
Network Dissection:

Quantifying Interpretability of Deep Visual Representations

David Bau∗, Bolei Zhou∗, Aditya Khosla, Aude Oliva, and Antonio Torralba

CSAIL, MIT

{davidbau, bzhou, khosla, oliva, torralba}@csail.mit.edu

Abstract

We propose a general framework called Network Dissec-

tion for quantifying the interpretability of latent representa-

tions of CNNs by evaluating the alignment between individ-

ual hidden units and a set of semantic concepts. Given any

CNN model, the proposed method draws on a broad data

set of visual concepts to score the semantics of hidden units

at each intermediate convolutional layer. The units with

semantics are given labels across a range of objects, parts,

scenes, textures, materials, and colors. We use the proposed

method to test the hypothesis that interpretability of units

is equivalent to random linear combinations of units, then

we apply our method to compare the latent representations

of various networks when trained to solve different super-

vised and self-supervised training tasks. We further analyze

the effect of training iterations, compare networks trained

with different initializations, examine the impact of network

depth and width, and measure the effect of dropout and batch

normalization on the interpretability of deep visual represen-

tations. We demonstrate that the proposed method can shed

light on characteristics of CNN models and training methods

that go beyond measurements of their discriminative power.

1. Introduction

Observations of hidden units in large deep neural net-

works have revealed that human-interpretable concepts some-

times emerge as individual latent variables within those net-

works: for example, object detector units emerge within net-

works trained to recognize places [40]; part detectors emerge

in object classifiers [11]; and object detectors emerge in gen-

erative video networks [32] (Fig. 1). This internal structure

has appeared in situations where the networks are not con-

strained to decompose problems in any interpretable way.

The emergence of interpretable structure suggests that

deep networks may be learning disentangled representations

spontaneously. While it is commonly understood that a net-

work can learn an efficient encoding that makes economical

use of hidden variables to distinguish its states, the appear-

lamps in places net wheels in object net people in video net

Figure 1. Unit 13 in [40] (classifying places) detects table lamps.

Unit 246 in [11] (classifying objects) detects bicycle wheels. A

unit in [32] (self-supervised for generating videos) detects people.

ance of a disentangled representation is not well-understood.

A disentangled representation aligns its variables with a

meaningful factorization of the underlying problem structure,

and encouraging disentangled representations is a significant

area of research [5]. If the internal representation of a deep

network is partly disentangled, one possible path for under-

standing its mechanisms is to detect disentangled structure,

and simply read out the separated factors.

However, this proposal raises questions which we address

in this paper:

• What is a disentangled representation, and how can its

factors be quantified and detected?

• Do interpretable hidden units reflect a special alignment

of feature space, or are interpretations a chimera?

• What conditions in state-of-the-art training lead to rep-

resentations with greater or lesser entanglement?

To examine these issues, we propose a general analytic

framework, network dissection, for interpreting deep visual

representations and quantifying their interpretability. Us-

ing Broden, a broadly and densely labeled data set, our

framework identifies hidden units’ semantics for any given

CNN, then aligns them with human-interpretable concepts.

We evaluate our method on various CNNs (AlexNet, VGG,

GoogLeNet, ResNet) trained on object and scene recognition,

and show that emergent interpretability is an axis-aligned

property of a representation that can be destroyed by rotation

without affecting discriminative power. We further examine

how interpretability is affected by training data sets, training

techniques like dropout [28] and batch normalization [13],

and supervision by different primary tasks.

∗ indicates equal contribution

Source code and data available at http://netdissect.csail.mit.edu
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1.1. Related Work

A growing number of techniques have been developed to

understand the internal representations of convolutional neu-

ral networks through visualization. The behavior of a CNN

can be visualized by sampling image patches that maximize

activation of hidden units [37, 40], or by using variants of

backpropagation to identify or generate salient image fea-

tures [17, 26, 37]. The discriminative power of hidden layers

of CNN features can also be understood by isolating por-

tions of networks, transferring them or limiting them, and

testing their capabilities on specialized problems [35, 24, 2].

Visualizations digest the mechanisms of a network down to

images which themselves must be interpreted; this motivates

our work which aims to match representations of CNNs with

labeled interpretations directly and automatically.

Most relevant to our current work are explorations of the

roles of individual units inside neural networks. In [40] hu-

man evaluation was used to determine that individual units

behave as object detectors in a network that was trained to

classify scenes. [20] automatically generated prototypical

images for individual units by learning a feature inversion

mapping; this contrasts with our approach of automatically

assigning concept labels. Recently [3] suggested an ap-

proach to testing the intermediate layers by training sim-

ple linear probes, which analyzes the information dynamics

among layers and its effect on the final prediction.

2. Network Dissection

How can we quantify the clarity of an idea? The notion of

a disentangled representation rests on the human perception

of what it means for a concept to be mixed up. Therefore

when we quantify interpretability, we define it in terms of

alignment with a set of human-interpretable concepts. Our

measurement of interpretability for deep visual representa-

tions proceeds in three steps:

1. Identify a broad set of human-labeled visual concepts.

2. Gather hidden variables’ response to known concepts.

3. Quantify alignment of hidden variable−concept pairs.

This three-step process of network dissection is reminiscent

of the procedures used by neuroscientists to understand simi-

lar representation questions in biological neurons [23]. Since

our purpose is to measure the level to which a representation

is disentangled, we focus on quantifying the correspondence

between a single latent variable and a visual concept.

In a fully interpretable local coding such as a one-hot-

encoding, each variable will match exactly with one human-

interpretable concept. Although we expect a network to learn

partially nonlocal representations in interior layers [5], and

past experience shows that an emergent concept will often

align with a combination of a several hidden units [11, 2],

street (scene) flower (object) headboard (part)

swirly (texture) pink (color) metal (material)

Figure 2. Samples from the Broden Dataset. The ground truth for

each concept is a pixel-wise dense annotation.

our present aim is to assess how well a representation is

disentangled. Therefore we measure the alignment between

single units and single interpretable concepts. This does

not gauge the discriminative power of the representation;

rather it quantifies its disentangled interpretability. As we

will show in Sec. 3.2, it is possible for two representations

of perfectly equivalent discriminative power to have very

different levels of interpretability.

To assess the interpretability of any given CNN, we draw

concepts from a new broadly and densely labeled image data

set that unifies labeled visual concepts from a heterogeneous

collection of labeled data sources, described in Sec. 2.1. We

then measure the alignment of each hidden unit of the CNN

with each concept by evaluating the feature activation of each

individual unit as a segmentation model for each concept. To

quantify the interpretability of a layer as a whole, we count

the number of distinct visual concepts that are aligned with

a unit in the layer, as detailed in Sec. 2.2.

2.1. Broden: Broadly and Densely Labeled Dataset

To be able to ascertain alignment with both low-level

concepts such as colors and higher-level concepts such as

objects, we have assembled a new heterogeneous data set.

The Broadly and Densely Labeled Dataset (Broden) uni-

fies several densely labeled image data sets: ADE [43], Open-

Surfaces [4], Pascal-Context [19], Pascal-Part [6], and the

Describable Textures Dataset [7]. These data sets contain

examples of a broad range of objects, scenes, object parts,

textures, and materials in a variety of contexts. Most exam-

ples are segmented down to the pixel level except textures

and scenes which are given for full-images. In addition,

every image pixel in the data set is annotated with one of

the eleven common color names according to the human

perceptions classified by van de Weijer [31]. A sample of

the types of labels in the Broden dataset are shown in Fig. 2.

The purpose of Broden is to provide a ground truth set of

exemplars for a broad set of visual concepts. The concept

labels in Broden are normalized and merged from their orig-

inal data sets so that every class corresponds to an English

word. Labels are merged based on shared synonyms, disre-

garding positional distinctions such as ‘left’ and ‘top’ and
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Table 1. Statistics of each label type included in the data set.
Category Classes Sources Avg sample

scene 468 ADE [43] 38

object 584 ADE [43], Pascal-Context [19] 491

part 234 ADE [43], Pascal-Part [6] 854

material 32 OpenSurfaces [4] 1,703

texture 47 DTD [7] 140

color 11 Generated 59,250

avoiding a blacklist of 29 overly general synonyms (such

as ‘machine’ for ‘car’). Multiple Broden labels can apply

to the same pixel: for example, a black pixel that has the

Pascal-Part label ‘left front cat leg’ has three labels in Bro-

den: a unified ‘cat’ label representing cats across data sets; a

similar unified ‘leg’ label; and the color label ‘black’. Only

labels with at least 10 image samples are included. Table 1

shows the average number of image samples per label class.

2.2. Scoring Unit Interpretability

The proposed network dissection method evaluates every

individual convolutional unit in a CNN as a solution to a

binary segmentation task to every visual concept in Broden

(Fig. 3). Our method can be applied to any CNN using a for-

ward pass without the need for training or backpropagation.

For every input image x in the Broden dataset, the acti-

vation map Ak(x) of every internal convolutional unit k is

collected. Then the distribution of individual unit activations

ak is computed. For each unit k, the top quantile level Tk

is determined such that P (ak > Tk) = 0.005 over every

spatial location of the activation map in the data set.

To compare a low-resolution unit’s activation map to

the input-resolution annotation mask Lc for some concept

c, the activation map is scaled up to the mask resolution

Sk(x) from Ak(x) using bilinear interpolation, anchoring

interpolants at the center of each unit’s receptive field.

Sk(x) is then thresholded into a binary segmentation:

Mk(x) ≡ Sk(x) ≥ Tk, selecting all regions for which the

activation exceeds the threshold Tk. These segmentations

are evaluated against every concept c in the data set by com-

puting intersections Mk(x) ∩ Lc(x), for every (k, c) pair.

The score of each unit k as segmentation for concept c is

reported as a data-set-wide intersection over union score

IoUk,c =

∑
|Mk(x) ∩ Lc(x)|∑
|Mk(x) ∪ Lc(x)|

, (1)

where | · | is the cardinality of a set. Because the data set

contains some types of labels which are not present on some

subsets of inputs, the sums are computed only on the subset

of images that have at least one labeled concept of the same

category as c. The value of IoUk,c is the accuracy of unit k

in detecting concept c; we consider one unit k as a detector

for concept c if IoUk,c exceeds a threshold. Our qualitative

results are insensitive to the IoU threshold: different thresh-

olds denote different numbers of units as concept detectors

Table 2. Tested CNNs Models
Training Network Data set or task

none AlexNet random

Supervised

AlexNet ImageNet, Places205, Places365, Hybrid.

GoogLeNet ImageNet, Places205, Places365.

VGG-16 ImageNet, Places205, Places365, Hybrid.

ResNet-152 ImageNet, Places365.

Self AlexNet

context, puzzle, egomotion,

tracking, moving, videoorder,

audio, crosschannel,colorization.

objectcentric.

across all the networks but relative orderings remain stable.

For our comparisons we report a detector if IoUk,c > 0.04.

Note that one unit might be the detector for multiple con-

cepts; for the purpose of our analysis, we choose the top

ranked label. To quantify the interpretability of a layer, we

count the number unique concepts aligned with units. We

call this the number of unique detectors.

The IoU evaluating the quality of the segmentation of a

unit is an objective confidence score for interpretability that

is comparable across networks. Thus this score enables us

to compare interpretability of different representations and

lays the basis for the experiments below. Note that network

dissection works only as well as the underlying data set: if a

unit matches a human-understandable concept that is absent

in Broden, then it will not score well for interpretability.

Future versions of Broden will be expanded to include more

kinds of visual concepts.

3. Experiments

For testing we prepare a collection of CNN models with

different network architectures and supervision of primary

tasks, as listed in Table 2. The network architectures include

AlexNet [15], GoogLeNet [29], VGG [27], and ResNet [12].

For supervised training, the models are trained from scratch

(i.e., not pretrained) on ImageNet [25], Places205 [42], and

Places365 [41]. ImageNet is an object-centric data set, which

contains 1.2 million images from 1000 classes. Places205

and Places365 are two subsets of the Places Database, which

is a scene-centric data set with categories such as kitchen,

living room, and coast. Places205 contains 2.4 million im-

ages from 205 scene categories, while Places365 contains

1.6 million images from 365 scene categories. “Hybrid”

refers to a combination of ImageNet and Places365. For

self-supervised training tasks, we select several recent mod-

els trained on predicting context (context) [9], solving puz-

zles (puzzle) [21], predicting ego-motion (egomotion) [14],

learning by moving (moving) [1], predicting video frame

order (videoorder) [18] or tracking (tracking) [33], detect-

ing object-centric alignment (objectcentric) [10], coloriz-

ing images (colorization) [38], predicting cross-channel

(crosschannel) [39], and predicting ambient sound from

frames (audio) [22]. The self-supervised models we ana-

lyze are comparable to each other in that they all use AlexNet
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Figure 3. Illustration of network dissection for measuring semantic alignment of units in a given CNN. Here one unit of the last convolutional

layer of a given CNN is probed by evaluating its performance on 1197 segmentation tasks. Our method can probe any convolutional layer.

or an AlexNet-derived architecture.

In the following experiments, we begin by validating our

method using human evaluation. Then, we use random uni-

tary rotations of a learned representation to test whether

interpretability of CNNs is an axis-independent property;

we find that it is not, and we conclude that interpretability

is not an inevitable result of the discriminative power of a

representation. Next, we analyze all the convolutional layers

of AlexNet as trained on ImageNet [15] and as trained on

Places [42], and confirm that our method reveals detectors

for higher-level concepts at higher layers and lower-level con-

cepts at lower layers; and that more detectors for higher-level

concepts emerge under scene training. Then, we show that

different network architectures such as AlexNet, VGG, and

ResNet yield different interpretability, while differently su-

pervised training tasks and self-supervised training tasks also

yield a variety of levels of interpretability. Finally we show

the impact of different training conditions, examine the rela-

tionship between discriminative power and interpretability,

and investigate a possible way to improve the interpretability

of CNNs by increasing their width.

3.1. Human Evaluation of Interpretations

We evaluate the quality of the unit interpretations found

by our method using Amazon Mechanical Turk (AMT).

Raters were shown 15 images with highlighted patches

showing the most highly-activating regions for each unit in

AlexNet trained on Places205, and asked to decide (yes/no)

whether a given phrase describes most of the image patches.

Table 3 summarizes the results. First, we determined

the set of interpretable units as those units for which raters

agreed with ground-truth interpretations from [40]. Over this

set of units, we report the portion of interpretations generated

by our method that were rated as descriptive. Within this

set we also compare to the portion of ground-truth labels

that were found to be descriptive by a second group of raters.

The proposed method can find semantic labels for units that

are comparable to descriptions written by human annotators

at the highest layer. At the lowest layer, the low-level color

and texture concepts available in Broden are only sufficient

Table 3. Human evaluation of our Network Dissection approach.

Interpretable units are those where raters agreed with ground-truth

interpretations. Within this set we report the portion of interpreta-

tions assigned by our method that were rated as descriptive. Human

consistency is based on a second evaluation of ground-truth labels.
conv1 conv2 conv3 conv4 conv5

Interpretable units 57/96 126/256 247/384 258/384 194/256

Human consistency 82% 76% 83% 82% 91%

Network Dissection 37% 56% 54% 59% 71%

to match good interpretations for a minority of units. Human

consistency is also highest at conv5, which suggests that

humans are better at recognizing and agreeing upon high-

level visual concepts such as objects and parts, rather than

the shapes and textures that emerge at lower layers.

3.2. Measurement of Axis-Aligned Interpretability

We conduct an experiment to determine whether it is

meaningful to assign an interpretable concept to an individ-

ual unit. Two possible hypotheses can explain the emergence

of interpretability in individual hidden layer units:

Hypothesis 1. Interpretable units emerge because inter-

pretable concepts appear in most directions in repre-

sentation space. If the representation localizes related

concepts in an axis-independent way, projecting to any

direction could reveal an interpretable concept, and in-

terpretations of single units in the natural basis may not

be a meaningful way to understand a representation.

Hypothesis 2. Interpretable alignments are unusual, and in-

terpretable units emerge because learning converges to

a special basis that aligns explanatory factors with indi-

vidual units. In this model, the natural basis represents

a meaningful decomposition learned by the network.

Hypothesis 1 is the default assumption: in the past it has

been found [30] that with respect to interpretability “there

is no distinction between individual high level units and

random linear combinations of high level units.”

Network dissection allows us to re-evaluate this hypothe-

sis. We apply random changes in basis to a representation
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Figure 4. Interpretability over changes in basis of the representation

of AlexNet conv5 trained on Places. The vertical axis shows the

number of unique interpretable concepts that match a unit in the

representation. The horizontal axis shows α, which quantifies the

degree of rotation.

learned by AlexNet. Under hypothesis 1, the overall level

of interpretability should not be affected by a change in ba-

sis, even as rotations cause the specific set of represented

concepts to change. Under hypothesis 2, the overall level of

interpretability is expected to drop under a change in basis.

We begin with the representation of the 256 convolu-

tional units of AlexNet conv5 trained on Places205 and

examine the effect of a change in basis. To avoid any is-

sues of conditioning or degeneracy, we change basis us-

ing a random orthogonal transformation Q. The rotation

Q is drawn uniformly from SO(256) by applying Gram-

Schmidt on a normally-distributed QR = A ∈ R
256

2

with

positive-diagonal right-triangular R, as described by [8]. In-

terpretability is summarized as the number of unique visual

concepts aligned with units, as defined in Sec. 2.2.

Denoting AlexNet conv5 as f(x), we find that the num-

ber of unique detectors in Qf(x) is 80% fewer than the

number of unique detectors in f(x). Our finding is inconsis-

tent with hypothesis 1 and consistent with hypothesis 2.

We also test smaller perturbations of basis using Qα for

0 ≤ α ≤ 1, where the fractional powers Qα ∈ SO(256) are

chosen to form a minimal geodesic gradually rotating from

I to Q; these intermediate rotations are computed using a

Schur decomposition. Fig. 4 shows that interpretability of

Qαf(x) decreases as larger rotations are applied.

Each rotated representation has exactly the same discrim-

inative power as the original layer. Writing the original net-

work as g(f(x)), note that g′(r) ≡ g(QT r) defines a neural

network that processes the rotated representation r = Qf(x)
exactly as the original g operates on f(x). We conclude that

interpretability is neither an inevitable result of discrimina-

tive power, nor is it a prerequisite to discriminative power.

Instead, we find that interpretability is a different quality that

must be measured separately to be understood.

3.3. Disentangled Concepts by Layer

Using network dissection, we analyze and compare the

interpretability of units within all the convolutional layers

of Places-AlexNet and ImageNet-AlexNet. Places-AlexNet

is trained for scene classification on Places205 [42], while

ImageNet-AlexNet is the identical architecture trained for

object classification on ImageNet [15].

The results are summarized in Fig. 5. A sample of units

are shown together with both automatically inferred inter-

pretations and manually assigned interpretations taken from

[40]. We can see that the predicted labels match the human

annotation well, though sometimes they capture a differ-

ent description of a visual concept, such as the ‘crosswalk’

predicted by the algorithm compared to ‘horizontal lines’

given by the human for the third unit in conv4 of Places-

AlexNet in Fig. 5. Confirming intuition, color and texture

concepts dominate at lower layers conv1 and conv2 while

more object and part detectors emerge in conv5.

3.4. Network Architectures and Supervisions

How do different network architectures and training su-

pervisions affect disentangled interpretability of the learned

representations? We apply network dissection to evaluate a

range of network architectures and supervisions. For simplic-

ity, the following experiments focus on the last convolutional

layer of each CNN, where semantic detectors emerge most.

Results showing the number of unique detectors that

emerge from various network architectures trained on Ima-

geNet and Places are plotted in Fig. 7, with examples shown

in Fig. 6. In terms of network architecture, we find that in-

terpretability of ResNet > VGG > GoogLeNet > AlexNet.

Deeper architectures appear to allow greater interpretability.

Comparing training data sets, we find Places > ImageNet.

As discussed in [40], one scene is composed of multiple

objects, so it may be beneficial for more object detectors to

emerge in CNNs trained to recognize scenes.

Results from networks trained on various supervised and

self-supervised tasks are shown in Fig. 8. Here the network

architecture is AlexNet for each model, We observe that

training on Places365 creates the largest number of unique

detectors. Self-supervised models create many texture de-

tectors but relatively few object detectors; apparently, su-

pervision from a self-taught primary task is much weaker

at inferring interpretable concepts than supervised training

on a large annotated data set. The form of self-supervision

makes a difference: for example, the colorization model is

trained on colorless images, and almost no color detection

units emerge. We hypothesize that emergent units represent

concepts required to solve the primary task.

Fig. 9 shows some typical visual detectors identified in

the self-supervised CNN models. For the models audio and

puzzle, some object and part detectors emerge. Those de-

tectors may be useful for CNNs to solve the primary tasks:
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Figure 5. A comparison of the interpretability of all five convolutional layers of AlexNet, as trained on classification tasks for Places (top)

and ImageNet (bottom). At right, three examples of units in each layer are shown with identified semantics. The segmentation generated by

each unit is shown on the three Broden images with highest activation. Top-scoring labels are shown above to the left, and human-annotated

labels are shown above to the right. Some disagreement can be seen for the dominant judgment of meaning. For example, human annotators

mark the first conv4 unit on Places as a ‘windows’ detector, while the algorithm matches the ‘chequered’ texture.
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res5c unit 301 IoU=0.087 res5c unit 1718 IoU=0.193 res5c unit 2001 IoU=0.255 res5c unit 766 IoU=0.092 res5c unit 1379 IoU=0.156
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inception_4e unit 789 IoU=0.137 inception_4e unit 750 IoU=0.203 inception_5b unit 626 IoU=0.145 inception_4e unit 56 IoU=0.139 inception_4e unit 92 IoU=0.164

inception_4e unit 175 IoU=0.115 inception_4e unit 225 IoU=0.152 inception_5b unit 415 IoU=0.143 inception_4e unit 714 IoU=0.105 inception_4e unit 759 IoU=0.144

VG
G-

16

conv5_3 unit 243 IoU=0.070 conv5_3 unit 142 IoU=0.205 conv5_3 unit 463 IoU=0.126 conv5_3 unit 85 IoU=0.086 conv5_3 unit 151 IoU=0.150

conv5_3 unit 102 IoU=0.070 conv5_3 unit 491 IoU=0.112 conv5_3 unit 402 IoU=0.058 conv4_3 unit 336 IoU=0.068 conv5_3 unit 204 IoU=0.077

Figure 6. A comparison of several visual concept detectors identified by network dissection in ResNet, GoogLeNet, and VGG. Each network

is trained on Places365. The two highest-IoU matches among convolutional units of each network is shown. The segmentation generated by

each unit is shown on the four maximally activating Broden images. Some units activate on concept generalizations, e.g., GoogLeNet 4e’s

unit 225 on horses and dogs, and 759 on white ellipsoids and jets.

the audio model is trained to associate objects with a sound

source, so it may be useful to recognize people and cars;

while the puzzle model is trained to align the different parts

of objects and scenes in an image. For colorization and

tracking, recognizing textures might be good enough for

the CNN to solve primary tasks such as colorizing a desatu-

rated natural image; thus it is unsurprising that the texture

detectors dominate.

3.5. Training Conditions vs. Interpretability

Training conditions such as the number of training iter-

ations, dropout [28], batch normalization [13], and random

initialization [16], are known to affect the representation

learning of neural networks. To analyze the effect of train-

ing conditions on interpretability, we take the Places205-

AlexNet as the baseline model and prepare several variants

of it, all using the same AlexNet architecture. For the vari-

66546



R
es

N
et

15
2-

Pla
ce

s3
65

R
es

N
et

15
2-

Im
ag

eN
et

VG
G
-P

la
ce

s2
05

VG
G
-H

yb
rid

VG
G
-P

la
ce

s3
65

G
oo

gL
eN

et
-P

la
ce

s3
65

G
oo

gL
eN

et
-P

la
ce

s2
05

G
oo

gL
eN

et
-Im

ag
eN

et

VG
G
-Im

ag
eN

et

Ale
xN

et
-P

la
ce

s3
65

Ale
xN

et
-H

yb
rid

Ale
xN

et
-P

la
ce

s2
05

Ale
xN

et
-Im

ag
eN

et

Ale
xN

et
-ra

nd
om

0

50

100

150

200

250

300

350
N

u
m

b
e

r 
o

f 
u

n
iq

u
e

 d
e

te
c
to

rs
object

part

scene

material

texture

color

Figure 7. Interpretability across different architectures and training.
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Figure 8. Semantic detectors emerge across different supervision

of the primary training task. All these models use the AlexNet

architecture and are tested at conv5.

audio puzzle colorization tracking
chequered (texture) 0.102 head (part) 0.091 dotted (texture) 0.140 chequered (texture) 0.167

car (object) 0.063 perforated (texture) 0.085 head (part) 0.056 grass (object) 0.120

head (part) 0.061 sky (object) 0.069 sky (object) 0.048 red-c (color) 0.100

Figure 9. The top ranked concepts in the three top categories in four

self-supervised networks. Some object and part detectors emerge

in audio. Detectors for person heads also appear in puzzle and

colorization. A variety of texture concepts dominate models with

self-supervised training.
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Figure 10. The evolution of the interpretability of conv5 of

Places205-AlexNet over 2,400,000 training iterations. The baseline

model is trained to 300,000 iterations (marked at the red line).

Number of detectors

ba
se

lin
e

re
pe

at
1

re
pe

at
2

re
pe

at
3

N
oD

ro
po

ut

Bat
ch

N
or

m

0

50

100

150

200
object

part

scene

material

texture

color

Number of unique detectors

ba
se

lin
e

re
pe

at
1

re
pe

at
2

re
pe

at
3

N
oD

ro
po

ut

Bat
ch

N
or

m

0

20

40

60

80

100
object

part

scene

material

texture

color

Figure 11. Effect of regularizations on the interpretability of CNNs.

ants Repeat1, Repeat2 and Repeat3, we randomly initialize

the weights and train them with the same number of itera-

tions. For the variant NoDropout, we remove the dropout in

the FC layers of the baseline model. For the variant Batch-

Norm, we apply batch normalization at each convolutional

layers of the baseline model. Repeat1, Repeat2, Repeat3 all

have nearly the same top-1 accuracy 50.0% on the validation

set. The variant without dropout has top-1 accuracy 49.2%.

The variant with batch norm has top-1 accuracy 50.5%.

In Fig. 10 we plot the interpretability of snapshots of the

baseline model at different training iterations. We can see

that object detectors and part detectors begin emerging at

about 10,000 iterations (each iteration processes a batch of

256 images). We do not find evidence of transitions across

different concept categories during training. For example,

units in conv5 do not turn into texture or material detectors

before becoming object or part detectors.

Fig. 11 shows the interpretability of units in the CNNs

over different training conditions. We find several effects:

1) Comparing different random initializations, the models

converge to similar levels of interpretability, both in terms

of the unique detector number and the total detector number;

this matches observations of convergent learning discussed

in [16]. 2) For the network without dropout, more texture

detectors emerge but fewer object detectors. 3) Batch nor-

malization seems to decrease interpretability significantly.

The batch normalization result serves as a caution that

discriminative power is not the only property of a represen-

tation that should be measured. Our intuition for the loss of

interpretability under batch normalization is that the batch

normalization ‘whitens’ the activation at each layer, which

smooths out scaling issues and allows a network to easily

rotate axes of intermediate representations during training.

While whitening apparently speeds training, it may also have

an effect similar to random rotations analyzed in Sec. 3.2

which destroy interpretability. As discussed in Sec. 3.2, how-

ever, interpretability is neither a prerequisite nor an obstacle

to discriminative power. Finding ways to capture the benefits

of batch normalization without destroying interpretability is

an important area for future work.

3.6. Discrimination vs. Interpretability

Activations from the higher layers of CNNs are often

used as generic visual features, showing great discrimination
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Figure 12. The number of unique object detectors in the last con-

volutional layer compared to each representations classification

accuracy on the action40 data set. Supervised and unsupervised

representations clearly form two clusters.

and generalization ability [42, 24]. Here we benchmark deep

features from several networks trained on several standard

image classification data sets for their discrimination abil-

ity on a new task. For each trained model, we extract the

representation at the highest convolutional layer, and train a

linear SVM with C = 0.001 on the training data for action40

action recognition task [34]. We compute the classification

accuracy averaged across classes on the test split.

Fig. 12 plots the number of the unique object detectors

for each representation, compared to that representation’s

classification accuracy on the action40 test set. We can see

there is positive correlation between them. Thus the super-

vision tasks that encourage the emergence of more concept

detectors may also improve the discrimination ability of

deep features. Interestingly, the best discriminative repre-

sentation for action40 is the representation from ResNet152-

ImageNet, which has fewer unique object detectors com-

pared to ResNet152-Places365. We hypothesize that the

accuracy on a representation when applied to a task is de-

pendent not only on the number of concept detectors in the

representation, but on the suitability of the set of represented

concepts to the transfer task.

3.7. Layer Width vs. Interpretability

From AlexNet to ResNet, CNNs for visual recognition

have grown deeper in the quest for higher classification

accuracy. Depth has been shown to be important to high

discrimination ability, and we have seen in Sec. 3.4 that

interpretability can increase with depth as well. However,

the width of layers (the number of units per layer) has been

less explored. One reason is that increasing the number of

convolutional units at a layer significantly increases compu-

tational cost while yielding only marginal improvements in

classification accuracy. Nevertheless, some recent work [36]

shows that a carefully designed wide residual network can

achieve classification accuracy superior to the commonly

used thin and deep counterparts.

To explore how the width of layers affects interpretability

of CNNs, we do a preliminary experiment to test how width
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Figure 13. Comparison between standard AlexNet and AlexNet-

GAP-Wide (AlexNet with wider conv5 layer and GAP layer)

through the number of unique detectors (the left plot) and the

number of detectors (the right plot). Widening the layer brings the

emergence of more detectors. Networks are trained on Places365.

affects emergence of interpretable detectors: we remove the

FC layers of the AlexNet, then triple the number of units

at the conv5, i.e., from 256 units to 768 units. Finally we

put a global average pooling layer after conv5 and fully

connect the pooled 768-feature activations to the final class

prediction. We call this model AlexNet-GAP-Wide.

After training on Places365, the AlexNet-GAP-Wide ob-

tains similar classification accuracy on the validation set as

the standard AlexNet ( 0.5% top1 accuracy lower), but it has

many more emergent concept detectors, both in terms of the

number of unique detectors and the number of detector units

at conv5, as shown in Fig. 13. We have also increased the

number of units to 1024 and 2048 at conv5, but the number

of unique concepts does not significantly increase further.

This may indicate a limit on the capacity of AlexNet to sep-

arate explanatory factors; or it may indicate that a limit on

the number of disentangled concepts that are helpful to solve

the primary task of scene classification.

4. Conclusion

This paper proposed a general framework, network dis-

section, for quantifying interpretability of CNNs. We applied

network dissection to measure whether interpretability is an

axis-independent phenomenon, and we found that it is not.

This is consistent with the hypothesis that interpretable units

indicate a partially disentangled representation. We applied

network dissection to investigate the effects on interpretabil-

ity of state-of-the art CNN training techniques. We have

confirmed that representations at different layers disentangle

different categories of meaning; and that different training

techniques can have a significant effect on the interpretability

of the representation learned by hidden units.
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