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Abstract

Convolutional neural networks have enabled accurate

image super-resolution in real-time. However, recent at-

tempts to benefit from temporal correlations in video super-

resolution have been limited to naive or inefficient archi-

tectures. In this paper, we introduce spatio-temporal sub-

pixel convolution networks that effectively exploit temporal

redundancies and improve reconstruction accuracy while

maintaining real-time speed. Specifically, we discuss the

use of early fusion, slow fusion and 3D convolutions for

the joint processing of multiple consecutive video frames.

We also propose a novel joint motion compensation and

video super-resolution algorithm that is orders of magni-

tude more efficient than competing methods, relying on a

fast multi-resolution spatial transformer module that is end-

to-end trainable. These contributions provide both higher

accuracy and temporally more consistent videos, which we

confirm qualitatively and quantitatively. Relative to single-

frame models, spatio-temporal networks can either reduce

the computational cost by 30% whilst maintaining the same

quality or provide a 0.2dB gain for a similar computational

cost. Results on publicly available datasets demonstrate

that the proposed algorithms surpass current state-of-the-

art performance in both accuracy and efficiency.

1. Introduction

Image and video super-resolution (SR) are long-standing

challenges of signal processing. SR aims at recovering a

high-resolution (HR) image or video from its low-resolution

(LR) version, and finds direct applications ranging from

medical imaging [38, 34] to satellite imaging [5], as well

as facilitating tasks such as face recognition [13]. The

reconstruction of HR data from a LR input is however a

highly ill-posed problem that requires additional constraints

to be solved. While those constraints are often application-

dependent, they usually rely on data redundancy.

Figure 1: Proposed design for video SR. The motion esti-

mation and ESPCN modules are learnt end-to-end to obtain

a motion compensated and fast algorithm.

In single image SR, where only one LR image is pro-

vided, methods exploit inherent image redundancy in the

form of local correlations to recover lost high-frequency

details by imposing sparsity constraints [39] or assuming

other types of image statistics such as multi-scale patch re-

currence [12]. In multi-image SR [28] it is assumed that

different observations of the same scene are available, hence

the shared explicit redundancy can be used to constrain the

problem and attempt to invert the downscaling process di-

rectly. Transitioning from images to videos implies an ad-

ditional data dimension (time) with a high degree of corre-

lation that can also be exploited to improve performance in

terms of accuracy as well as efficiency.

1.1. Related work

Video SR methods have mainly emerged as adaptations

of image SR techniques. Kernel regression methods [35]

have been shown to be applicable to videos using 3D ker-

nels instead of 2D ones [36]. Dictionary learning ap-

proaches, which define LR images as a sparse linear com-

bination of dictionary atoms coupled to a HR dictionary,

have also been adapted from images [38] to videos [4]. An-

other approach is example-based patch recurrence, which

assumes patches in a single image or video obey multi-scale

relationships, and therefore missing high-frequency content

at a given scale can be inferred from coarser scale patches.
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This was successfully presented by Glasner et al. [12] for

image SR and has later been extended to videos [32].

When adapting a method from images to videos it is

usually beneficial to incorporate the prior knowledge that

frames of the same scene of a video can be approximated

by a single image and a motion pattern. Estimating and

compensating motion is a powerful mechanism to further

constrain the problem and expose temporal correlations. It

is therefore very common to find video SR methods that

explicitly model motion through frames. A natural choice

has been to preprocess input frames by compensating inter-

frame motion using displacement fields obtained from off-

the-shelf optical flow algorithms [36]. This nevertheless re-

quires frame preprocessing and is usually expensive. Al-

ternatively, motion compensation can also be performed

jointly with the SR task, as done in the Bayesian approach

of Liu et al. [27] by iteratively estimating motion as part of

its wider modeling of the downscaling process.

The advent of neural network techniques that can be

trained from data to approximate complex nonlinear func-

tions has set new performance standards in many applica-

tions including SR. Dong et al. [6] proposed to use a con-

volutional neural network (CNN) architecture for single im-

age SR that was later extended by Kappeler et al. [22] in a

video SR network (VSRnet) which jointly processes multi-

ple input frames. Additionally, compensating the motion of

input images with a total variation (TV)-based optical flow

algorithm showed an improved accuracy. Joint motion com-

pensation for SR with neural networks has also been studied

through recurrent bidirectional networks [17].

The common paradigm for CNN based approaches has

been to upscale the LR image with bicubic interpolation be-

fore attempting to solve the SR problem [6, 22]. However,

increasing input image size through interpolation consider-

ably impacts the computational burden for CNN process-

ing. A solution was proposed by Shi et al. with an efficient

sub-pixel convolution network (ESPCN) [33], where an up-

scaling operation directly mapping from LR to HR space

is learnt by the network. This technique reduces runtime by

an order of magnitude and enables real-time video SR by in-

dependently processing frames with a single frame model.

Similar solutions to improve efficiency have also been pro-

posed based on transposed convolutions [7, 20].

1.2. Motivation and contributions

Existing solutions for high definition (HD) video SR

have not been able to effectively exploit temporal correla-

tions while performing in real-time. On the one hand, ES-

PCN [33] leverages sub-pixel convolution for a very effi-

cient operation, but its naive extension to videos treating

frames independently fails to exploit inter-frame redundan-

cies and does not enforce a temporally consistent result.

VSRnet [22], on the other hand, can improve reconstruction

quality by jointly processing multiple input frames. How-

ever, the preprocessing of LR images with bicubic upscaling

and the use of an inefficient motion compensation mecha-

nism slows runtime to about 0.016 frames per second even

on videos smaller than standard definition resolution.

Spatial transformer networks [19] provide a means to in-

fer parameters for a spatial mapping between two images.

These are differentiable networks that can be seamlessly

combined and jointly trained with networks targeting other

objectives to enhance their performance. For instance, spa-

tial transformer networks were initially shown to facilitate

image classification by transforming images onto the same

frame of reference [19]. Recently, it has been shown how

spatial transformers can encode optical flow features with

unsupervised training [11, 1, 29, 14], but they have never-

theless not yet been investigated for video motion compen-

sation. Related approaches have emerged for view synthesis

assuming rigid transformations [21].

In this paper, we combine the efficiency of sub-pixel con-

volution with the performance of spatio-temporal networks

and motion compensation to obtain a fast and accurate video

SR algorithm. We study different treatments of the temporal

dimension with early fusion, slow fusion and 3D convolu-

tions, which have been previously suggested to extend clas-

sification from images to videos [23, 37]. Additionally, we

build a motion compensation scheme based on spatial trans-

formers, which is combined with spatio-temporal models to

lead to a very efficient solution for video SR with motion

compensation that is end-to-end trainable. A high-level di-

agram of the proposed approach is show in Fig. 1.

The main contributions of this paper are:

• Presenting a real-time approach for video SR based on

sub-pixel convolution and spatio-temporal networks

that improves accuracy and temporal consistency.

• Comparing early fusion, slow fusion and 3D con-

volutions as alternative architectures for discovering

spatio-temporal correlations.

• Proposing an efficient method for dense inter-frame

motion compensation based on a multi-scale spatial

transformer network.

• Combining the proposed motion compensation tech-

nique with spatio-temporal models to provide an effi-

cient, end-to-end trainable motion compensated video

SR algorithm.

2. Methods

Our starting point is the real-time image SR method ES-

PCN [33]. We restrict our analysis to standard architec-

tural choices and do not further investigate potentially ben-

eficial extensions such as recurrence [24], residual connec-

tions [15, 16] or training networks based on perceptual loss
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(a) Early fusion (b) Slow fusion (c) 3D convolution

Figure 2: Spatio-temporal models. Input frames are colour coded to illustrate their contribution to different feature maps,

and brackets represent convolution after concatenation. In early fusion (a), the temporal depth of the network’s input filters

matches the number of input frames collapsing all temporal information in the first layer. In slow fusion (b), the first layers

merge frames in groups smaller than the input number of frames. If weights in each layer are forced to share their values,

operations needed for features above the dashed line can be reused for each new frame. This case is equivalent to using 3D

convolutions (c), where the temporal information is merged with convolutions in space and time.

functions [20, 26, 3, 8]. Throughout the paper we assume all

image processing is performed on the y-channel in colour

space, and thus we represent all images as 2D matrices.

2.1. Sub­pixel convolution SR

For a given LR image ILR ∈ R
H×W which is assumed

to be the result of low-pass filtering and downscaling by a

factor r the HR image IHR ∈ R
rH×rW , the CNN super-

resolved solution ISR ∈ R
rH×rW can be expressed as

ISR = f
(
ILR; θ

)
. (1)

Here, θ are model parameters and f(.) represents the map-

ping function from LR to HR. A convolutional network

models this function as a concatenation of L layers defined

by sets of weights and biases θl = (Wl, bl), each followed

by non-linearities φl, with l ∈ [0, L − 1]. Formally, the

output of each layer is written as

fl
(
ILR; θl

)
= φl

(
Wl ∗ fl−1

(
ILR; θl−1

)
+ bl

)
, ∀l, (2)

with f0
(
ILR; θ0

)
= ILR. We assume the shape of filtering

weights to be nl−1 × nl × kl × kl, where nl and kl repre-

sent the number and size of filters in layer l, with the single

frame input meaning n0 = 1. Model parameters are opti-

mised minimising a loss given a set of LR and HR example

image pairs, commonly mean squared error (MSE):

θ∗ = argmin
θ

‖IHR − f(ILR; θ)‖22. (3)

Methods preprocessing ILR with bicubic upsampling

before mapping from LR to HR impose that the output num-

ber of filters is nL−1 = 1 [6, 22]. Using sub-pixel convo-

lution allows to process ILR directly in the LR space and

then use nL−1 = r2 output filters to obtain an HR output

tensor with shape 1 × r2 × H × W that can be reordered

to obtain ISR [33]. This implies that if there exists an up-

scaling operation that is better suited for the problem than

bicubic upsampling, the network can learn it. Moreover,

and most importantly, all convolutional processing is per-

formed in LR space, making this approach very efficient.

2.2. Spatio­temporal networks

Spatio-temporal networks assume input data to be a

block of spatio-temporal information, such that instead of

a single input frame ILR, a sequence of consecutive frames

is considered. This can be represented in the network by

introducing an additional dimension for temporal depth Dl,

with the input depth D0 representing an odd number of con-

secutive input frames. If we denote the temporal radius of

a spatio-temporal block to be R = D0−1
2 , we define the

group of input frames centered at time t as ILR
[t−R:t+R] ∈

R
H×W×D0 , and the problem in Eq. (1) becomes

ISR
t = f

(

ILR
[t−R:t+R]; θ

)

. (4)

The shape of weighting filters Wl is also extended by their

temporal size dl, and their tensor shape becomes dl×nl−1×
nl × kl × kl. We note that it is possible to consider solu-

tions that aim to jointly reconstruct more than a single out-

put frame, which could have advantages at least in terms of

computational efficiency. However, in this work we focus

on the reconstruction of only a single output frame.

2.2.1 Early fusion

One of the most straightforward approaches for a CNN to

process videos is to match the temporal depth of the input

layer to the number of frames d0 = D0. This will collapse

all temporal information in the first layer and the remain-

ing operations are identical to those in a single image SR

network, meaning dl = 1, l ≥ 1. An illustration of early
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fusion is shown in Fig. 2a for D0 = 5, where the tempo-

ral dimension has been colour coded and the output map-

ping to 2D space is omitted. This design has been studied

for video classification and action recognition [23, 37], and

was also one of the architectures proposed in VSRnet [22].

However, VSRnet requires bicubic upsampling as opposed

to sub-pixel convolution, making the framework computa-

tionally much less efficient in comparison.

2.2.2 Slow fusion

Another option is to partially merge temporal information in

a hierarchical structure, so it is slowly fused as information

progresses through the network. In this case, the temporal

depth of network layers is configured to be 1 ≤ dl < D0,

and therefore some layers also have a temporal extent until

all information has been merged and the depth of the net-

work reduces to 1. This architecture, termed slow fusion,

has shown better performance than early fusion for video

classification [23]. In Fig. 2b we show a slow fusion net-

work where D0 = 5 and the rate of fusion is defined by

dl = 2 for l ≤ 3 or dl = 1 otherwise, meaning that at

each layer only two consecutive frames or filter activations

are merged until the network’s temporal depth shrinks to 1.

Note that early fusion is an special case of slow fusion.

2.2.3 3D convolutions

Another variation of slow fusion is to force layer weights to

be shared across the temporal dimension, which has com-

putational advantages. Assuming an online processing of

frames, when a new frame becomes available the result of

some layers for the previous frame can be reused. For in-

stance, refering to the diagram in Fig. 2b and assuming the

bottom frame to be the latest frame received, all activations

above the dashed line are readily available because they

were required for processing the previous frame. This ar-

chitecture is equivalent to using 3D convolutions, initially

proposed as an effective tool to learn spatio-temporal fea-

tures that can help for video action recognition [37]. An il-

lustration of this design from a 3D convolution perspective

is shown in Fig. 2c, where the arrangement of the temporal

and filter features is swapped relative to Fig. 2b.

2.3. Spatial transformer motion compensation

We propose the use of an efficient spatial transformer

network to compensate the motion between frames fed to

the SR network. It has been shown how spatial transform-

ers can effectively encode optical flow to describe motion

[29, 1, 14], and are therefore suitable for motion compen-

sation. We will compensate blocks of three consecutive

frames to combine the compensation module with the SR

network as shown in Fig. 1, but for simplicity we first in-

troduce motion compensation between two frames. No-

tice that the data used contains inherent motion blur and

(dis)occlusions, and even though an explicit modelling for

these effects is not used it could potentially improve results.

The task is to find the best optical flow representa-

tion relating a new frame It+1 with a reference current

frame It. The flow is assumed pixel-wise dense, allow-

ing to displace each pixel to a new position, and the re-

sulting pixel arrangement requires interpolation back onto

a regular grid. We use bilinear interpolation I{.} as it

is much more efficient than the thin-plate spline interpo-

lation originally proposed in [19]. Optical flow is a func-

tion of parameters θ∆,t+1 and is represented with two fea-

ture maps ∆t+1 = (∆t+1x,∆t+1y; θ∆,t+1) correspond-

ing to displacements for the x and y dimensions, thus

a compensated image can be expressed as I ′t+1 (x, y) =
I{It+1 (x+∆t+1x, y +∆t+1y)}, or more concisely

I ′t+1 = I{It+1(∆t+1)}. (5)

We adopt a multi-scale design to represent the flow,

which has been shown to be effective in classical methods

[10, 2] and also in more recently proposed spatial trans-

former techniques [11, 1, 9]. A schematic of the design

is shown in Fig. 3 and flow estimation modules are detailed

in Table 1. First, a ×4 coarse estimate of the flow is ob-

tained by early fusing the two input frames and downscal-

ing spatial dimensions with ×2 strided convolutions. The

estimated flow is upscaled with sub-pixel convolution and

the result ∆c
t+1 is applied to warp the target frame produc-

ing I ′ct+1. The warped image is then processed together with

the coarse flow and the original images through a fine flow

estimation module. This uses a single strided convolution

with stride 2 and a final ×2 upscaling stage to obtain a

finer flow map ∆f . The final motion compensated frame

is obtained by warping the target frame with the total flow

I ′t+1 = I{It+1(∆
c
t+1 + ∆f

t+1)}. Output activations use

tanh to represent pixel displacement in normalised space,

such that a displacement of ±1 means maximum displace-

ment from the center to the border of the image.

To train the spatial transformer to perform motion com-

pensation we optimise its parameters θ∆,t+1 to minimise

the MSE between the transformed frame and the reference

frame. Similary to classical optical flow methods, we found

that it is generally helpful to constrain the flow to behave

smoothly in space, and so we penalise the Huber loss of the

flow map gradients, namely

θ∗∆,t+1 = argmin
θ∆,t+1

‖It − I ′t+1‖22 + λH (∂x,y∆t+1) . (6)

In practice we approximate the Huber loss with

H (∂x,y∆) =
√

ǫ+
∑

i=x,y(∂x∆i2 + ∂y∆i2), where

ǫ = 0.01. This function has a smooth L2 behaviour near

the origin and is sparsity promoting far from it.
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Figure 3: Spatial transformer motion compensation.

Layer Coarse flow Fine flow

1 Conv k5-n24-s2 / ReLU Conv k5-n24-s2 / ReLU

2 Conv k3-n24-s1 / ReLU Conv k3-n24-s1 / ReLU

3 Conv k5-n24-s2 / ReLU Conv k3-n24-s1 / ReLU

4 Conv k3-n24-s1 / ReLU Conv k3-n24-s1 / ReLU

5 Conv k3-n32-s1 / tanh Conv k3-n8-s1 / tanh

6 Sub-pixel upscale ×4 Sub-pixel upscale ×2

Table 1: Motion compensation transformer architecture.

Convolutional layers are described by kernel size (k), num-

ber of features (n) and stride (s).

The spatial transformer module is advantageous relative

to other motion compensation mechanisms as it is straight-

forward to combine with a SR network to perform joint

motion compensation and video SR. Referring to Fig. 1,

the same parameters θ∆ can be used to model motion of

the outer two frames relative to the central frame. The

spatial transformer and SR modules are both differentiable

and therefore end-to-end trainable. As a result, they can be

jointly optimised to minimise a composite loss combining

the accuracy of the reconstruction in Eq. (3) with the fidelity

of motion compensation in Eq. (6), namely

(θ∗, θ∗∆) = argmin
θ,θ∆

‖IHR
t − f(I ′LR

t−1:t+1; θ)‖22

+
∑

i=±1

[β‖I ′LR
t+i − ILR

t ‖22 + λH (∂x,y∆t+i)].

(7)

3. Experiments and results

In this section, we first analyse spatio-temporal networks

for video SR in isolation and later evaluate the benefits of

introducing motion compensation. We restrict our experi-

ments to tackle ×3 and ×4 upscaling of full HD video reso-

lution (1080×1920), and no compression is applied. To en-

sure a fair comparison of methods, the number of network

parameters need to be comparable so that gains in perfor-

mance can be attributed to specific choices of network re-

source allocation and not to a trivial increase in capacity.

For a layer l, the number of floating-point operations to re-

construct a frame is approximated by

HWDl+1nl+1

[
convolutions

︷ ︸︸ ︷

(2k2l dl − 1)nl + 2
︸︷︷︸

bias & activation

]

. (8)

In measuring the complexity of slow fusion networks with

weight sharing we look at steady-state operation where the

output of some layers is reused from one frame to the fol-

lowing. We note that the analysis of VSRnet variants in [22]

does not take into account model complexity.

3.1. Experimental setup

3.1.1 Data

We use the CDVL database [18], which contains 115 un-

compressed full HD videos excluding repeated videos, and

choose a subset of 100 videos for training. The videos

are downscaled and 30 random samples are extracted from

each HR-LR video pair to obtain 3000 training samples, 5%
of which are used for validation. Depending on the net-

work architecture, we refer to a sample as a single input-

output frame pair for single frame networks, or as a block

of consecutive LR input frames and the corresponding cen-

tral HR frame for spatio-temporal networks. The remain-

ing 15 videos are used for testing. Although the total num-

ber of training frames is large, we foresee that the methods

presented could benefit from a richer, more diverse set of

videos. Additionally, we present a benchmark against vari-

ous SR methods on publicly available videos that are recur-

rently used in the literature and we refer to as Vid41.

3.1.2 Network training and parameters

All SR models are trained following the same protocol and

share similar hyperparameters. Filter sizes are set to kl = 3
∀l, and all non-linearities φl are rectified linear units ex-

cept for the output layer, which uses a linear activation. Bi-

ases are initialised to 0 and weights use orthogonal initial-

isation with gain
√
2 following recommendations in [30].

All hidden layers are set to have the same number of fea-

tures. Video samples are broken into non-overlapping sub-

samples of spatial dimensions 33× 33, which are randomly

grouped in batches for stochastic optimisation. We employ

Adam [25] with a learning rate 10−4 and an initial batch

size 1. Every 10 epochs the batch size is doubled until it

reaches a maximum size of 128.

1Vid4 is composed of walk, city, calendar and foliage, and has sizes

720 × 480 or 720 × 576. The sequence city has dimensions 704 × 576,

which we crop to 702 × 576 for ×3 upscaling. Results on Vid4 can be

downloaded from https://twitter.box.com/v/vespcn-vid4
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Figure 4: CDVL ×3 SR using single frame models (SF) and

multi frame early fusion models (E3-7).

We choose nl = 24 for layers where the network tempo-

ral depth is 1 (layers in gray in Figs. 2a to 2c), and to main-

tain comparable network sizes we choose nl = 24/Dl, l >
0. This ensures that the number of features per hidden layer

in early and slow fusion networks is always the same. For

instance, the network shown in Fig. 2b, for which D0 = 5
and dl = 2 for l ≤ 3, the number of features in a 6 layer

network for ×r SR would be 6, 8, 12, 24, 24, r2.

3.2. Spatio­temporal video SR

3.2.1 Single vs multi frame early fusion

First, we investigate the impact of the number of input

frames on complexity and accuracy without motion com-

pensation. We compare single frame models (SF) against

early fusion spatio-temporal models using 3, 5 and 7 input

frames (E3, E5 and E7). Peak signal-to-noise ratio (PSNR)

results on the CDVL dataset for networks of 6 to 11 lay-

ers are plotted in Fig. 4. Exploiting spatio-temporal corre-

lations provides a more accurate result relative to an inde-

pendent processing of frames. The increase in complexity

from early fusion is marginal because only the first layer

contributes to an increase of operations.

Although the accuracy of spatio-temporal models is rel-

atively similar, we find that E7 slightly underperforms. It

is likely that temporal dependencies beyond 5 frames be-

come too complex for networks to learn useful information

and act as noise degrading their performance. Notice also

that, whereas the performance increase from network depth

is minimal after 8 layers for single frame networks, this in-

crease is more consistent for spatio-temporal models.

3.2.2 Early vs slow fusion

Here we compare the different treatments of the temporal

dimension discussed in Section 2.2. We assume networks

with an input of 5 frames and slow fusion models with fil-

# Layers SF E5 S5 S5-SW

7
PSNR 37.78 37.92 37.83 37.74

GOps 12.29 12.69 10.65 8.94

9
PSNR 37.80 37.99 37.99 37.90

GOps 16.83 17.22 15.19 13.47

Table 2: Comparison of spatio-temporal architectures

ter temporal depths 2 as in Fig. 2. Using SF, E5, S5, and

S5-SW to refer to single frame networks and 5 frame input

networks using early fusion, slow fusion, and slow fusion

with shared weights, we show in Table 2 results for 7 and 9

layer networks.

As seen previously, early fusion networks attain a higher

accuracy at a marginal 3% increase in operations relative

to the single frame models, and as expected, slow fusion

architectures provide efficiency advantages. Slow fusion is

faster than early fusion because it uses fewer features in the

initial layers. Referring to Eq. (8), slow fusion uses dl = 2
in the first layers and nl = 24/Dl, which results in fewer

operations than dl = 1, nl = 24 as used in early fusion.

While the 7 layer network sees a considerable decrease

in accuracy using slow fusion relative to early fusion, the 9

layer network can benefit from the same accuracy while re-

ducing its complexity with slow fusion by about 30%. This

suggests that in shallow networks the best use of network re-

sources is to utilise the full network capacity to jointly pro-

cess all temporal information as done by early fusion, but

that in deeper networks slowly fusing the temporal dimen-

sion is beneficial, which is in line with the results presented

by [23] for video classification.

Additionally, weight sharing decreases accuracy because

of the reduction in network parameters, but the reusabil-

ity of network features means fewer operations are needed

per frame. For instance, the 7 layer S5-SW network shows

a reduction of almost 30% of operations with a minimal

decrease in accuracy relative to SF. Using 7 layers with

E5 nevertheless shows better performance and faster opera-

tion than S5-SW with 9 layers, and in all cases we found

that early or slow fusion consistently outperformed slow

fusion with shared weights in this performance and effi-

ciency trade-off. Convolutions in spatio-temporal domain

were shown in [37] to work well for video action recogni-

tion, but with larger capacity and many more frames pro-

cessed jointly. We speculate this could be the reason why

the conclusions drawn from this high-level vision task do

not extrapolate to the SR problem.

3.3. Motion compensated video SR

In this section, the proposed frame motion compensation

is combined with an early fusion network of temporal depth

D0 = 3. First, the motion compensation module is trained

independently using Eq. (7), where the first term is ignored

and β = 1, λ = 0.01. This results in a network that will
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Figure 5: Spatial transformer motion compensation. Top:

flow map estimated relating the original frame with its

consecutive frame. Bottom: sections of three consecutive

frames without and with motion compensation (No MC and

MC). Error maps are less pronounced for MC.

(a) Original (b) No MC ×3 (c) MC ×3

Figure 6: Motion compensated ×3 SR. Jointly motion com-

pensation and SR (c) produces structurally more accurate

reconstructions than spatio-temporal SR alone (b).

# Layers 6 7 8 9

SF 37.718 37.780 37.812 37.800

E3 37.842 37.889 37.956 37.980

E3-MC 37.928 37.961 38.019 38.060

Table 3: PSNR for CDVL ×3 SR using single frame (SF)

and 3 frame early fusion without and with motion compen-

sation (E3, E3-MC).

compensate the motion of three consecutive frames by esti-

mating the flow maps of outer frames relative to the middle

frame. An example of a flow map obtained for one frame is

shown in Fig. 5, where we also show the effect the motion

compensation module has on three consecutive frames.

The early fusion motion compensated SR network (E3-

MC) is initialised with a compensation and a SR network

pretrained separately, and the full model is then jointly op-

timised with Eq. (7) (β = 0.01, λ = 0.001). Results for ×3
SR on CDVL are compared in Table 3 against a single frame

(SF) model and early fusion without motion compensation

(E3). E3-MC results in a PSNR that is sometimes almost

twice the improvement of E3 relative to SF, which we at-

tribute to the fact that the network adapts the SR input to

maximise temporal redundancy. In Fig. 6 we show how this

improvement is reflected in better structure preservation.

3.4. Comparison to state­of­the­art

We show in Table 4 the performance on Vid4 for SRCNN

[6], ESPCN [33], VSRnet [22] and the proposed method,

which we refer to as video ESPCN (VESPCN). To demon-

strate its benefits in efficiency and quality we evaluate two

early fusion models: a 5 layer 3 frame network (5L-E3) and

a 9 layer 3 frame network with motion compensation (9L-

E3-MC). The metrics compared are PSNR, structural sim-

ilarity (SSIM) [40] and MOVIE [31] indices. The MOVIE

index was designed as a metric measuring video quality that

correlates with human perception and incorporates a notion

of temporal consistency. We also directly compare the num-

ber of operations per frame of all CNN-based approaches

for upscaling a generic 1080p frame.

Reconstructions for SRCNN, ESPCN and VSRnet use

models provided by the authors. SRCNN, ESPCN and

VESPCN were tested on Theano and Lasagne, and for VS-

Rnet we used available Caffe Matlab code. We crop spatial

borders as well as initial and final frames on all reconstruc-

tions for fair comparison against VSRnet 2.

3.4.1 Quality comparison

An example of visual differences is shown in Fig. 7 against

the motion compensated network. From the close-up im-

ages, we see how the structural detail of the original video

is better recovered by the proposed VESPCN method. This

is reflected in Table 4, where it surpasses any other method

in PSNR and SSIM by a large margin. Figure 7 also shows

temporal profiles on the row highlighted by a dashed line

through 25 consecutive frames, demonstrating a better tem-

poral coherence of the reconstruction proposed. The great

temporal coherence of VESPCN also explains the signifi-

cant reduction in the MOVIE index.

3.4.2 Efficiency comparison

The complexity of methods in Table 4 is determined by net-

work and input image sizes. SRCNN and VSRnet upsample

LR images before attempting to super-resolve them, which

considerably increases the required number of operations.

2We used our own implementation of SSIM and use video PSNR in-

stead of averaging individual frames PSNR as done in [22], thus values

may slightly deviate from those reported in original papers.
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Image and video SR Proposed VESPCN

Scale Bicubic SRCNN ESPCN VSRnet 5L-E3 9L-E3-MC

3 PSNR 25.38 26.56 26.97 26.64 27.05 27.25

SSIM 0.7613 0.8187 0.8364 0.8238 0.8388 0.8447

MOVIE (×10
−3) 5.36 3.58 3.22 3.50 3.12 2.86

GOps / 1080p frame - 233.11 9.92 1108.73* 7.96 24.23

4 PSNR 23.82 24.68 25.06 24.43 25.12 25.35

SSIM 0.6548 0.7158 0.7394 0.7372 0.7422 0.7557

MOVIE (×10
−3) 9.31 6.90 6.54 6.82 6.18 5.82

GOps / 1080p frame - 233.11 6.08 1108.73* 4.85 14.00

Table 4: Performance on Vid4 videos. *VSRnet does not include operations needed for motion compensation.

Figure 7: Results for ×3 SR on Vid4. Light blue figures show results for SRCNN, ESPCN, VSRnet, VESPCN (9L-E3-MC),

and the original image. Purple images show corresponding temporal profiles over 25 frames from the dashed line shown in

the original image. VESPCN produces visually the most accurate results, both spatially and through time.

VSRnet is particularly expensive because it processes 5 in-

put frames in 64 and 320 feature layers, whereas sub-pixel

convolution greatly reduces the number of operations re-

quired in ESPCN and VESPCN. As a reference, ESPCN

×4 runs at 29ms per frame on a K2 GPU [33]. The en-

hanced capabilities of spatio-temporal networks allow to re-

duce the network operations of VESPCN relative to ESPCN

while still matching its accuracy. As an example we show

VESPCN with 5L-E3, which reduces the number of opera-

tions by about 20% relative to ESPCN while maintaining a

similar performance in all evaluated quality metrics.

The operations for motion compensation in VESPCN

with 9L-E3-MC, included in Table 4 results, amount to

3.6 and 2.0 GOps for ×3 and ×4 upscaling, applied twice

for each input frame requiring motion compensation. This

makes the proposed motion compensated video SR very ef-

ficient relative to other approaches. For example, motion

compensation in VSRnet is said to require 55 seconds per

frame and is the computational bottleneck [22]. This is not

accounted for in Table 4 but is ×103 slower than VESPCN

with 9L-E3-MC, which can run in the order of 10−2 sec-

onds. The optical flow method in VSRnet was originally

shown to run at 29ms on GPU for each frame of dimen-

sions 512 × 383, but this is still considerably slower than

the proposed solution considering motion compensation is

required for more than a single frame of HD dimensions.

4. Conclusion

In this paper we combine the efficiency advantages of

sub-pixel convolutions with temporal fusion strategies to

present real-time spatio-temporal models for video SR. The

spatio-temporal models used are shown to facilitate an im-

provement in reconstruction accuracy and temporal consis-

tency or reduce computational complexity relative to inde-

pendent single frame processing. The models investigated

are extended with a motion compensation mechanism based

on spatial transformer networks that is efficient and jointly

trainable for video SR. Results obtained with approaches

that incorporate explicit motion compensation are demon-

strated to be superior in terms of PSNR and temporal con-

sistency compared to spatio-temporal models alone, and

outperform the current state of the art in video SR.
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