. Hordley. Color constancy at a

pixel. JOSA A, 2001. 3

[16] G. D. Finlayson and E. Trezzi. Shades of gray and colour

constancy. Color Imaging Conference, 2004. 8

[17] D. H. Foster. Color constancy. Vision research, 2011. 1

[18] B. V. Funt and W. Xiong. Estimating illumination chromatic-

ity via support vector regression. Color Imaging Conference,

2004. 8

[19] S. Gao, W. Han, K. Yang, C. Li, and Y. Li. Efficient color

constancy with local surface reflectance statistics. ECCV,

2014. 8

[20] P. Gehler, C. Rother, A. Blake, T. Minka, and T. Sharp.

Bayesian color constancy revisited. CVPR, 2008. 2, 7, 8

[21] A. Gijsenij and T. Gevers. Color constancy using natural

image statistics and scene semantics. TPAMI, 2011. 8

[22] A. Gijsenij, T. Gevers, and J. van de Weijer. Computational

color constancy: Survey and experiments. TIP, 2011. 1

[23] A. Gijsenij, T. Gevers, and J. vande Weijer. Generalized

gamut mapping using image derivative structures for color

constancy. IJCV, 2010. 8

[24] T. Hamelryck, K. Mardia, and J. Ferkinghoff-Borg. Bayesian

methods in structural bioinformatics. Springer, 2012. 4

[25] H. R. V. Joze and M. S. Drew. Exemplar-based color con-

stancy and multiple illumination. TPAMI, 2014. 8

[26] E. H. Land and J. J. McCann. Lightness and retinex theory.

JOSA, 1971. 1

[27] K. V. Mardia. Statistics of directional data. Journal of the

Royal Statistical Society, Series B, 1975. 4

[28] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Amaras-

inghe, and F. Durand. Decoupling algorithms from schedules

for easy optimization of image processing pipelines. SIG-

GRAPH, 2012. 8

[29] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total varia-

tion based noise removal algorithms. Physica D: Nonlinear

Phenomena, 1992. 6

[30] L. Shi and B. Funt. Re-processed version of

the gehler color constancy dataset of 568 images.

http://www.cs.sfu.ca/ colour/data/. 2, 7, 8

[31] W. Shi, C. C. Loy, and X. Tang. Deep specialized network

for illuminant estimation. ECCV, 2016. 8

[32] J. van de Weijer, T. Gevers, and A. Gijsenij. Edge-based

color constancy. TIP, 2007. 8

[33] J. van de Weijer, C. Schmid, and J. Verbeek. Using high-level

visual information for color constancy. ICCV, 2007. 8

[34] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang,

J. Philbin, B. Chen, and Y. Wu. Learning fine-grained im-

age similarity with deep ranking. CVPR, 2014. 8

[35] K.-F. Yang, S.-B. Gao, and Y.-J. Li. Efficient illuminant es-

timation for color constancy using grey pixels. CVPR, 2015.

8

894

