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Abstract

The registration of 3D models by a Euclidean transfor-

mation is a fundamental task at the core of many applica-

tion in computer vision. This problem is non-convex due to

the presence of rotational constraints, making traditional

local optimization methods prone to getting stuck in lo-

cal minima. This paper addresses finding the globally op-

timal transformation in various 3D registration problems

by a unified formulation that integrates common geometric

registration modalities (namely point-to-point, point-to-line

and point-to-plane). This formulation renders the optimiza-

tion problem independent of both the number and nature of

the correspondences.

The main novelty of our proposal is the introduction of a

strengthened Lagrangian dual relaxation for this problem,

which surpasses previous similar approaches [32] in effec-

tiveness. In fact, even though with no theoretical guaran-

tees, exhaustive empirical evaluation in both synthetic and

real experiments always resulted on a tight relaxation that

allowed to recover a guaranteed globally optimal solution

by exploiting duality theory.

Thus, our approach allows for effectively solving the 3D

registration with global optimality guarantees while run-

ning at a fraction of the time for the state-of-the-art al-

ternative [34], based on a more computationally intensive

Branch and Bound method.

1. Introduction

The problem of registering 3D geometric data is a classi-

cal problem in numerous fields, including computer vision,

robotics, photogrammetry or medical imaging [23, 12, 37].

It seeks the transformation that brings closest together dif-

ferent surfaces according to some meaningful distance func-

tion. Consider the ubiquituous scenario in which a sys-

tem (usually a sensor) returns 3D points {xi}
m
i=1 of an

object and a model of the same is available consisting of

3D primitives {Pi} (typically points, lines and/or planes)

[3, 14, 47, 28]. Assuming the correspondences between the

Figure 1. This paper presents a unified formulation for the 3D

registration with point-to-plane, point-to-line and point-to-point

correspondences, and then provides a certifiable globally optimal

solution using Lagrangian duality.

sets are given, xi ↔ Pi, the general problem reduces to

finding the optimal roto-translation T = (R, t) ∈ SE(3) as

T ⋆ = argmin
T∈SE(3)

m∑

i=1

dPi
(T ⊕ xi)

2. (1)

Here SE(3) stands for the usual Special Euclidean group

in 3D, T ⊕ xi denotes the Euclidean transformation of the

point xi and dPi
(·) is the distance to the primitive Pi [34].

Even with known correspondences, the registration problem

(1) is tough to solve in a global fashion due to the non-

convexity of the constraints in the rotation R ∈ SO(3). A

closed-form solution exists only if all the correspondences

are point-to-point, as given by Horn et al. [24]. For the other

cases, most pipelines resort to local approximations, with

the inherent risk of getting stuck in local minima [33, 34].

In this paper we address the global optimization of the

general 3D registration problem (1). After providing a thor-

ough overview of potential alternatives for this task in Sec-

tion 2, we present in Section 3 a unified formulation inte-

grating point-to-point, point-to-line and point-to-plane cor-

respondences into a single quadratic objective that is a func-

tion of the rotation R only. Our main contribution is the de-

velopment of a novel convex relaxation for this formulation

under the usual framework of the Lagrangian dual problem,
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which results on a small constant size semidefinite program

(SDP). This novel relaxation, fully characterized in Section

4, turned tight for all the evaluations performed on synthetic

and real data, under an extensive range of different problem

conditions (Section 5). This allowed us to solve the original

non-convex problem in a global fashion using its connection

to the convex relaxation through duality theory [4].

In summary, the proposed algorithm Alg. 1 provides an

iterative optimization framework for 3D registration prob-

lems that, unlike current local iterative approaches, is able

to provide a certifiable global solution and, in fact, our em-

pirical observation is that it always does so.

We remark that this global performance comes without

any theoretical guarantees so far. Whereas we acknowledge

the importance of the missing formal proof that justifies this

behavior, we hope the empirical performance of the pro-

posed relaxation is motivation enough to encourage further

exploitation of this approach.

2. Related work

As a result of its widespread interest, geometric registra-

tion has been object of extensive research for decades now.

The number of works aiming at guaranteing global optimal-

ity in registration problems is much smaller, though, and

focuses mainly on the case of point cloud registration with

unknown correspondences [27, 35, 50, 52].

Multimodal registration

Registration across diverse 3D geometric primitives

arises in a variety of problems and applications. In the

Iterative Closest Point (ICP) framework, since the origi-

nal proposal using point-to-point correspondences by Besl

and McKay [3], different types of correspondences have

been introduced for improved performance: e.g. point-to-

plane [14] or plane-to-plane [45, 46]. Multimodal cor-

respondences play also an important role in the extrinsic

calibration of sensors of different nature, such as cam-

era and lidar [51, 49, 16, 18]. Numerous state-of-the-art

SLAM (Simultaneous Localization and Mapping) solutions

work with models that include plane and line primitives too

[2, 47, 17, 43, 28, 19].

In the context of multimodal registration a significant

effort has been devoted for decades to the resolution of

minimal problems [26], e.g. for line-to-plane correspon-

dences [14, 49, 6, 5] and point-to-plane correspondences

[21, 39, 38]. These solutions find application mainly in

random sample and consensus (RANSAC) frameworks, but

they do not face the more general least squares problem (1).

Instead, this optimization problem is traditionally addressed

through local linear approximations on the rotation, assum-

ing an initialization close to the solution is given [14], which

can easily lead to suboptimal local solutions [33].

Global optimization

Next we review the main approaches available in the lit-

erature for global optimization [22] and connect them to the

registration problem (1) at hand.

Analytical solutions A classical approach involves the

computation of all the stationary points (among which there

is the global minimum). This approach is used by Censi

[13] for the global resolution of the 2D registration prob-

lem, reducing the problem to solving a 4-th order polyno-

mial equation. However, this approach does not generalize

well to the 3D case due to the higher complexity of the rota-

tion space, which produces an explosion in the complexity

of the resulting polynomial system [29, 30].

Branch and Bound A commonly used tool for NP-hard

optimization problems is Branch and Bound (BnB). This is

used by Olsson et al. [33, 34] for solving the same problem

addressed in this paper, yielding a provably global solution.

However, the resolution time is notably high (in the order

of seconds) due to the exploratory nature and exponential

worst-case performance of BnB.

Convex relaxations Convex relaxation techniques con-

sider approximate, simpler versions of the problem whose

global optimum is much easier to reach. If the approxima-

tion is good, the solution of the relaxed problem may then

provide valuable information about the original problem.

Thus, the main task is to find an appropriate relaxation. For

problems such as ours (1), which are affected by the non-

convexity of rotation constraints, a possible relaxation is the

search into the convex hull of SO(3). This has proved to

give good approximations in rotation synchronization [44],

SLAM [41] and 2D/3D registration [25].

Another generic (and successful) tool for providing re-

laxations of difficult constrained problems is the Lagrangian

dual relaxation [4]. This provides particularly good approx-

imations for many problems that can be reformulated as

a Quadratically Constrained Quadratic Program (QCQP),

where the relaxed problem becomes a Semidefinite Pro-

gram (SDP) [4, 15]. Some problems involving rotations can

be characterized as QCQPs, such as Pose Graph Optimiza-

tion, for which recent literature applying the Lagrangian

dual relaxation has shown impressive results finding glob-

ally optimal solutions based solely on convex relaxations

[11, 10, 7, 40, 8].

The Lagrangian dual relaxation has been applied before

to the QCQP formulation of 3D registration [32]. In this

case the approximation can be very good and even provides

the global solution in a certain range of problems, but it

deteriorates when the noise level increases or the number
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of correspondences approaches the minimal cases, that is,

when the problem becomes inherently more difficult [33].

Still in the context of the Lagrangian dual relaxation,

the relaxation can be strengthened (improved) by introduc-

ing additional valid constraints [31, Chap. 13]. This has

found applicability in the optimization literature [36, 42],

and in QCQP problems involving orthonormal constraints,

improving the obtained relaxation considerably [1].

To the best of our knowledge, this “trick” has not been

considered before for relaxations involving rotations. In

this paper, we extend the QCQP formulation of [32] with a

whole set of valid quadratic rotational constraints to achieve

an improved relaxation that (empirically) returned a glob-

ally optimal solution in all problem instances, regardless of

the noise level or the number of correspondences.

3. Formulation of multimodal registration

In this section we revisit the formulation of the 3D regis-

tration problem (1), rewriting it in a suitable form for later

applying the Lagrangian dual relaxation.

3.1. Generalized distance function

First, we provide a unified formulation of the distances

for the point-to-point, point-to-line and point-to-plane cor-

respondences on the basis of the results presented in [34].

In the registration problem (1), the square distance from

a 3D point x to a 3D primitive P minimized in the registra-

tion problem (1) is typically that to the closest point in P ,

defined by

d2P (x) = min
y′∈P

‖x− y′‖22. (2)

For all the primitives considered here (see Fig. 1) the closest

distance problem (2) has a simple closed-form solution that

fits a generalized distance function of the form

dP (x)
2 = ‖x− y‖2C = (x− y)⊤C(x− y), (3)

namely

min
y′∈P
‖x− y′‖22 = (4)

=‖x− y‖22 = ‖x− y‖2I3
, (point)

=‖(I − vv⊤)(x− y)‖22 = ‖x− y‖2(I−vv⊤), (line)

=(n⊤(x− y))2 = ‖x− y‖2nn⊤ . (plane)

Here y ∈ R
3 is any point lying in the primitive1, v is the

unit direction vector for a line, ni is the unit normal vector

for a plane, and C ∈ S
3 is a symmetric matrix whose ex-

pression depends on the primitive as reflected by (4). These

results stem from applying elementary algebra to each prim-

itive [34], but we provide the full proof in the supplemen-

tary material for completeness.

1 For the point-to-point case y
i

is the primitive.

3.2. Quadratic formulation and marginalization

The distances minimized in the registration problem (1)

depend on the transformation T ,

d2Pi
(T ⊕ xi) = (T ⊕ xi − yi)

⊤Ci(T ⊕ xi − yi). (5)

If a matrix representation is chosen for the rotation R, the

expression of the transformed point T ⊕ xi is linear in the

elements of R and t:

T ⊕ xi = Rxi + t = (x̃⊤ ⊗ I3)
︸ ︷︷ ︸

Xi

vec(T ), (6)

where x̃ =
[
x⊤, 1

]⊤
refers to the homogeneized version of

x, ⊗ is the Kronecker product and vec(T ) is the vectoriza-

tion (applied column-wise) of the transformation matrix,

vec(T ) =

[
vec(R)

t

]

. (7)

Proof. Supplementary material

With this linear parameterization of the transformed

point, it is easy to see that the generalized distance to mini-

mize is a quadratic function of τ = vec(T ), writable as

d2Pi
(T ⊕ xi) = τ̃⊤ N⊤

i CiN i
︸ ︷︷ ︸

M̃i

τ̃ , (8)

with N i =
[

x̃⊤

i ⊗ I3| − yi

]
and τ̃ =

[
vec(T )

1

]⊤

. Be-

cause of the quadratic nature of the cost (8) it is possible to

accumulate the observations, compressing all the data into

a single 13× 13 matrix term M̃ :

f(T ) =
m∑

i=1

d2Pi
(T ⊕ xi) = τ̃⊤

(
m∑

i=1

M̃ i

)

︸ ︷︷ ︸

M̃

τ̃ . (9)

Thanks to this compression step, the size of the following

reformulated problem is independent of m.

When minimizing the quadratic objective f(T ) in (9),

the problem can be further reduced if we apply marginal-

ization on the unconstrained part of the unknown T , that

is, in the translation t. It is well known from previous work

that t can be derived in terms of R [24, 33]. In the quadratic

formulation this is straightforward:

Lemma 1. The optimal translation for a fixed R is

t⋆(R) = −M̃
−1

t,tM̃ t,!t r̃, r̃ =

[
vec(R)

1

]

. (10)
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Input: List of correspondences {xi ↔ Pi}
m
i=1

Output: Global optimum T ⋆

/* build compressed quadratic form */

initialize M̃ ← zeros(13);
for (xi, Pi) ∈ {xi ↔ Pi}

m
i=1 do

M̃ i ← buildTerm(xi, Pi) ; // depends on Pi

M̃ ← M̃ + M̃ i;

end

/* minimize quadratic objective */

marginalize Q̃ = M̃/M̃ t,t ; // Schur complement

solve optimal rotation R⋆ using Alg. 2;

get optimal translation t⋆ = t⋆(R⋆) from (10);

return T ⋆ = (R⋆, t⋆)

Algorithm 1: Globally optimal 3D registration

Here the subindex t stands for the set of indexes correspond-

ing to translation variables, whereas !t is its complement.

The marginalized optimization problem is then

f⋆ = min
R∈SO(3)

r̃⊤Q̃r̃
︸ ︷︷ ︸

q(r̃)

, r̃ =

[
vec(R)

1

]

, (11)

where the marginalized quadratic form Q̃ = M̃/M̃ t,t is

the Schur complement of the block M̃ t,t in the matrix M̃ .

Proof. Supplementary material

The registration problem is addressed then following the

pipeline depicted in Algorithm 1, where the main complex-

ity remains in solving the marginalized problem (11). This

is still a non-convex optimization problem in R, for which

a convex relaxation is provided in the next session. This re-

laxation empirically proves to be tight in all the evaluated

cases, allowing us to recover a globally optimal solution for

the marginalized problem (11).

4. Tight dual relaxation

The key ingredient to solve the non-convex problem (11)

lies upon an adequate application of Lagrangian duality. We

will apply fundamental results from duality theory [4, 9], so

some basic properties and notions regarding the Lagrangian

dual problem are provided in the supplementary material

for completeness. Then we present a specific formulation

(P̃) of the constrained problem (11) in Section 4.1 and its

corresponding dual problem (D) in Section 4.2. Finally we

show how to recover the globally optimal solution in Sec-

tion 4.3, provided that strong duality holds. The experi-

ments of Section 5 show that, empirically, this relaxation is

always tight (strong duality holds), even in extreme condi-

tions.

Once the whole dual framework has been developed, its

implementation is straightforward and the resolution of the

marginalized problem (11) is done following the relatively

simple pipeline depicted in Algorithm 2.

4.1. Primal problem

We will address now the task of formulating the opti-

mization problem (11) in such a manner that the approach

described above produces successful results.

The constraint Ri ∈ SO(3) in this problem states that

the 3 × 3 rotation matrix R fulfills the orthonormality and

determinant constraints, that is,

SO(3) ≡ {R ∈ R
3×3 : R⊤R =I3, det(R) = +1}. (12)

In order to apply the Lagrangian dual relaxation, it is

particularly appealing to formulate the primal problem as

a Quadratically Constrained Quadratic Program (QCPQ).

In the usual characterization of SO(3), the orthonormality

constraints are all quadratic but the determinant constraint is

cubic. Because of this, it has been customary in other prob-

lems involving rotations to relax the constraints by dropping

the determinant constraint det(R) = +1 and keeping only

the orthonormality constraints R⊤R = I3, which amounts

to performing the optimization in O(3) rather than in SO(3).
This approach has provided tight relaxations for other prob-

lems [11, 10, 7, 40]. For the registration problem however

it works well only in a certain range of problems [32].

Duality strengthening Let us now make a quick anno-

tation about an important fact concerning the Lagrangian

duality that will be key for the success of our proposal: By

construction, every time a new scalar constraint ck+1(·) is

introduced into the Lagrangian a new dual variable λk+1

appears and the domain of the dual problem increases its

dimension in one. As a result, the bound d⋆k+1 provided by

the new dual problem is at least as good as that of the pre-

vious one, d⋆k ≤ d⋆k+1 ≤ f⋆. As a consequece the dual

problem is not intrinsic [36, 4]: it depends on the particular

formulation of the primal problem. In particular, it depends

on the specific characterization of the optimization domain

or feasible region: Adding appropiate redundant valid con-

straints has actually shown to be remarkably effective for

improving the quality of the dual relaxations in other prob-

lems [31, Chap. 13].

Following this idea, our approach is to characterize the

feasible set SO(3) with the largest possible amount of

quadratic constraints. The chosen constraints need to be

linearly independent to introduce any potential improve-

ment [36]. It is important that we keep the complexity of the

constraints quadratic in order to maintain the Lagrangian

dual problem simple. For the set of orthogonal matrices

O(3) it has been shown [1] that a complete set of quadratic

constraints is given by the combination of both column-

based and row-based orthogonality constraints: {R⊤R =
I3,RR⊤ = I3}. However, Tron et al. show in [48] that the
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Table 1. Table of constraints, Lagrange multipliers and penalizations for Problem (P̃)

Constraint type Constraint equation Dual variable Penalization term

Orthonormal rows y2I3 −RR⊤ = 0 Λr =





λ1 λ6 λ5

λ6 λ2 λ4

λ5 λ4 λ3



 ∈ S
3 r̃⊤P̃ r(Λr)r̃

Orthonormal columns y2I3 −R⊤R = 0 Λc =





λ7 λ12 λ11

λ12 λ8 λ10

λ11 λ10 λ9



 ∈ S
3 r̃⊤P̃ c(Λc)r̃

Handedness

R(1)×R(2)−yR(3) = 0 λd123 =
[
λ13 λ14 λ15

]⊤
∈ R

3

r̃⊤P̃ dijk(λdijk)r̃R(2)×R(3)−yR(1) = 0 λd231 =
[
λ16 λ17 λ18

]⊤
∈ R

3

R(3)×R(1)−yR(2) = 0 λd312 =
[
λ19 λ20 λ21

]⊤
∈ R

3

Homogeneization 1− y2 = 0 γ ≡ λ22 ∈ R γ + r̃⊤P̃ h(γ)r̃

(a) Orthonormal rows: P̃ r(Λr) (b) Orthonormal columns: P̃ c(Λc) (c) Handedness: P̃ dijk
(λdijk

) (d) Homogeneization: P̃ h(γ)

Figure 2. Pattern of the penalization matrices (top row) and dual variables (bottom row) for the different sets of constraints. A coloured

cell indicates its value depends (linearly) only on the corresponding dual variable λi. Black cells in (a) and (b) stand for values involving a

linear combination of several dual variables.

rotation space SO(3) has additional quadratic constraints

due to the handedness property that forces the positive unit

determinant: Since R ∈ O(3) ⇒ det(R) = ±1, pro-

vided that R ∈ O(3) the positive sign is guaranteed if

the matrix columns fulfill the well-known right-hand rule,

R(1) × R(2) = R(3), where R(k) is the k-th column of

R. Taking any of the three possible cyclic permutations of

the column indexes for the right-hand rule provides exactly

three independent quadratic constraints. Altogether we end

up with 2 · 6+ 3 · 3 = 21 scalar rotational constraints: 6 for

each symmetric matrix constraint from orthonormality, and

3 for each vector constraint from the handedness constraint.

Problem homogeneization The optimization objective in

(11) as well as the gathered constraints are all quadratic

functions but in general not homogeneous. It is very conve-

nient for simplifying the derivation of the dual problem to

homogeneize the problem by introducing an auxiliary vari-

able y with the constraint y2 = 1 [11, 48]. We define the

equivalent, homogeneous, strengthened primal problem:

min
R

r̃⊤Q̃r̃, r̃ =

[
vec(R)

y

]

s.t. R⊤R = y2I3,

RR⊤ = y2I3,

R(i)×R(j)=yR(k), i, j, k = cyclic(1, 2, 3)

y2 = 1.

(P̃)

4.2. Dual problem

Once the primal problem has been clearly defined, the

derivation of the dual problem is a mechanical work, ba-

sically reduced to the derivation of the penalization term

corresponding to each constraint.

4964



The primal problem (P̃) is a QCQP, so the Lagrangian is

L(r̃, λ̃) = γ + r̃⊤ (Q̃+ P̃ (λ̃))
︸ ︷︷ ︸

Z̃

r̃, (13)

where the “homogeneous” dual vector λ̃ =
[

λ⊤, γ
]⊤
∈

R
22 gathers the dual variables λ corresponding to all the

rotation constraints (altogether 21) and the dual variable

γ from the homogeneization constraint y2 = 1, shown in

Tab. 4. The penalized matrix Z̃ is the sum of two terms:

Q̃ that contains all the data from the original problem, and

P̃ (λ̃) that accumulates all the penalization terms corre-

sponding to the different kinds of constraints:

P̃ (λ̃) = P̃ r(Λr) + P̃ c(Λc) + P̃ d({λdijk}) + P̃ h(γ).

This matrix is (by definition) a linear function of the dual

variables, and the pattern of the different matrix compo-

nents can be seen in Fig. 2. A detailed overview of the

construction and formulae for P̃ (λ̃) is available in the ac-

companying supplementary material.

With this particularly simple expression for the La-

grangian function, the Lagrangian relaxation is an uncon-

strained problem which can be solved in closed-form as

d(λ̃) = min
r̃

L(r̃, λ̃) = min
r̃

γ + r̃⊤Z̃r̃ (14)

=

{

γ if Z̃ < 0,

−∞ otherwise.
(15)

The Lagrangian relaxation is unbounded below unless the

penalized matrix Z̃ is positive semidefinite (PSD). As a re-

sult, the maximization of the dual objective d(λ̃) can be

safely restricted to those vectors λ̃ preserving the positive

semidefiniteness of Z̃. Thus, the dual problem correspond-

ing to the homogeneous primal problem (P̃) is a Semidefi-

nite Program (SDP):

d⋆ = max
λ̃

γ, s.t. Z̃(λ̃) = Q̃+ P̃ (λ̃) < 0. (D)

This problem is convex and off-the-shelf specialized solvers

exist for it [20].

4.3. Primal­via­dual resolution

In this section we begin by assuming that the duality gap

for our primal-dual pair is zero (we will see in the experi-

ments that this assumption always holds in practice). By du-

ality theory [4], r̃⋆ must be a minimizer of the Lagrangian

(13) evaluated at λ̃
⋆
,

x⋆ = argmin
x

L(x,λ⋆)⇒ (r̃⋆)⊤Z̃
⋆
r̃⋆ = 0. (16)

Since Z⋆
< 0, this means that the primal optimum r̃⋆ must

lie in the nullspace of Z̃
⋆
:

x⋆ = argmin
x

L(x,λ⋆)⇒ r̃⋆ ∈ null(Z̃
⋆
). (17)

Input: Marginalized quadratic form q(r̃) (11)

Output: Global optimum R⋆ (if no error occurs)

build symbolic penalized matrix Z̃(λ̃)← Q̃+ P̃ (λ̃);

solve the SDP problem (D) to get λ̃
⋆

and Z̃
⋆

; // CVX

get nullspace V = null(Z̃
⋆
);

ASSERT( rank(V ) == 1 );

dehomogeneize r̃⋆ ← V /V (end);
ASSERT( q(r̃⋆)− d⋆ ≈ 0 ) ; // strong duality

R⋆
֋ r̃⋆ ; // reshape

return R

Algorithm 2: Convex global optimizer

If the nullspace has rank 1, the solution r̃⋆ is recovered up

to a scale factor. Then, since the solution must also fulfill

the original constraints in the primal problem (P̃), we fully

determine the solution by setting y = 1, which in practice

reduces to dehomogeneizing the solution r̃⋆.

Then with the obtained primal solution r⋆ we can check

that our initial assumption holds and the duality gap is ef-

fectively zero, d⋆ = f(R⋆). As we will see in the experi-

ments, both conditions rank(null(Z̃
⋆
)) = 1 and d⋆ = f⋆

were fulfilled for absolutely all the experiments considered,

even under the most extreme situations (in terms of noise

and number of correspondences).

5. Experiments

In this section we show that in practice the strong dual-

ity assumption holds in our primal-dual formulation for any

considered problem. As a result, using Algorithm 1 it is al-

ways possible to recover the primal optimal solution, and

we do this at a fraction of the time necessary for the more

complex exploratory techniques. The SDP (D) is solved

using CVX [20].

We assess the performance of our method, Ours, in both

synthetic and real data and compare it to that of two differ-

ent state-of-the-art approaches for solving the 3D registra-

tion problem globally: a provably optimal exploratory ap-

proach based on Branch and Bound, BnB [34], and a dual-

based approach which provides a relaxation, referred to as

Olsson [32].

But first of all, we define the main parameters that will

characterize our general registration problem (1) as well as

the metrics used in the assessment of performance.

Effective number of correspondences The number of

measurements has a notable impact in the complexity of

the registration problem. Namely, Olsson and Eriksson [32]

justify and illustrate that the problem becomes easier to

solve as the number of measurements increase.

Following this intuition, the most difficult registration

problems should be those close to minimal cases. In or-
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der to measure how close a problem is to being minimal

we consider the unifying framework presented by Rama-

lingam and Taguchi [38]: Point-to-point and point-to-line

correspondences can be transformed into equivalent sets of

3 and 2 point-to-plane correspondences, respectively. We

define then the effective number of correspondences, m̂, as

the equivalent number of independent point-to-plane corre-

spondences

m̂ = 3mpoint + 2mL + 1mΠ. (18)

The minimum value of m̂ for which a general 3D registra-

tion problem may have a unique global minimum is 7 [38].

Geometry Even if the effective number of correspon-

dences is higher than 6, degeneracies and symmetries with

multiple global minima may still occur depending on the

geometric distribution of the correspondences. These cases

are identified as well in [38]. We took care during the evalu-

ation on both synthetic and real data to discard these degen-

erate configurations where the true global minimum cannot

be found from the data only.

Measurement noise This models the quality of the mea-

surements (we consider no oultliers). If there is no noise, a

simple linear relaxation would provide the global solution.

Then, as the noise level σ increases the problem becomes

harder to solve [32].

Metrics Several metrics can be used to measure the effec-

tiveness of the relaxation approaches, Ours and Olsson.

Due to space issues we choose to show here the most signif-

icant metric, which is in our view the optimality ratio, that

is, the percentage of cases in which a globally optimal solu-

tion was attained. A solution is considered globally optimal

if the suboptimality gap ∆ = f − f⋆ is zero up to numer-

ical precision. The global minimum f⋆ can be found from

a provably global algorithm such as BnB or, as we will see

next, also from our tight relaxation.

In order to measure the computational performance of

the different methods we also plot the resolution times. In

particular, we use shaded error bars to display the median

values plus the 1st and 3rd quartiles reflecting the distribu-

tion of the values.

The statistics shown in the figures were generated from

a population of 100 registration problems in each case.

Other interesting metrics, as well as other parameters

ranges beyond those displayed in this document are avail-

able in the supplementary material. These additional

results support the same conclusions about the methods

reached in this document and previous works [32, 34].
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Figure 3. Results in the synthetic scenario for increasing level of

noise σ, with m̂ = 10. (a) The effectivenes of the reference relax-

ation Olsson [32] drops steadily as the level of noise increases.

Ours remained optimal in all cases. (b) Both convex relaxations

Ours and Olsson take roughly the same time, whereas BnB gets

two orders of magnitude slower.
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Figure 4. Results in the synthetic scenario for extremely severe σ

noise conditions and reduced amount of effective number mea-

surements m̂ = 7. These conditions are of reduced practical

interest, but are used to show the general robustness of the tight

condition for our relaxation compared to the reference relaxation

Olsson [32]. In these regimes BnB suffers of numerical issues.

5.1. Synthetic data

For obtaining synthetic problems we generated a set of

random model primitives that added up to m̂ effective cor-

respondences. Similarly to [32], each primitive was deter-

mined by randomly taking a point inside a sphere of radius

10 m (plus a random unit direction for the case of lines and

planes). Then a “measured” point was randomly picked

from the set defined by the primitive and we corrupted it

with a Gaussian noise of standard deviation σ.

We show the behaviour w.r.t. the noise level in Fig. 3 in

a challenging case with m̂ = 10. The results for a varying

value of m̂ were similar to those shown for the real data in

Fig. 6(a). These and other evaluations for different ranges

of parameters are shown in the supplementary material.

To sum up, our method attained the globally optimal solu-

tion in all the considered cases, without exception, even in

the most severe cases where the number of features m̂ re-

mained almost minimal and the measurement noise σ was

raised way beyond any expectable value in real scenarios

(see Fig. 4). The reference relaxation Olsson in contrast

was rarely tight in the challenging scenarios and returned a

suboptimal solution.
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Figure 5. The experimental setup for obtaining real data, taken

from [32], and optimal registration of the measurements to the

model.

5.2. Real data

Thanks to the corresponding authors, it was possible

to exploit the same real data employed in the references

[32, 34]. Their experimental setup consisted of using a

MicroScribe-3DLX 3D scanner to measure the 3D coordi-

nates of some points on the real object, as shown in Fig.

5. For the Space Station model 49 points were measured

on different primitives of the object, namely 27 on planes,

12 in lines and 10 on corner points. The registration of the

complete set to the computer model is shown in 5. In [32] it

was shown that for this complete problem Olsson works

fine, attaining the global optimum as BnB but in much less

time.

We use the same data to generate a more extensive set of

challenging real problems. In this case, we can produce sig-

nificantly more difficult problems by sampling a smaller set

of measurements from the data: We choose different com-

binations of point-to-point, point-to-line and point-to-plane

correspondences that result in a particular effective number

of measurements m̂. The precision σ of the measurements

in this case is fixed by the sensor, with errors of about 0.5
millimeters according to the authors of the dataset.

The obtained results are consistent with those observed

from the evaluation on synthetic data. The optimality ra-

tio is displayed in Fig. 6(a). The behaviour for Olsson

w.r.t. the parameter m̂ was consistent with that predicted in

the original work [32]: It hardly attained global optimal-

ity in near-minimal cases, and the performance improved

steadily with the increase on m̂. Meanwhile, our approach

succeeded again in all the cases, always returning the glob-

ally optimal solution. Again, both convex relaxations Ours

and Olsson took roughly the same time, whereas BnB is

two orders of magnitude slower (see Fig. 6(b)).

In conclusion, our approach attained the same optimality

ratio guaranteed so far only for the provably optimal BnB

method, whereas Ourswas two orders of magnitudes faster

than BnB.
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Figure 6. Results in the real scenario for a low effective number

of measuremens m̂. (a) The effectivenes of the reference relax-

ation Olsson [32] improves with the increase in m̂, yet it hardly

attains optimality in most cases whereas ours remained optimal in

all cases. (b) Both convex relaxations Ours and Olsson take

roughly the same time, whereas BnB is two orders of magnitude

slower.

6. Conclusions

We have presented a unified formulation for the 3D reg-

istration problem involving point-to-point, point-to-line and

point-to-plane correspondences that compresses the objec-

tive into a single quadratic function of the rotation. Thanks

to its generality and flexibility, this formulation should have

the potential to introduce further types of correspondences

beyond those explored in this work.

The remaining optimization problem has then been char-

acterized as a Quadratically Constrained Quadratic Pro-

gram. Exploiting a full set of quadratic rotational con-

straints we obtain a Lagrangian dual relaxation from which

a globally optimal solution could be recovered in 100% of

the tested cases, although it remains open the theoretical

question of why strong duality holds for this relaxation in

virtually all cases.

Finally, even though the current approach is already 2 or-

ders of magnitude faster than the competing BnB approach,

we are just taking an off-the-shelf generic SDP solver so this

performance could be improved further by using specialized

solvers that exploit the low-rank structure of the underlying

SDP problem.
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