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Abstract

Localizing a query image against a 3D model at large

scale is a hard problem, since 2D-3D matches become more

and more ambiguous as the model size increases. This cre-

ates a need for pose estimation strategies that can han-

dle very low inlier ratios. In this paper, we draw new in-

sights on the geometric information available from the 2D-

3D matching process. As modern descriptors are not invari-

ant against large variations in viewpoint, we are able to find

the rays in space used to triangulate a given point that are

closest to a query descriptor. It is well known that two cor-

respondences constrain the camera to lie on the surface of

a torus. Adding the knowledge of direction of triangulation,

we are able to approximate the position of the camera from

two matches alone. We derive a geometric solver1that can

compute this position in under 1 microsecond. Using this

solver, we propose a simple yet powerful outlier filter which

scales quadratically in the number of matches. We validate

the accuracy of our solver and demonstrate the usefulness

of our method in real world settings.

1. Introduction

Estimating the pose of a query image from a set of

2D-3D matches is a central task in image-based localiza-

tion [4, 15, 21, 22, 26, 28], with many applications in, e.g.,

Structure-from-Motion (SfM) [12,24,25,27], simultaneous

localization and mapping (SLAM) [3, 5], augmented real-

ity [1, 17], or camera calibration [2]. Wrong 2D-3D corre-

spondences are typically handled through RANSAC [9] as

long as the percentage of such outliers among all matches is

not too large.

Image-based localization approaches establish 2D-3D

correspondences by matching descriptors extracted from

the query image (e.g., SIFT [16]) against descriptors associ-

ated with the 3D model points. However, at large scale or in

1MATLAB sample code available at www.cvg.ethz.ch/

research/toroidal-constraints/

complex scenes with many repetitive elements, establishing

2D-3D correspondences becomes a challenging task due to

the inherent ambiguities of the local appearance [15]. As it

becomes harder to distinguish between correct and incorrect

matches based on local descriptors alone [15], localization

algorithms must be able to cope with large outlier ratios in

order to enable reliable pose estimation. This in turn creates

a strong need for developing efficient outlier filtering strate-

gies which are able to identify and remove wrong matches.

In this paper, we derive a new previously unused geo-

metric constraint that can aid large-scale localization. Ex-

ploiting this constraint, we present a novel filtering strat-

egy that can cope with arbitrary outlier ratios, while re-

taining a runtime that scales quadratically with the number

of matches. Previous approaches either require knowledge

about the gravity direction in combination with a prior on

camera height [26, 28] or knowledge about the full camera

orientation [13]. In contrast, our approach does not depend

on such external information and can approximate the full

6 DOF pose from just two 2D-3D correspondences. For

our application, however, we only use the position from the

pose to efficiently prune outliers (c.f . Section 3.5). Whereas

most reconstruction methods consider viewpoint variance

[18] of descriptors as a weakness, we view it as a strength

useful to infer the viewpoint of the camera.

Our main observation is that, during the SfM process

used to generate a 3D model, each 3D point is associated

with the descriptors of the image features from which it

was triangulated. Thus, each of these descriptors is asso-

ciated with the viewing direction under which the point was

observed. Empirically, we found that the best matching de-

scriptor of a 3D point for a given 2D feature provides a

good approximation to the viewing direction of the query

image, c.f . Section 3.3 and Fig. 1, typically being within

10◦ of the closest match. We call this viewing direction

constraint the triangulation constraint. Additionally, given

two 2D-3D matches, it is known that the camera will lie on

the surface of a torus [7]. The toroidal constraint combined

with the triangulation constraint allows us to formulate a

solver that estimates the position of the camera from only
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Figure 1. Novel Geometric Information. For each query descrip-

tor, dqueryi , we find the closest descriptor inside the track that pro-

duced the 3D point pi. We do this for each match in S, yielding our

augmented match set S̄ (see Section 3.3 for more details). Given

a query measurement, bi and its matched 3D point pi we are able

to find an estimate of its closest ray in 3D by matching against all

images that triangulated pi. Thus, we constrain the query camera

position to lie near ray qnn
i .

two matches. While the resulting positions are approxima-

tions, they are accurate enough to enable efficient outlier

detection, which is a key task for pose estimation at large

scale.

This paper makes the following contributions: (i) We de-

rive a novel two-point formulation to estimate the absolute

position of the camera which incorporates prior information

on the viewing directions. To the best of our knowledge,

ours is the first pose solver which directly incorporates this

type of information into the pose estimation task. (ii) While

computing an exact solution to this problem analytically

is hard, we derive an approximate solver and empirically

show that it is able to recover near-optimal solutions. As

our solver only requires solving two quadratic problems, it

is very efficient with run-times of around∼ 1µs. (iii) Based

on our solver, we propose a novel outlier filter, whose run-

time is independent of the outlier ratio. Compared to pre-

vious approaches, it does not make any assumptions on the

availability of external information [13, 26, 28]. Besides, it

is significantly simpler to implement than [26, 28] and has

a lower computational complexity than [13,26]. (iv) Lastly,

we show that the novel constraint is indeed meaningful for

the localization task by comparing its performance as an

outlier filter to the state-of-the-art.

The rest of this paper is organized as follows: Section 2

provides an overview of the related work. Section 3.1 intro-

duces the problem of large-scale image-based localization

in the presence of large outlier ratios. Sections 3.2 and 3.3

provide a description of the toroidal and triangulation con-

straints. Section 3.4 describes our geometric solver which is

then used to design an efficient outlier filter in Section 3.5.

Section 4 validates our proposed method on both synthetic

and real-world datasets.

2. Related Work

Recent work on scalable image-based localization has

dealt with ambiguities in the matching stage by relaxing

the matching criterion [15, 21, 26, 28]. They handle the re-

sulting larger amount of wrong matches by detecting and

filtering incorrect correspondences before pose estimation.

These methods can be divided into approaches based on co-

visibility [15, 21, 22] and geometric reasoning [26, 28]. The

method proposed in this paper falls into the second category.

Visibility-based methods exploit the fact that the SfM pro-

cess provides information about which 3D points can be

observed together. This information is encoded in the bi-

partite visibility graph [14] and the 2D-3D matches deter-

mine sets of connected components in this graph. Sattler

et al. [22] use only those correspondences falling into the

largest connected component for pose estimation. Rather

than using a single component, [21] computes poses from

multiple subsets of matches and then select the pose with

the largest number of inliers. Instead of deciding on a fixed

subset before pose estimation, Li et al. adopt a RANSAC

sampler to avoid computing a pose from points not co-

visible together [15]. Visibility filtering usually reduces the

number of RANSAC iterations required to ensure a good

estimate is found. Yet, it does not remove the dependency

of RANSAC’s run-time on the outlier ratio.

Geometry-based approaches determine a subset of

matches whose 3D points are geometrically consistent with

their corresponding 2D features. The main motivation is

to design an approach whose run-time depends only on the

number of matches and not on the outlier ratio. One way

to select such a subset are branch-and-bound algorithms

[6,8,20], which often come with guarantees on the optimal-

ity of their solution. However, their algorithmic complex-

ity only allows them to handle a relatively small number of

matches given a limited computational budget.

Recently, more efficient outlier filters have been pro-

posed that rely on additional information. Given the full

orientation of a camera, the method from Larsson et al. re-

jects outliers in O(n2 log n) [13], where n is the number of

matches. They obtain a bound on the maximum number of

inliers for each single match. This, in turn, enables them

to identify and remove correspondences that cannot be part

of the maximum inlier set. Unfortunately, their method re-

quires to repeatably determine the intersection between two

cones, which is computationally involved. Similar to our

approach, Larsson et al. thus employ an approximation al-

gorithm that is more efficient to compute.

Svärm et al. [26] present an outlier filter based on a

known gravity direction and an estimate of the camera’s

height above ground. As a result, they can model pose es-

timation as a 2D registration problem. Similar to Larsson

et al., the approach of [26] determines the maximum num-

ber of correspondences geometrically consistent with each
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match. Matches are rejected if this number falls below an

adaptive threshold. While both, Svärm et al. and Larsson

et al., require O(n2 log n) steps, our approach has a com-

putational complexity of O(n2). At the same time, it is

more general as it neither requires information about the full

camera orientation, the gravity direction, nor the camera’s

height.

Following the same setup as [26], Zeisl et al. propose a

filtering strategy based on voting that has an optimal asymp-

totic complexity of O(n) [28]. However, their voting strat-

egy is rather involved, both in terms of implementation and

constant factors contributing to the running time. In order to

accelerate their method, they exploit additional constraints

provided by the local feature geometry, e.g., the scale and

orientation of a 2D feature, as well as viewing direction con-

straints in order to reject matches before voting.

In contrast to Svärm et al. and Zeisl et al., our proposed

approach is both very efficient to compute and simple to

implement. It does not require any additional assumptions.

Instead, it leverages information that is readily available

but has not been previously exploited. This new insight al-

lows us to formulate new constraints that can be efficiently

used in a simple setting, therefore avoiding more involved

schemes as the ones introduced by Zeisl et al. Our experi-

ments show that we can achieve performance similar to [26]

and [28] while maintaining low computational complexity.

3. Localization Using Two Points And Their

Directions of Triangulation

In the following, we first formulate the problem and pro-

vide a description of the toroidal and triangulation con-

straints. We then describe our geometric solver and the pro-

posed outlier filter based on this solver.

3.1. Problem Formulation

Our aim is to localize an image of a scene given a SfM

model. To this end, we assume a set of 2D-3D correspon-

dences S = {bi ↔ pi}
N
i = O ∪ I, where O ∩ I = ∅

denote the unknown sets of outlier and inlier matches. The

set {bi}
N
i denotes the putative image projections of the

matched landmarks {pi}
N
i . Since we deal with calibrated

image features only, we view bi as a 3D unit vector in the

camera frame of reference that emanates from its center.

To identify the inlier set I and refine the pose from all in-

lier matches, the most popular approach is to use P3P plus

RANSAC [9]. However, as noted before, a large outlier ra-

tio |O|/|S| greatly reduces the chances of finding a correct

pose with such methods. This is because RANSAC-style

methods are prone to getting stuck in local minima (i.e.,

they do not converge to the optimal |I|).
Ideally, one would exhaustively search through all

triplets in S and vote for the pose with the highest consen-

sus. However, this is prohibitively slow for most applica-

tions as up to 4
(
N

3

)
= 2/3 N3 poses (P3P returns up to 4

feasible solutions) need to be evaluated. The goal of our

approach is to drastically reduce |O|, so that pose recovery

becomes an easier problem. We will now derive a solu-

tion which prunes the vast majority of outliers and scales

quadratically with the number of matches.

3.2. Toroidal Constraints

Given two matches m0,m1 ∈ S , our goal is to find the

camera center location C represented in world frame co-

ordinates. Let Π0 denote the 3D plane defined by the two

matched 3D points p0 and p1, as well as the camera center

C. Since the angle θ between the rays of the features in

the camera frame θ = ∡(b0, b1) is known from their pixel

position and the calibration parameters, the location of C is

constrained to lie on a circle (c.f . Fig. 2a). However, this

circular constraint is still fulfilled if we rotate C around the

line connecting p0 and p1 by any angle u (c.f . Fig. 2b).

Thus, C must lie on the surface of a torus T2, yielding

C(u, v) =





(R+ r cos v) cosu
(R+ r cos v) sinu

r sin v



 ∈ T
2 . (1)

Here v is the angle which parameterizes the circle, R de-

notes the major radius of the torus (corresponding to the

distance from the origin to the center of the circle) and r is

the radius of the circle. As it can be seen from Fig. 2, in this

particular setting the torus will always be self-intersecting

(i.e. r > R) since the axis of revolution always includes

two points on the circle. This yields sections of the torus

on which the camera can lie; if θ > π/2 the camera will

be constrained to the inner surface of the torus, otherwise it

will lie on the outside surface [7].

Without loss of generality, we make the implict assump-

tion that p0 and p1 are aligned with the z-axis, and that their

midpoint is at the origin. This can be trivially achieved by

pre-rotating and translating p0 and p1 by a suitable amount.

After the location of the camera on T
2 has been found, we

transform it back to the world frame of reference.

Without any additional constraints, the exact location of

the camera center C on the two-dimensional manifold T
2

is unknown. In the following, we make use of previously

unutilized information from the matching process to find a

likely location for C on the surface of the torus.

3.3. Triangulation­Ray Constraints

Any point pi of the SfM model has been obtained by

triangulating a set of M > 1 image measurements {qij}
M
j

with associated descriptors Di = {dij}
M
j , where we rep-

resent any qij as a 3D vector of unit length. Alternatively,

qij can be regarded as a vector emanating from pi towards
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Figure 2. Toroidal Constraints From Two Matches. The cir-

cle in (a) describes the possible locations for C given two 2D-3D

correspondences. The camera is located on the red arc for angles

θ < π/2 and on the green arc otherwise. The z-axis is the axis of

revolution for this circular constraint, yielding T
2, as seen in (b).

The unit vectors q0 and q1 are the directions from the points p0, p1
to the cameras whose descriptor was matched to the query image

descriptors.

Figure 3. Accuracy of the Matched Ray. To validate our new

constraint, we show the cumulative density function of the angular

error between bk and qk for a real dataset with ground truth [23].

the center of camera j (c.f . Fig. 2b). For localization, most

methods exploit a single descriptor derived from this set,

e.g., Davg
i = mean(Di) under the assumption that the vari-

ation inDi is small enough for this to be a valid approxima-

tion. However, we make the observation that the variability

within Di can be exploited to obtain previously unused but

geometrically meaningful information.

For a given match (bi ↔ pi) ∈ S , we denote the as-

sociated query descriptor as dqueryi . We find the closest

descriptor to dqueryi against all M descriptors that gener-

ated pi, i.e., we find dnni ∈ Di that is closest in descrip-

tor space to dqueryi (c.f . Fig. 1). We empirically observed

that for SfM ray measurements associated with dnni , qnni

is close in space to the ray which has produced our query

measurement bi (c.f . Fig. 3). Thus, we obtain the direction

of triangulation for each observed feature match bi ↔ qi
(where for simplicity qi = qnni ). This augments the set

of matches with noisy but informative orientation estimates

S̄ = {bi ↔ (pi, qi)}
N
i .

Given two of these augmented matches, m̄0 and m̄1, we

aim to find C(u, v) ∈ T
2 such that the angular distance to q0

and q1 is minimized. Notice that we do not strictly enforce

bi to be coincident with qi, as this is only possible for the

unrealistic noise-free case in which each query image was

Figure 4. Approximate Solution for Camera Position. The cost

optimization on T
2 is approximated by a two step procedure: find-

ing the angle parameterized by u, then locating the point C(v) by

solving two square roots. The solver we propose minimizes the

angles highlighted in green (b).

taken from exactly the same pose as a camera in the SfM

model.

Our goal is to find a point on the torus whose location is

compatible with the triangulation directions q0 and q1. We

model the variation in Di as a product of viewpoint change

solely. Thus, the most compatible location on T
2 for C

minimizes the angular distance, E, to both q0 and q1:

E(u, v) = ∡ (P0(u, v), q0)
2
+ ∡ (P1(u, v), q1)

2
, (2)

where Pi(u, v) = C(u, v)− pi, i.e., the vector from pi to C
and C(u, v) ∈ T, c.f . Fig. 4b.

3.4. A Geometric Solver

Minimizing the cost in Eq. 2 results in multiple local

minima. In particular, we are interested in two local min-

ima, one located on the inside and the other on the outside of

the self-intersecting torus. Of these two, we select the one

which best fulfills the angular constraint of θ = ∡(b0, b1)
as described in Section 3.2 (c.f . Fig. 2a). Since Eq. 2 needs

to be minimized for all N(N − 1)/2 match pairs, we need

an efficient solver which yields a feasible solution within a

few microseconds. Extrema of the initial cost happen when

the gradient of the cost equals zero, and we can use this to

build a system of polynomial equations. We initially pur-

sued a Gröbner basis approach that would solve the system

of polynomial equations given by the gradient of the cost.

Depending on the parameterization (Lagrangian or trigono-

metric), we found this to yield between 24 and 32 solutions

by using Macaulay2 [10]. Therefore, a respective 24 to

32 square matrix needs to be eigen-decomposed, leading to

runtimes of more than 2 milliseconds. Although this yields

the true global optima of Eq. 2, the runtime and number of

solutions to consider render this method unpractical.

We thus propose an approximate solution by solving the

problem in two steps. By inspecting the projection of the

torus onto the xy-plane (c.f . Fig. 4a), one can see that both
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triangulation rays emanate from the origin. Thus, a reason-

able approximation û of the optimal angle u is the average

of the angles formed by the projections of q0 and q1 onto

the xy-plane.

Assuming the angle u around the z-axis to be known,

Eq. 2 can be reduced to a one dimensional cost function

E(v) =
∑

i=0,1

(

arctan

(
qi,z
qi,x̂

)

− arctan

(
Pi,z

Px

))2

(3)

where qi,x̂ is the projection of the x coordinate of qi onto

the plane defined by û and the z-axis, denoted Π0. Px =
R+ r cos v and Pi,z = r sin v − pi,z .

We can further simplify Eq. 3 by leveraging the fact that

arctan (α1) + arctan (α2) = arctan

(
α1 + α2

1− α1α2

)

. (4)

Knowing that

X∗ = argmin
x

arctan (x)
2
= argmin

x

x2 , (5)

and dropping the arctan yields

Ê(v) =
∑

i=0,1

(
si − xi(v)

1 + si xi(v)

)2

, (6)

where si = qi,z/qi,x̂ and xi(v) = Pi,z/Px are the slopes of

the rays and the unknown point on the circle, respectively.

Setting the derivative of Eq. 6 w.r.t. v equal to zero we ob-

tain an equation in terms of cos v and sin v,

∂Ê

∂v
=

∑

i=0,1

µi ρi φi

ξi
= 0 ,where

µi =
(
rs2i cos v + r cos v +Rs2i +R

)
,

ρi = (pi,z sin v + r +R cos v) ,

φi = (rsi cos v − r sin v +Rsi − pi,z) ,

ξi = (sipi,z + rsi sin v + r cos v +R) 3 .

(7)

Groebner basis analysis (c.f . supplementary document)

shows that Eq. 7 has at most 12 solutions. This is a great

improvement upon the 32 solutions of the initial problem.

Further, it turns out that 6 of the obtained 12 solutions

correspond to a repeated root, namely a root for an invalid

solution. This repeated root, r cos (v) = R, corresponds to

the solution coincident with the points p0 or p1 and arises

from the fact that at that point, Px is zero and thus the angle

is undefined. Manipulating the equations algebraically al-

lows us to factor out (r cos (v)−R)3, effectively removing

6 roots from the 12 algebraically possible ones (note that for

this factor, v and −v are both feasible solutions). Using the

half-angle tangent substitution (i.e., t = tan (v/2)), Eq. 7

factors as

0 =

Invalid Roots
︷ ︸︸ ︷

(r +R+ t2(R− r))3 ·

Valid roots: v1,v2
︷ ︸︸ ︷

(λ1 + λ2t+ λ3t
2) ·

((s1 + s0 + t(4s0s1 − 2)− t2(s0 + s1))
︸ ︷︷ ︸

Valid roots: v3,v4

· (fc(t))
︸ ︷︷ ︸

Complex

(8a)

where

λ1 = κ− τ,

λ2 = 2r(s0 + s1)(p1z(s1 − s0) +Rs0s1 +R),

λ3 = κ+ τ

(8b)

and

κ = R2
(
s2
0

(
s2
1
− 1

)
+ 4s0s1 − s2

1
+ 1

)
+

r2
(
s2
0

(
2s2

1
+ 1

)
+ 2s0s1 + s2

1
+ 2

)
−

2Rp1z
(
s2
0
s1 − s0s

2

1
+ s0 − s1

)

τ = r(s0s1 − 1)(p1z(s1 − s0) +Rs0s1 +R) .

(8c)

The factor fc(t) in Eq. 8a is a term quadratic in t whose

roots are always complex. For details on the derivation, we

refer the reader to the supplementary document.

This approximate closed form solution is several orders

of magnitude faster w.r.t. the former methods, since it only

requires the solution of two quadratic polynomials in t. We

obtain a single solution by taking the minimum cost solu-

tion satisfying the inside/outside constraint of the camera.

Even though the proposed solver finds only an approximate

solution, albeit a pretty accurate one (c.f ., Fig. 6), this is

acceptable since we are only interested in a rough and fast

estimate of the camera position to efficiently prune outliers.

The complete procedure for computing an estimate of the

camera position from two matches is given in Algorithm 1.

Algorithm 1 Compute C given bi ↔ (pi, qi)

Require: Points p0, p1, rays q0, q1, measurements b0, b1
1: Compute rotation and translation T s.t. Tp̂i = pi are on

the z-axis and their midpoint is the origin.

2: û← (arctan(q0,y/q0,x) + arctan(q1,y/q1,x))/2
3: θ ← arccos(b0 · b1)
4: Compute V = {vi}

4

i=1
using Eq. 8a.

5: for all vi ∈ V do

6: if vi on the side of the circle constrained by θ (Fig. 2)

then

7: Compute cost: costi ← E(û, vi) using Eq. 2

8: end if

9: end for

10: v∗ ← solution with minimum costi
11: return T

−1C(û, v∗)
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3.5. The Outlier Filter

For any pair of matches, we can follow the efficient pro-

cedure outlined in the previous section in order to obtain an

estimate of the camera position. Since our aim is to deal

with cases that have very low inlier ratios, we want to use

every possible match pair in order to fully explore the set

of possible camera poses. A naı̈ve approach would simply

consider all Q = N(N − 1)/2 matching pairs, compute a

position estimate, and later cluster on the space of 3D po-

sitions. However, this method has a few drawbacks. First

of all, for images with a very high number of feature detec-

tions, Q might be larger than 10 million pairs. Thus, clus-

tering such a dense population of position hypotheses could

prove difficult. Second, clustering in 3D space would not

identify the inlier set required for pose refinement. In this

paper we therefore take a different approach by individually

scoring each 2D-3D match.

We use 3D occupancy information to discard gross out-

liers by using an octree, which is particularly suited for im-

ages with a very large number of matches. To this end, we

store all Q position hypotheses in an octree of fixed depth.

Because of its fixed depth, the structure itself helps us dis-

card position hypotheses far from a principal cluster. After

generating all hypotheses, we traverse the tree once to find

the most populated voxel, denoted V ∗. For all remaining

operations, we only use point hypotheses that lie inside V ∗.

After computing all camera hypotheses, for each match

mi ∈ S we have a set of NV position hypotheses in which

match mi participated and that lie inside V ∗, denoted as

Ci = {Ci
j}

NV

j . Using these putative camera positions, we

compute NV inverse depth measurements Wi = {‖pi −
Cj‖

−1}NV

j (c.f . Fig. 5) and use this to derive an inlier score

for each match individually. Given that outlier matches will

produce camera positions that are not clustered around any

particular point in space, the inverse depth measurements

they produce will not cluster around the true inverse depth

of the feature pi. Rather, the inverse depths produced by

outliers will cluster around zero (since many outliers will

result in positions very far from the true position). On the

other hand, an inlier match mi will necessarily present two

peaks, one near zero z0 (as produced when mi was paired

with an outlier match), and a peak around the true inverse

depth value z1 (c.f . Fig. 5).

Our goal is therefore to find the number of inverse depth

measurements that are part of the true depth cluster, z1. If

the support of the z1 cluster |Wz1
i | is high, then there is high

evidence that the point pi is geometrically sound, i.e., it is an

inlier. We thus define the score of the i-th match as the ratio

|Wz1
i |/|Wi|. To produce the scores we then only need to

partitionWi into two clusters. We use k-means with k = 2
for this purpose. For such simple one-dimensional two-

class clustering problems, k-means can be approximated

with linear complexity by setting a fixed number of itera-

Figure 5. Inverse Depth Distribution for Inliers and Outliers.

Shown in blue are the inverse depths that were classified as outliers

and in orange the inliers, with their respective centroids z0 and z1.

For inliers, the support for z1 will be high (a). On the other hand,

the support of z1 for outliers will be very low (b). The data used

for this visualization was produced from a single image from [23].

Algorithm 2 Produce a score for match mi ∈ S

Require: A set of NV positions Ci = {C
i
j}

NV

j

1: for all Ci
j ∈ Ci do

2: W i
j ← ‖pi − Ci

j‖
−1

3: end for

4: Initialize cluster centroids: z0 ← 0 and z1 ← 1
5: Run k-means over all W i

j

6: Wz0
i ← members of cluster z0

7: Wz1
i ← members of cluster z1

8: return |Wz1
i |/|Wi|

tions (equal to 20 for our case), and will converge in ap-

proximately 1µs per match.

The output of the procedure outlined above and summa-

rized in Algorithm 2 is thus a score for each input match.

Notice that the position computation and the inverse depth

clustering are fully parallelizeable. Having obtained a set

of scores, we can use a threshold tid ∈ [0, 1] to discard out-

liers, or leverage the statistics of the scores to keep a pre-

scribed number of matches. From the remaining set, we run

RANSAC with P3P [11] to get a final pose estimate. Since

the outlier ratio of the remaining filtered set of matches is

much lower compared to the initial set, RANSAC converges

quickly to the correct solution.
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Figure 6. Accuracy of the Geometric Solver. The log
10

angular

error in degrees of our approximate geometric solver against the

ground truth method, i.e., solving the cost in Eq. 2 using gradient

descent and using multiple initializations on a 100×100 grid. The

strongest approximation we make, that of the u angle, suffers most

from error. However, v has a very low approximation error.

Figure 7. Synthetic Evaluation of the Filter. Precision and re-

call curves of the filter for different outlier ratios compared against

RANSAC. Precision is computed as number of correctly classified

inliers (CCI) over number of classified inliers. Recall is measured

as CCI over total number of true inliers.

4. Experiments

4.1. Synthetic Evaluation of the Solver

In order to validate the solver described in Section 3, we

compare the positions computed by our solver to the ex-

act solution provided by an exhaustively initialized Gauss-

Newton minimization. For this, we generate 106 random

synthetic scenes in the following manner. We sample two

3D points, p0 and p1, from a uniform distribution inside the

cube [0, 10]3. Afterwards, a random camera location, C is

chosen from the same distribution and translated 10 units

away of the cube in the Z direction. We then simulate noisy

triangulation-ray matches by adding Gaussian noise to the

unit vectors qi = (C − pi)/‖C − pi‖, i = 0, 1. The noise

was added to a plane perpendicular to qi with a standard de-

viation of 0.5. We have empirically observed that, for inlier

matches, these are adequate simulation parameters.

Fig. 6 shows the error between the ground truth esti-

mator and our solver, which is statistically negligible when

compared to the angular distance from qi to bi.
Additionally, in order to validate the efficacy of our filter

as an outlier filter, we generate 3000 2D-3D matches and

then inject a varying amount of outliers. The performance

of our filter and of simple RANSAC were then compared

to validate the usefulness of the filter as an outlier rejection

Figure 8. Efficacy of our Method as an Outlier Filter. For a

prescribed threshold tid, the inlier ratio can be increased although

some number of true inliers might be discarded. This graph shows

such trade-off when averaging inlier-ratio and recall for the dataset

in [23]. E.g., given a threshold we can get 80% of inliers with over

50% inlier ratio. A high threshold will reject the vast majority of

outliers but might reject true inliers, and conversely for a low tid
threshold.

Figure 9. Depth Range. Left: View with inlier matches in red.

Right: 3D model with inlier points (red) and camera in pink.

scheme. As it can be seen in Fig. 7, the filter is quite effi-

cient for high outlier ratios.

4.2. Real­World Evaluation

In order to further validate our method and assess its per-

formance w.r.t. the state of the art, we conduct experiments

on a publicly available real-world dataset. The dataset we

used is the Dubrovnik dataset from [25], which consists of

800 query images with SIFT [16] features that are matched

against an SfM model with 1.89 million landmarks. This

dataset is scaled in meters and each of the 800 query im-

ages have bundle adjusted ground-truth poses. We chose

this dataset since it is widely used for comparing localiza-

tion methods, as it is a challenging dataset with ground truth

poses. Furthermore, this dataset is particularly challeng-

ing for our filter. Since the depth variation per view in this

dataset can be quite large (c.f . Fig. 9), this dataset allows us

to validate our method under such difficult conditions.

For each query image, we extract ground-truth inlier

matches by using the provided ground-truth pose. We first

evaluate the effect of different score thresholds tid∈[0,1]
(c.f . Fig. 8). For this, we vary tid to obtain different per-

formance points, where high score thresholds increase the

inlier ratio but may prune out true inliers. We observe that
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Method
Assumptions Registration Statistics Error Quartiles [m]

|S| Time [s]
V S R |I|>11 ǫ<18.3 ǫ>400 1st 2nd 3rd

Setting 1 800 739 8 0.22 1.07 2.99 6210 9.7

Setting 2 797 731 8 0.50 1.16 3.42 8415 9.1

Setting 3 • 793 720 13 0.81 2.06 6.27 4766 3.2

RANSAC+P3P • 634 601 11 1.20 5.06 8.11 4766 12.9

Zeisl [28] • • 798 725 2 0.75 1.69 4.82 11265 3.78

Zeisl BA [28] • • 794 749 13 0.18 0.47 1.73 49 -

Svärm [26] • • 798 771 3 - 0.56 - 4766 5.06

Sattler [22] • 797 704 9 0.50 1.3 5.0 6 100 0.16

Table 1. Results for the Dubrovnik Dataset. We compare registration metrics for our method against the state-of-the-art. Here ǫ and |I|
represent the translation error (in meters) and the number of inliers of the final image registration, respectively. Further, V denotes known

vertical direction, S known scale and R methods relying on a good SIFT ratio (i.e. relying on the discriminative power of features, which

is dataset-dependent).

the filter operates as expected; for a wide range of thresh-

olds we can increase the inlier ratio while discarding only

very few inliers.

For the next evaluation, we draw several descriptive

statistics from our pose results in order to compare it

against previously existing methods on the Dubrovnik

dataset (c.f . Table 1). Additionally, we compare to a simple

RANSAC+P3P method as a baseline. We run three differ-

ent settings, the first one uses the octree method discussed

in Section 3.5 to discard gross outliers, while the second and

third do not.

Setting 1 For this setting, we use all available matches as

computed by FLANN [19] and set tid=0.55.

Setting 2 Here we do not use an octree but still use all avail-

able matches.

Setting 3 Here we discard the matches for which the ratio

test [16] (the ratio of the first SIFT nearest neighbor over

the second neighbor) was more than 0.9 (this is the setting

that Svarm et al. use for their filter). Since now the number

of matches is lower, we do not use an octree.

For Settings 2 and 3, we set tid=0.35. Notice that we

may set a lower threshold for these two settings since a lot

of outliers have already been removed by the octree or the

ratio test.

Since many true inliers are discarded using a ratio test

and our filter is designed to handle as many outliers as

needed, we perform better under the first setting. However,

this means that the number of average matches per image

to be considered is much higher (|S| in Table 1), and as

such the runtime of our filter is higher. In many hard cases,

there may be a high number of approximate inlier matches.

These are matches that would not be inliers to a final P3P

position, but are not effectively discarded with our approxi-

mate positions. Thus, these matches are very close to being

geometrically sound, since their true projection is only a

few pixels away, passing the proposed outlier filter. This

results in the final RANSAC solver retrieving a wrong local

minimum leading to a bad localization.

However, since our filter enforces matches to be con-

strained by a strong geometric restriction, we observe better

median positional errors w.r.t. other methods that do not re-

fine their final solution, such as [28] with voting only. Fur-

ther, [26] propose an optimal pose estimation strategy under

low-outlier conditions that could also be used in conjunc-

tion with our filter. This would further improve our posi-

tional accuracy. Under Setting 2, we do not achieve such

high performance since the inverse depth data points are too

contaminated with outliers, rendering the choice of thresh-

old more challenging. Finally, Setting 3 has lower recall

since we clearly prune out valuable inliers using the ratio

test. In terms of positional accuracy and successful local-

izations, we are able to produce competitive results for all

of the settings used. Note that, in contrast to [26,28], we do

not make any assumptions about the data: no assumption of

known vertical, known scale, known ground plane, etc. In-

stead, we use geometrically meaningful information latent

in the 2D-3D matches that was previously untapped.

5. Conclusions

In this paper we have presented a new 2D-3D geometric

constraint and its application to visual localization. Albeit

our outlier filter based on toroidal constraints is simple, it

effectively removes many outliers and performs on par with

more involved approaches. The proposed solution makes

no strong assumptions on the data and thus is widely ap-

plicable. Therefore, it can be used as a drop-in solution

in any localization pipeline to greatly increase the perfor-

mance for difficult cases. Furthermore, even other pipelines

that already employ a tailored approach for city-wide local-

ization [22, 26, 28] can potentially benefit from this newly

derived constraint. The constraint presented can thus be re-

garded as a new additional and meaningful geometric in-

sight useful for the localization task.
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