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Abstract

We present DeepNav, a Convolutional Neural Network

(CNN) based algorithm for navigating large cities using lo-

cally visible street-view images. The DeepNav agent learns

to reach its destination quickly by making the correct nav-

igation decisions at intersections. We collect a large-scale

dataset of street-view images organized in a graph where

nodes are connected by roads. This dataset contains 10 city

graphs and more than 1 million street-view images. We pro-

pose 3 supervised learning approaches for the navigation

task and show how A* search in the city graph can be used

to generate supervision for the learning. Our annotation

process is fully automated using publicly available map-

ping services and requires no human input. We evaluate

the proposed DeepNav models on 4 held-out cities for nav-

igating to 5 different types of destinations. Our algorithms

outperform previous work that uses hand-crafted features

and Support Vector Regression (SVR) [19].

1. Introduction

Man-made environments like houses, buildings, neigh-

borhoods and cities have a structure - microwaves are found

in kitchens, restrooms are usually situated in the corners

of buildings, and restaurants are found in specific kinds of

commercial areas. This structure is also shared across en-

vironments - for example, most cities will have restaurants

in their business district. It has been a long-standing goal of

computer vision to learn this structure and use it to guide ex-

ploration of unknown man-made environments like unseen

cities, buildings and houses. Knowledge of such structure

can be used to recognize tougher visual concepts like oc-

cluded or small objects [8, 29], to better delimit the bound-

aries of objects [6, 38], and for robotic automation tasks like

deciding drivable terrain for robots [13], etc.

In this paper, we address a task that requires understand-

ing the large-scale structure of cities – street-view based

navigation in a new city to reach a destination in as few

steps as possible. The agent neither has a map of the envi-

Figure 1: These street-view images are taken from roughly

the same location. Which direction do you think the nearest

gas station is in?1

ronment, nor does it know the location of the destination or

itself. All it knows is that it needs to reach a particular type

of destination, e.g. go to the nearest gas station in the city.

The naive approach is a random walk of the environment.

But if the agent has some learnt model of the structure of

cities, then it can make informed decisions - for example,

gas stations are very likely to be found near freeway exits.

We finely discretize the city into a grid of locations con-

nected by roads. At each location, the agent has access only

to street view images pointing towards the navigable direc-

tions and it has to pick the next direction to take a step in

(Figure 1). We show that learning structural characteris-

tics of cities can help the agent reach a destination faster

than random walk. This technology can be used to guide

pedestrians and cars in GPS denied environments like re-

mote places or urban areas with tall buildings. A similar

agent trained to navigate buildings to reach elevators, re-

strooms and fire exits can be used to guide visually impaired

persons in unknown buildings.

1The correct answer is: W.
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Two approaches have been used in the past to achieve

this: 1) Reinforcement Learning (RL): a positive reward is

associated with each destination location and a negative re-

ward with all other locations. The agent then learns a policy

(mapping from state to action) that maximizes the reward

expected by executing that policy. In deep RL the policy

is encoded by a CNN that outputs the value of performing

an action in the current state. A state transition and the ob-

served reward forms a training data-point. A mini-batch

for CNN training is formed by some transitions that are

driven by the current policy and some that are random. Re-

cent works have used this approach to navigate mazes [27]

and small game environments [30]. 2) Supervised Learn-

ing: this form of learning requires a large training set of im-

ages with labels (e.g. optimal action or distance to nearest

destination) that would lead the agent to choose the correct

navigable direction at the locations of the images.

Advances in deep CNNs have made it possible to learn

high-quality features from images that can be used for vari-

ous tasks. Most research is focused on recognizing the con-

tent of the images e.g. object detection [11, 20, 31], se-

mantic segmentation [7, 25, 38], edge detection [23], salient

area segmentation [22], etc. However, in robotics and AI

one is often required to map image(s) to the choice of an

action that a robotic agent must perform to complete a task.

For example, the navigation task discussed in this paper

requires the CNN to predict the direction of the next step

taken by the agent. Such tasks require the CNN to assess

the future implications of the content of an image, and are

relatively unexplored in the literature.

We choose supervised learning for this task because of

the sparsity of rewards. Out of roughly 100,000 locations in

a city grid, only around 30 are destinations (sources of pos-

itive reward). RL needs thousands of iterations to sample

a transition that ends at a destination (the only time a posi-

tive reward happens), especially early in the training process

when RL is mostly sampling random transitions. Indeed,

Mnih et al. [27] use 200M training frames to learn navi-

gation in a small synthetic labyrinth. It is not clear if this

approach will scale to large-scale environments with highly

sparse rewards such as city-scale navigation. On the other

hand, there exists an oracle for the problem of navigation in

a grid: A* search. A* search finds the shortest path from a

starting location to the destination, which gives the optimal

action that the agent must perform at every location along

the path. Hence it can be used for efficient labelling of large

amounts of training images.

To summarize, our contributions are:

• We collect a dataset of roughly 1M street view images

spread across 10 large cities in the USA. This dataset

is marked automatically with locations of five types

of destinations (Bank of America, church, gas station,

high school and McDonald’s) using publicly available

mapping APIs [2, 3]

• We develop and evaluate 3 different CNN architectures

that allow an agent to pick a direction at each location

to reach the nearest destination. We also compare the

performance of these 3 CNN-based models with the

model described in [19], which used hand-crafted fea-

tures and support vector regression for the same task.

• We develop a mechanism that uses A* search to gen-

erate appropriate labels for our architectures for all the

images in the dataset.

The rest of the paper is organized as follows: §2 describes

the related work in this area, §3 describes our dataset collec-

tion process, §4 describes the CNN architectures and train-

ing processes and §5 presents results from our algorithm.

We discuss the results and conclude in §6.

2. Related Work

The computer vision community has explored scene un-

derstanding from the perspective of scene classification [20,

39], attribute prediction [24, 32, 39], geometry predic-

tion [15] and pixel level semantic segmentation [7, 25, 38].

All these approaches, however, only reason about informa-

tion directly present in the scene. Navigating to the nearest

destination requires not only understanding the local scene,

but also predicting quantities beyond the visible scene e.g.

distance to nearest destination establishment [19]. Khosla

et al. [19] is closest to our paper and addresses the task

of navigating to the nearest McDonald’s establishment us-

ing street-view images. They use a dictionary of spatially

pooled Histogram of Oriented Gradient features [9] to learn

a Support Vector Regressor [34] that predicts the distance

to the nearest destination in the direction pointed to by the

image. In this paper, we first use a CNN to predict the

distance and show that data-driven convolutional features

perform better than expensive hand crafted features for this

task. Next, we propose 2 novel mechanisms to supervise

a CNN for this task and show that they lead to better per-

formance. A related line of work deals with image geo-

localization [14, 37] - the problem of localizing the input

image in a map. Kendall et al. [18] use CNNs to directly

map an input image to the 6D pose of the camera that took

the image, in a city-level environment. However, these al-

gorithms only partially solve the problem addressed in this

paper - the next steps involve determining the location of

the destination and planning a path to it using a map.

In artificial intelligence, the problem of picking the op-

timal action by observing the local surroundings has re-

cently been studied as an application of Deep Reinforce-

ment Learning [28]. Works such as [27, 30, 40] use Deep

RL to learn navigation in artificially generated labyrinths

and Minecraft environments. However, the environments

are much smaller than the city-level environments consid-

ered in this paper and have either repeating artificial pat-
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Figure 2: Directed graph illustration. The red arrows repre-

sent nodes, encoded by location and direction. Each node

has an associated street-view image, taken at the node’s lo-

cation and pointing in the node’s direction. Nodes are con-

nected by roads (solid connectors in the figure).

terns [27] or monotonous non-realistic video game render-

ings [30]. Another issue with Deep RL is the amount of

training data and training epochs required. Even in small-

scale environments with denser reward-yielding locations

compared to our environments, Mnih et al. [27] use 50 train-

ing epochs with each epoch made of 4M training frames,

while Oh et al. [30] use up to 200 epochs. In contrast, our

algorithms require 8 epochs to train, while our initializa-

tion network [33] requires 74 training epochs through 1M

images. To our knowledge, no deep RL algorithm has at-

tempted the task of learning to navigate in city-scale en-

vironments with real-world noisy imagery. Mirowski et

al. [26] use auxiliary tasks like depth prediction from RGB

and loop closure detection to alleviate the sparse rewards

problem. However, their experiments are performed in arti-

ficially generated environments much smaller than the city-

scale environments we operate in.

In robotics, active vision [5] has been used to control

a robot to reach a destination based on local observations.

The use of shortest paths to train classifiers that map the

state of an agent (encoded by local observations) to ac-

tion first appears in [17]. They train a decision tree on

various hand-crafted attributes of locations in a supermar-

ket (e.g. type of aisle, visible products, etc.) to control a

robot to reach a target product efficiently. Aydemir et al. [4]

use a chain graph model that relies on object-object co-

occurrence and object-room type co-occurrence to control

a robot to reach a destination in a 3D indoor environment.

3. Dataset

The DeepNav agent has a location and a heading associ-

ated with it, and traverses a directed graph covering the city.

Figure 2 shows a visualization of a small part of this graph.

City Images BofA church gas station high school McDonald’s

Atlanta 78,808 10 32 32 7 7

Boston 105,000 40 40 39 20 20

Chicago 105,001 22 33 10 15 32

Dallas 105,000 7 25 35 9 13

Houston 117,297 8 19 30 4 14

Los Angeles 80,701 9 15 30 6 13

New York 105,148 30 20 21 27 31

Philadelphia 105,000 14 42 35 30 19

Phoenix 101,419 4 23 29 18 15

San Francisco 101,741 35 50 45 22 12

Total 1,005,115 179 299 306 158 176

Table 1: Number of images and destinations in city graphs

Nodes are defined by the tuple of street view image location

(latitude, longitude) and direction (North, South, East, and

West). Hence each location can host upto 4 nodes. Edges

in this graph represent a one-way road i.e. a node is con-

nected to a neighbouring node by a directed edge if there

is a road that allows the agent to travel from the first node

to the second node. However, edges only connect neigh-

bouring nodes facing the same direction. Hence travelling

along an edge allows the agent to take one step in the di-

rection of its current heading. To allow the agent to turn

in place, all nodes at one location are cyclically connected

with bidirectional edges. Lastly, a node exists only if it is

connected to a node at a different location. This implies

that locations along a road only have 2 nodes per location,

while intersections have 3 or 4 nodes per location depend-

ing on the type of intersection. At intersections of more than

4 roads, we ignore all roads that do not point in the cardi-

nal directions. This construction makes it possible for the

agent to travel between any two nodes in the graph. Each

node has a 640 x 480 image cropped from the Google Street

View panorama at the location of the node. This image has

a field-of-view of 90◦ and points in the direction associated

with the node. While cardinal directions N, S, E, W are

shorthand, the street-view crops have continuous direction

consistent with the road direction.

To control the granularity of node locations, we tessellate

the city limits into square bins of side 25m and consider the

centers of these bins to be node locations. All street-view

panorama locations that fall inside a bin are snapped to the

center of the bin. However, the actual images are captured

from the edges of the bins, to ensure visual continuity.

We generate one such graph per city. First the limits

are specified by the latitude and longitude of two opposite

corners of a rectangular region. We then start a breadth-

first enumeration of the locations in the city, starting at the

center of the rectangle (shown in the supplementary mate-

rial). This enumeration stops when the specified geographi-

cal limits are reached. Table 1 shows the number of images

in the graphs of the 10 cities in our dataset.
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Figure 3: San Francisco graph locations and destinations

(red: Bank of America, green: church, blue: gas station,

yellow: high school, purple: McDonald’s)

3.1. Destinations

We consider 5 classes of destinations: Bank of America,

church, gas station, high school and McDonald’s. These

were chosen because of their ubiquity and distinguished ap-

pearance. Given the city limits we use Google Maps nearby

search [3] with an appropriate radius to find the locations of

all establishments of these classes. Next, we use the Google

Maps Roads API [2] to snap these locations to the nearest

road location. This is necessary because these establish-

ments are often large in size and street-view images exist

only along roads. Figure 3 shows the destination locations

for San Francisco, while Table 1 shows the number of des-

tinations found by our program in each city graph.

4. CNN Architecture and Training

Given the city graph and street-view images, we want

to train a convolutional neural network to learn the visual

features that are common across paths leading to various

destinations. We propose 3 methods to label the training

images (and corresponding inference algorithms) to accom-

plish this. The first approach, DeepNav-distance, trains the

network to estimate the distance to the nearest destination in

the direction pointed to by the training image. The second

approach, DeepNav-direction, learns a mapping between a

training image and the optimal action to be performed at the

image location. The third approach, DeepNav-pair, decom-

poses the problem of picking the optimal action into pairs

of decisions, and employs a Siamese CNN architecture.

4.1. DeepNav­distance

In this scheme we label each image with the square-

root of the straight-line distance from the image location to

the nearest destination establishment, in the 90◦ arc corre-

sponding to the direction of the image. We collect 5 labels

corresponding to 5 destination classes for each image. To

train, we modify the last fully connected layer (fc8) of the

VGG 16-layer network [33] to have 5 output units (see Fig-

ure 4a). The objective function minimized by this algorithm

is the Euclidean distance between the fc8 output and the 5-

element label vector. If a particular node has no destination

establishment of a category in its arc, the corresponding ele-

ment of the label vector is set to a high value that is ignored

by the objective function. Hence, a training image is used

for learning as long as it has at least one kind of destination

in its arc.

We use a greedy approach at test time: we forward im-

ages from all available directions at the current location of

the agent through the CNN. The agent takes a step in the

direction that is predicted by the CNN to have the least dis-

tance estimate. This approach is inspired from [19], and is

intended to investigate the change in performance by using

an end-to-end convolutional neural network pipeline instead

of hand-crafted features and support vector regression.

4.2. DeepNav­direction

This approach learns to map an input image to the op-

timal action to be performed at that particular location and

direction. The graph allows the agent to perform up to 4 ac-

tions at a node: move forward, move backward, move left or

move right (the last 3 are composed of the primitive actions

of moving forward and turning in place). We note that A*

search in the graph finds the shortest path from any starting

location to a destination, and hence can generate optimal

action labels for each node location along the shortest path.

For example, if the A* path at a node turns East, the im-

age at that node facing East is labelled ‘move forward’, the

image facing North is labelled ‘move right’, and so on. Al-

gorithm 1 describes the process of generating labels for all

training images using A* search, for one class of destina-

tion (e.g. high schools). The algorithm is repeated for all

5 classes of destinations to get 5 optimal action labels for

each training image. Each label can take one of four values.

To train, we modify the last fully connected layer (fc8) of

the VGG 16-layer network [33] to have 20 output units (see

Figure 4a). These 20 outputs are interpreted as scores for

the 4 possible actions (along the columns) for the 5 destina-

tion classes (along the rows). The objective function mini-

mized by DeepNav-direction is the softmax loss computed

independently for each destination class. At test time, the

image from the current position and direction of the agent

is forwarded through the convolutional neural network, and

the agent performs the highest scoring available action.

4.3. DeepNav­pair

This approach also learns to select the optimal action

to be performed at a particular location and direction like

DeepNav-direction, but through a different formulation.
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Figure 4: DeepNav CNN architectures. Abbreviations for destinations: B = Bank of America, C = Church, G = Gas station,

H = High school, M = McDonald’s.

Data: City graph G, destinations D

Result: Optimal action labels for each node

while ∃ unlabelled node do

n← unlabelled node;

shortest path← [];
min cost←∞;

foreach d ∈ D do

cost, path← A∗(n, d,G);
if cost < min cost then

min cost← cost;

shortest path← path;

end

end

foreach node i ∈ shortest path do

label each node at i.location using A* action;

end

end

Algorithm 1: Generating labels for DeepNav-direction

DeepNav-direction gets only the forward-facing image as

input, and does not get to ‘see’ in all directions before

choosing an action. This is an important action performed

by a variety of animals including primates, birds and fish

while navigating unknown environments [36]. This be-

haviour can be implemented by the Siamese architecture

shown in Figure 4b. We enumerate all pairs of images at

a location, and use the optimal action given by A* to label

at most one image from each pair as the ‘favorable’ im-

age. A pair is ignored if it does not contain a favorable

image. For example, if the A* path at a node turns East,

the second image in the North-East pair is marked favor-

able, while the North-South pair is ignored. Algorithm 2

shows the process of gathering the labels for all such pairs

in the training dataset, and it is repeated for each destination

class. To train, we create a Siamese network with 2 copies

Data: City graph G, destinations D

Result: Optimal action labels for each image-pair,

where pairs are formed between images at a

common location

while ∃ unlabelled node do

n← unlabelled node;

shortest path← [];
min cost←∞;

foreach d ∈ D do

cost, path← A∗(n, d,G);
if cost < min cost then

min cost← cost;

shortest path← path;

end

end

foreach node i ∈ shortest path do

foreach pair p ∈ pairs(i.location) do
if direction(p.first) == A* direction

then

(p.first, p.second)← label 0;

else if direction(p.second) == A*

direction then

(p.first, p.second)← label 1;

else ignore pair

(p.first, p.second)← label X;

end

end

end

end

Algorithm 2: Generating labels for DeepNav-pair

of the DeepNav-distance network as shown in Figure 4b.

The outputs of the fc8 layer are treated as scores instead of
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distance estimates, and stacked as columns. A softmax loss

is applied across the columns, independently for each desti-

nation. Hence the network learns to pick the image pointing

in the optimal direction, from all existing images at a loca-

tion. At test time we keep only one branch of the Siamese

architecture and use the fc8 outputs as a score. All images

from the current location of the agent are forwarded through

the network, and the agent takes a step in the direction of the

image that has the highest score predicted by the network.

4.4. Training

We train the convolutional neural networks using

stochastic gradient descent (SGD) implemented in the

Caffe [16] library. The learning rate for SGD starts at

10−3 for DeepNav-pair and DeepNav-direction, and 10−4

for DeepNav-distance. All models are trained for 8 epochs,

with the learning rate dropping by a factor of 10 after the

4th and 6th epochs. We set the weight decay parameter

to 5 ∗ 10−4 and SGD momentum to 0.9. Training on an

NVIDIA TITAN X GPU takes roughly 72 hours for each

DeepNav model. All networks are initialized from the pub-

lic VGG 16-layer network [33] except the fc8 layers, which

are initialized using the Xavier [12] method.

4.4.1 Geographically weighted loss function

The DeepNav models are being trained to identify visual

features that indicate the path to a destination. We expect

these visual features to be concentrated around destination

locations. To relax the CNN loss function for making a

wrong decision based on low-information visual features far

away from the destinations, we modify the loss function by

weighing the training samples geographically. Specifically,

the weight for the training sample reduces as length of the

shortest path from its location to a destination increases.

The geographically weighted loss function Lg for a mini-

batch of size N is constructed from the original loss func-

tion L as Lg =
∑N

i=1
λliLi, where 0 < λ < 1 is the ge-

ographic weighting factor. We apply geographic weighting

to the loss functions for DeepNav-direction and DeepNav-

pair with λ = 0.9. In our experiments, we observe that SGD

training for these networks does not converge without geo-

graphic weighting. We do not apply geographic weighting

to DeepNav-distance because it is penalized less for pre-

dicting a slightly wrong distance estimate far away from

the destination by use of square-root of the distance as the

label.

5. Results

In this section, we evaluate the ability of the various

DeepNav models to navigate unknown cities and reach the

nearest destination and compare them with the algorithm

presented in [19]. For reference, we also present the met-

rics for A* search - note that A* search has access to the

entire city graph and destination location while planing the

path, while the other methods only have access to images

from the agent’s current location.

5.1. Baselines

The algorithm for navigating to the nearest McDonald’s

presented by Khosla et al. in [19] serves as our first base-

line. This algorithm extracts Histogram of Oriented Gradi-

ent [9] features densely over the entire image and applies

K-means to learn a dictionary of size 256. It then uses

locality-constrained linear coding [35] to assign the descrip-

tors to the dictionary in a soft manner, and finally builds a

2-level spatial pyramid [21] to obtain a final feature of di-

mension 5376. We use the publicly available code from the

authors [1] to compute the features. To speed up dictionary

creation, we create it from a collection of 18,000 images

sampled randomly from all the training cities (3000 from

each city). A Support Vector Regressor (SVR) [10, 34] is

learnt to map an input image to the square root of the dis-

tance to the nearest destination establishment in the 90◦ arc

in the direction pointed to by the node. We chose the reg-

ularization constant in the SVR by picking the value which

minimized the Euclidean error over the 4 test cities (see next

section). Our second baseline is a random walk algorithm.

This algorithm picks a random action at each node.

5.2. Experimental setup

We train the DeepNav models on 6 cities (Atlanta,

Boston, Chicago, Houston, Los Angeles, Philadelphia) and

test them on the held-out 4 cities (Dallas, New York,

Phoenix, San Francisco). This avoids the bias of train-

ing and testing on disjoint parts of the same city, and tests

whether the algorithms are able to learn about structure in

cities and use that knowledge in unknown environments.

For each test city, we sample 10 starting locations uniformly

around each destination with an average path length ds. All

our agents start at these locations facing a random direc-

tion and navigate the city using the inference procedures

described in §4. To prevent looping, the agent is not al-

lowed pick the same action twice from a node. If the agent

has no option to move from a location, it is re-spawned at

the nearest node with an open option to move. The agent is

considered to have reached a destination if it visits a node

within 75m of it, and the maximum number of steps is set

to 1000.

5.3. Evaluation metrics

We use the two metrics proposed in [19]: 1) success rate

(fraction of times the agent reaches its destination) and 2)

average number of steps taken to reach the destination in the

successful trials. To ease comparison of various methods,
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Method
Dallas New York Phoenix San Fancisco

Mean
B C G H M B C G H M B C G H M B C G H M

Random walk 29.24 34.28 47.43 17.73 39.40 58.90 53.93 38.57 45.00 45.37 25.63 36.23 33.73 33.98 29.33 44.47 54.04 45.88 40.00 42.21 39.77

A* 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.0

HOG+SVR [19] 48.48 56.63 62.00 06.06 42.86 76.03 81.55 54.29 77.27 70.37 31.25 41.56 49.37 44.90 28.89 66.67 70.32 73.40 57.32 53.49 54.63

DeepNav-distance 27.27 60.24 68.00 30.30 45.24 80.82 66.99 48.57 68.18 69.63 37.50 54.55 49.37 46.94 35.56 63.83 70.32 67.55 68.29 65.12 56.21

DeepNav-direction 33.33 36.14 40.67 06.06 33.33 62.33 50.49 57.14 45.45 58.52 25.00 35.06 56.96 55.10 31.11 45.39 61.64 60.64 42.68 13.95 42.55

DeepNav-pair 54.55 45.78 78.67 48.48 59.52 80.82 67.96 57.14 70.45 73.33 43.75 55.84 64.56 51.02 48.89 69.50 66.21 72.87 52.44 37.21 59.95

Table 2: Success rates of various algorithms, ds = 470m.

Method
Dallas New York Phoenix San Fancisco

Mean
B C G H M B C G H M B C G H M B C G H M

Random walk 315.11 362.67 299.07 339.28 330.13 309.59 309.04 341.49 380.03 370.48 318.77 349.53 347.89 338.43 302.59 317.05 292.74 319.62 329.60 373.98 332.35

A* 19.12 19.27 16.62 24.03 18.45 16.13 16.72 17.40 17.56 17.35 19.88 21.57 17.97 18.31 24.11 18.09 15.63 17.65 18.80 19.93 18.73

HOG+SVR [19] 244.50 326.53 257.88 164.00 101.61 194.09 263.52 198.29 276.24 277.79 349.60 215.22 213.69 258.05 173.85 253.38 262.00 268.59 262.51 249.13 240.52

DeepNav-distance 321.33 289.26 295.07 163.50 303.11 322.95 247.10 220.88 284.03 267.84 270.17 180.29 167.69 190.26 162.94 281.57 209.27 279.06 286.59 234.18 248.85

DeepNav-direction 43.18 102.63 95.16 60.00 199.50 113.87 55.19 132.63 127.38 156.01 132.50 189.89 119.71 166.44 152.71 68.55 109.44 128.99 129.29 90.17 118.66

DeepNav-pair 414.44 246.03 243.12 433.81 158.32 223.03 239.00 246.65 331.38 269.07 273.14 209.12 174.53 231.64 35.64 222.09 263.86 256.37 226.47 247.38 257.25

Table 3: Average number of steps for successful trials, ds = 470m. Destination abbreviations: B = Bank of America, C =

church, G = gas station, H = high school, M = McDonald’s.

we propose the expected number of steps metric, which is

calculated as s ∗L+ (1− s) ∗Lmax where s is the success

rate, L is the average number of steps for successful trials

and Lmax is the maximum number of steps (1000).

The metrics are averaged over all starting locations of

a city (and over 20 trials for the random walker). Ta-

bles 2 and 3 show the success rate and the average num-

ber of steps for successful trials for ds = 480m. We

see that DeepNav-pair has the highest average success rate.

DeepNav-direction has the lowest average path length for

successful trials, but lowest success rate. This indicates that

it is effective only for short distances. Table 4 shows the ex-

pected number of steps averaged over all destinations and

starting locations, for ds = 470m, 690m and 970m. De-

tailed metrics for ds = 690m and 970m are presented in

the supplementary material. DeepNav-pair outperforms the

baseline as well as other DeepNav architectures for most

starting distances. We hypothesize that DeepNav-pair can

perform better because it is the only algorithm that is trained

by ‘looking’ in all directions before choosing. We also note

that DeepNav-distance outperforms the agent from [19], in-

dicating the better quality of deep features.

If a model learns visual features common to paths lead-

ing to destinations, it should pick the correct direction with

high confidence near the destination and at major intersec-

tions. For a given location, a measure of the confidence of

the model for picking one direction is the variance of scores

predicted for all directions. We plot this variance at all

locations in San Francisco computed from models trained

for navigating to Bank of America in Figure 5. The figure

shows empirically that the DeepNav-pair agent chooses one

direction more confidently as it nears a destination, while

other models show less of this behavior. Another approach

to get an insight into the visual features learnt by the al-

gorithms is to see the which images are most (and least)

confidently predicted as pointing to the path to destination.

In Figure 6, we plot the top- and bottom-5 images (sorted

Method
Expected number of steps

ds=470m ds=690m ds=970m

Random walk 733.99 854.8913 911.85

A* 18.73 27.3204 39.57

HOG+SVR [19] 588.66 705.31 791.93

DeepNav-distance 580.69 684.22 773.02

DeepNav-direction 626.28 697.26 780.53

DeepNav-pair 553.39 689.04 766.32

Table 4: Expected number of steps for various algorithms.

by score) while the DeepNav-pair agent is navigating New

York for McDonald’s and Dallas for gas station. It can be

seen that the CNN correctly learns that center-city commer-

cial areas have a high probability of having a McDonald’s

establishment, and gas stations are found around intersec-

tions of big streets with that have parked cars.

Figure 7 shows some example navigation paths gener-

ated by the DeepNav and baseline models while navigating

for the nearest church in New York.

6. Conclusion

We presented 3 convolutional neural network architec-

tures (DeepNav-distance, -direction and -pair) for learning

to navigate in large scale real-world environments. These

algorithms were trained and evaluated on a dataset of 1

million street-view images collected from 10 large cities.

We show how A* search can be used to efficiently gener-

ate training labels for images for various DeepNav architec-

tures. We find that data-driven deep convolutional features

(DeepNav-distance) outperform a combination of hand-

crafted features and SVR [19]. In addition, training the

network to ‘look’ in all directions using a Siamese architec-

ture (DeepNav-pair) outperforms networks that are trained

to estimate distance to destination (DeepNav-distance) or

optimal action (DeepNav-direction).
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(a) DeepNav-pair (b) DeepNav-direction (c) DeepNav-distance (d) HOG+SVR [19] (e) Random walk

Figure 5: Confidence of predictions while navigating for Bank of America (blue dots) in San Francisco (a test city). Brighter

colors imply higher variance. Concentration of high-variance regions indicates that DeepNav-pair confidence increases near

destinations and it effectively learns visual features common to optimal paths.

Figure 6: Rows 1-2: Top 5 high scoring and low scoring (respectively) images predicted by DeepNav-pair navigating to

McDonald’s in New York (a test city). Rows 3-4: Similar images for navigating to gas station in Dallas (a test city).

Found, length = 60

DeepNav-pair

Found, length = 10

DeepNav-direction

Found, length = 520

DeepNav-distance

Found, length = 35

HOG+SVR [19]

Not found

Random walk

Figure 7: Paths for navigating to church in New York (a test city). Blue dot = start, green dot = destination (when found).
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