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Abstract

We present an approach to efficiently detect the 2D pose

of multiple people in an image. The approach uses a non-

parametric representation, which we refer to as Part Affinity

Fields (PAFs), to learn to associate body parts with individ-

uals in the image. The architecture encodes global con-

text, allowing a greedy bottom-up parsing step that main-

tains high accuracy while achieving realtime performance,

irrespective of the number of people in the image. The ar-

chitecture is designed to jointly learn part locations and

their association via two branches of the same sequential

prediction process. Our method placed first in the inaugu-

ral COCO 2016 keypoints challenge, and significantly ex-

ceeds the previous state-of-the-art result on the MPII Multi-

Person benchmark, both in performance and efficiency.

1. Introduction

Human 2D pose estimation—the problem of localizing

anatomical keypoints or “parts”—has largely focused on

finding body parts of individuals [8, 4, 3, 21, 33, 13, 25, 31,

6, 24]. Inferring the pose of multiple people in images, es-

pecially socially engaged individuals, presents a unique set

of challenges. First, each image may contain an unknown

number of people that can occur at any position or scale.

Second, interactions between people induce complex spa-

tial interference, due to contact, occlusion, and limb articu-

lations, making association of parts difficult. Third, runtime

complexity tends to grow with the number of people in the

image, making realtime performance a challenge.

A common approach [23, 9, 27, 12, 19] is to employ

a person detector and perform single-person pose estima-

tion for each detection. These top-down approaches di-

rectly leverage existing techniques for single-person pose

estimation [17, 31, 18, 28, 29, 7, 30, 5, 6, 20], but suffer

from early commitment: if the person detector fails–as it

is prone to do when people are in close proximity–there is

no recourse to recovery. Furthermore, the runtime of these

∗Video result: https://youtu.be/pW6nZXeWlGM

Figure 1. Top: Multi-person pose estimation. Body parts belong-

ing to the same person are linked. Bottom left: Part Affinity Fields

(PAFs) corresponding to the limb connecting right elbow and right

wrist. The color encodes orientation. Bottom right: A zoomed in

view of the predicted PAFs. At each pixel in the field, a 2D vector

encodes the position and orientation of the limbs.

top-down approaches is proportional to the number of peo-

ple: for each detection, a single-person pose estimator is

run, and the more people there are, the greater the computa-

tional cost. In contrast, bottom-up approaches are attractive

as they offer robustness to early commitment and have the

potential to decouple runtime complexity from the number

of people in the image. Yet, bottom-up approaches do not

directly use global contextual cues from other body parts

and other people. In practice, previous bottom-up meth-

ods [22, 11] do not retain the gains in efficiency as the fi-

nal parse requires costly global inference. For example, the

seminal work of Pishchulin et al. [22] proposed a bottom-up

approach that jointly labeled part detection candidates and

associated them to individual people. However, solving the

integer linear programming problem over a fully connected

graph is an NP-hard problem and the average processing

time is on the order of hours. Insafutdinov et al. [11] built

on [22] with stronger part detectors based on ResNet [10]

and image-dependent pairwise scores, and vastly improved

the runtime, but the method still takes several minutes per

image, with a limit on the number of part proposals. The

pairwise representations used in [11], are difficult to regress

precisely and thus a separate logistic regression is required.
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(b) Part Confidence Maps

(c) Part Affinity Fields(a) Input Image (d) Bipartite Matching (e) Parsing Results

Figure 2. Overall pipeline. Our method takes the entire image as the input for a two-branch CNN to jointly predict confidence maps for

body part detection, shown in (b), and part affinity fields for parts association, shown in (c). The parsing step performs a set of bipartite

matchings to associate body parts candidates (d). We finally assemble them into full body poses for all people in the image (e).

In this paper, we present an efficient method for multi-

person pose estimation with state-of-the-art accuracy on

multiple public benchmarks. We present the first bottom-up

representation of association scores via Part Affinity Fields

(PAFs), a set of 2D vector fields that encode the location

and orientation of limbs over the image domain. We demon-

strate that simultaneously inferring these bottom-up repre-

sentations of detection and association encode global con-

text sufficiently well to allow a greedy parse to achieve

high-quality results, at a fraction of the computational cost.

We have publically released the code for full reproducibil-

ity, presenting the first realtime system for multi-person 2D

pose detection.

2. Method

Fig. 2 illustrates the overall pipeline of our method. The

system takes, as input, a color image of size w×h (Fig. 2a)

and produces, as output, the 2D locations of anatomical key-

points for each person in the image (Fig. 2e). First, a feed-

forward network simultaneously predicts a set of 2D con-

fidence maps S of body part locations (Fig. 2b) and a set

of 2D vector fields L of part affinities, which encode the

degree of association between parts (Fig. 2c). The set S =
(S1,S2, ...,SJ) has J confidence maps, one per part, where

Sj ∈ Rw×h, j ∈ {1 . . . J}. The set L = (L1,L2, ...,LC)
has C vector fields, one per limb1, where Lc ∈ Rw×h×2,

c ∈ {1 . . . C}, each image location in Lc encodes a 2D vec-

tor (as shown in Fig. 1). Finally, the confidence maps and

the affinity fields are parsed by greedy inference (Fig. 2d)

to output the 2D keypoints for all people in the image.

2.1. Simultaneous Detection and Association

Our architecture, shown in Fig. 3, simultaneously pre-

dicts detection confidence maps and affinity fields that en-

code part-to-part association. The network is split into two

branches: the top branch, shown in beige, predicts the con-

fidence maps, and the bottom branch, shown in blue, pre-

dicts the affinity fields. Each branch is an iterative predic-

1We refer to part pairs as limbs for clarity, despite the fact that some

pairs are not human limbs (e.g., the face).
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Figure 3. Architecture of the two-branch multi-stage CNN. Each

stage in the first branch predicts confidence maps S
t, and each

stage in the second branch predicts PAFs Lt. After each stage, the

predictions from the two branches, along with the image features,

are concatenated for next stage.

tion architecture, following Wei et al. [31], which refines

the predictions over successive stages, t ∈ {1, . . . , T}, with

intermediate supervision at each stage.

The image is first analyzed by a convolutional network

(initialized by the first 10 layers of VGG-19 [26] and fine-

tuned), generating a set of feature maps F that is input to

the first stage of each branch. At the first stage, the network

produces a set of detection confidence maps S1 = ρ1(F)
and a set of part affinity fields L1 = φ1(F), where ρ1 and

φ1 are the CNNs for inference at Stage 1. In each subse-

quent stage, the predictions from both branches in the pre-

vious stage, along with the original image features F, are

concatenated and used to produce refined predictions,

St = ρt(F,St−1,Lt−1), ∀t ≥ 2, (1)

Lt = φt(F,St−1,Lt−1), ∀t ≥ 2, (2)

where ρt and φt are the CNNs for inference at Stage t.

Fig. 4 shows the refinement of the confidence maps and

affinity fields across stages. To guide the network to iter-

atively predict confidence maps of body parts in the first

branch and PAFs in the second branch, we apply two loss

functions at the end of each stage, one at each branch re-

spectively. We use an L2 loss between the estimated predic-

tions and the groundtruth maps and fields. Here, we weight

the loss functions spatially to address a practical issue that
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Stage 1 Stage 3 Stage 6

Figure 4. Confidence maps of the right wrist (first row) and PAFs

(second row) of right forearm across stages. Although there is con-

fusion between left and right body parts and limbs in early stages,

the estimates are increasingly refined through global inference in

later stages, as shown in the highlighted areas.

some datasets do not completely label all people. Specifi-

cally, the loss functions at both branches at stage t are:

f t
S =

J
∑

j=1

∑

p

W(p) · ‖St
j(p)− S∗

j (p)‖
2

2
, (3)

f t
L =

C
∑

c=1

∑

p

W(p) · ‖Lt
c(p)− L∗

c(p)‖
2

2
, (4)

where S∗
j is the groundtruth part confidence map, L∗

c is the

groundtruth part affinity vector field, W is a binary mask

with W(p) = 0 when the annotation is missing at an im-

age location p. The mask is used to avoid penalizing the

true positive predictions during training. The intermediate

supervision at each stage addresses the vanishing gradient

problem by replenishing the gradient periodically [31]. The

overall objective is

f =

T
∑

t=1

(f t
S + f t

L). (5)

2.2. Confidence Maps for Part Detection

To evaluate fS in Eq. (5) during training, we generate

the groundtruth confidence maps S∗ from the annotated 2D

keypoints. Each confidence map is a 2D representation of

the belief that a particular body part occurs at each pixel

location. Ideally, if a single person occurs in the image,

a single peak should exist in each confidence map if the

corresponding part is visible; if multiple people occur, there

should be a peak corresponding to each visible part j for

each person k.

We first generate individual confidence maps S∗
j,k for

each person k. Let xj,k ∈ R2 be the groundtruth position of

body part j for person k in the image. The value at location

p ∈ R2 in S∗
j,k is defined as,

S∗
j,k(p) = exp

(

−
||p− xj,k||

2

2

σ2

)

, (6)

ns

ns

(a) (b) (c)

Figure 5. Part association strategies. (a) The body part detection

candidates (red and blue dots) for two body part types and all

connection candidates (grey lines). (b) The connection results us-

ing the midpoint (yellow dots) representation: correct connections

(black lines) and incorrect connections (green lines) that also sat-

isfy the incidence constraint. (c) The results using PAFs (yellow

arrows). By encoding position and orientation over the support of

the limb, PAFs eliminate false associations.

where σ controls the spread of the peak. The groundtruth

confidence map to be predicted by the network is an aggre-

gation of the individual confidence maps via a max operator,

S∗
j (p) = max

k
S∗
j,k(p). (7)
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We take the maximum of

the confidence maps instead

of the average so that the

precision of close by peaks

remains distinct, as illus-

trated in the right figure. At test time, we predict confidence

maps (as shown in the first row of Fig. 4), and obtain body

part candidates by performing non-maximum suppression.

2.3. Part Affinity Fields for Part Association

Given a set of detected body parts (shown as the red and

blue points in Fig. 5a), how do we assemble them to form

the full-body poses of an unknown number of people? We

need a confidence measure of the association for each pair

of body part detections, i.e., that they belong to the same

person. One possible way to measure the association is to

detect an additional midpoint between each pair of parts

on a limb, and check for its incidence between candidate

part detections, as shown in Fig. 5b. However, when people

crowd together—as they are prone to do—these midpoints

are likely to support false associations (shown as green lines

in Fig. 5b). Such false associations arise due to two limita-

tions in the representation: (1) it encodes only the position,

and not the orientation, of each limb; (2) it reduces the re-

gion of support of a limb to a single point.

To address these limitations, we present a novel feature

representation called part affinity fields that preserves both

location and orientation information across the region of

support of the limb (as shown in Fig. 5c). The part affin-

ity is a 2D vector field for each limb, also shown in Fig. 1d:

for each pixel in the area belonging to a particular limb, a
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2D vector encodes the direction that points from one part of

the limb to the other. Each type of limb has a corresponding

affinity field joining its two associated body parts.

Consider a single limb shown in the figure below. Let

xj1,k and xj2,k be the groundtruth positions of body parts j1
and j2 from the limb c for person k in the image. If a point

p

p

v

v⊥

p
xj1,k

xj2,k

p lies on the limb, the value

at L∗
c,k(p) is a unit vector

that points from j1 to j2; for

all other points, the vector is

zero-valued.

To evaluate fL in Eq. 5 during training, we define the

groundtruth part affinity vector field, L∗
c,k, at an image point

p as

L∗
c,k(p) =

{

v if p on limb c, k

0 otherwise.
(8)

Here, v = (xj2,k − xj1,k)/||xj2,k−xj1,k||2 is the unit vec-

tor in the direction of the limb. The set of points on the limb

is defined as those within a distance threshold of the line

segment, i.e., those points p for which

0≤v · (p− xj1,k)≤ lc,k and |v⊥ · (p− xj1,k)| ≤σl,

where the limb width σl is a distance in pixels, the limb

length is lc,k = ||xj2,k − xj1,k||2, and v⊥ is a vector per-

pendicular to v.

The groundtruth part affinity field averages the affinity

fields of all people in the image,

L∗
c(p) =

1

nc(p)

∑

k

L∗
c,k(p), (9)

where nc(p) is the number of non-zero vectors at point p

across all k people (i.e., the average at pixels where limbs

of different people overlap).

During testing, we measure association between candi-

date part detections by computing the line integral over the

corresponding PAF, along the line segment connecting the

candidate part locations. In other words, we measure the

alignment of the predicted PAF with the candidate limb that

would be formed by connecting the detected body parts.

Specifically, for two candidate part locations dj1 and dj2 ,

we sample the predicted part affinity field, Lc along the line

segment to measure the confidence in their association:

E =

∫ u=1

u=0

Lc (p(u)) ·
dj2 − dj1

||dj2 − dj1 ||2
du, (10)

where p(u) interpolates the position of the two body parts

dj1 and dj2,

p(u) = (1− u)dj1 + udj2 . (11)

In practice, we approximate the integral by sampling and

summing uniformly-spaced values of u.

Part j1
Part j2
Part j3

d1j2 d2j3
z12j2j3

(a) (b) (c) (d)

Figure 6. Graph matching. (a) Original image with part detections

(b) K-partite graph (c) Tree structure (d) A set of bipartite graphs

2.4. MultiPerson Parsing using PAFs

We perform non-maximum suppression on the detection

confidence maps to obtain a discrete set of part candidate lo-

cations. For each part, we may have several candidates, due

to multiple people in the image or false positives (shown in

Fig. 6b). These part candidates define a large set of possible

limbs. We score each candidate limb using the line integral

computation on the PAF, defined in Eq. 10. The problem of

finding the optimal parse corresponds to a K-dimensional

matching problem that is known to be NP-Hard [32] (shown

in Fig. 6c). In this paper, we present a greedy relaxation that

consistently produces high-quality matches. We speculate

the reason is that the pair-wise association scores implicitly

encode global context, due to the large receptive field of the

PAF network.

Formally, we first obtain a set of body part detection

candidates DJ for multiple people, where DJ = {dm
j :

for j ∈ {1 . . . J},m ∈ {1 . . . Nj}}, with Nj the number

of candidates of part j, and dm
j ∈ R

2 is the location

of the m-th detection candidate of body part j. These

part detection candidates still need to be associated with

other parts from the same person—in other words, we need

to find the pairs of part detections that are in fact con-

nected limbs. We define a variable zmn
j1j2

∈ {0, 1} to in-

dicate whether two detection candidates dm
j1

and dn
j2

are

connected, and the goal is to find the optimal assignment

for the set of all possible connections, Z = {zmn
j1j2

:
for j1, j2 ∈ {1 . . . J},m ∈ {1 . . . Nj1}, n ∈ {1 . . . Nj2}}.

If we consider a single pair of parts j1 and j2 (e.g., neck

and right hip) for the c-th limb, finding the optimal associ-

ation reduces to a maximum weight bipartite graph match-

ing problem [32]. This case is shown in Fig. 5b. In this

graph matching problem, nodes of the graph are the body

part detection candidates Dj1 and Dj2 , and the edges are

all possible connections between pairs of detection candi-

dates. Additionally, each edge is weighted by Eq. 10—the

part affinity aggregate. A matching in a bipartite graph is a

subset of the edges chosen in such a way that no two edges

share a node. Our goal is to find a matching with maximum

weight for the chosen edges,

max
Zc

Ec = max
Zc

∑

m∈Dj1

∑

n∈Dj2

Emn · zmn
j1j2

, (12)
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s.t. ∀m ∈ Dj1 ,
∑

n∈Dj2

zmn
j1j2

≤ 1, (13)

∀n ∈ Dj2 ,
∑

m∈Dj1

zmn
j1j2

≤ 1, (14)

where Ec is the overall weight of the matching from limb

type c, Zc is the subset of Z for limb type c, Emn is the

part affinity between parts dm
j1

and dn
j2

defined in Eq. 10.

Eqs. 13 and 14 enforce no two edges share a node, i.e., no

two limbs of the same type (e.g., left forearm) share a part.

We can use the Hungarian algorithm [14] to obtain the op-

timal matching.

When it comes to finding the full body pose of multiple

people, determining Z is a K-dimensional matching prob-

lem. This problem is NP Hard [32] and many relaxations

exist. In this work, we add two relaxations to the optimiza-

tion, specialized to our domain. First, we choose a minimal

number of edges to obtain a spanning tree skeleton of hu-

man pose rather than using the complete graph, as shown in

Fig. 6c. Second, we further decompose the matching prob-

lem into a set of bipartite matching subproblems and de-

termine the matching in adjacent tree nodes independently,

as shown in Fig. 6d. We show detailed comparison results

in Section 3.1, which demonstrate that minimal greedy in-

ference well-approximate the global solution at a fraction

of the computational cost. The reason is that the relation-

ship between adjacent tree nodes is modeled explicitly by

PAFs, but internally, the relationship between nonadjacent

tree nodes is implicitly modeled by the CNN. This property

emerges because the CNN is trained with a large receptive

field, and PAFs from non-adjacent tree nodes also influence

the predicted PAF.

With these two relaxations, the optimization is decom-

posed simply as:

max
Z

E =

C
∑

c=1

max
Zc

Ec. (15)

We therefore obtain the limb connection candidates for each

limb type independently using Eqns. 12- 14. With all limb

connection candidates, we can assemble the connections

that share the same part detection candidates into full-body

poses of multiple people. Our optimization scheme over

the tree structure is orders of magnitude faster than the op-

timization over the fully connected graph [22, 11].

3. Results

We evaluate our method on two benchmarks for multi-

person pose estimation: (1) the MPII human multi-person

dataset [2] and (2) the COCO 2016 keypoints challenge

dataset [15]. These two datasets collect images in diverse

scenarios that contain many real-world challenges such as

crowding, scale variation, occlusion, and contact. Our ap-

proach set the state-of-the-art on the inaugural COCO 2016

Method Hea Sho Elb Wri Hip Kne Ank mAP s/image

Subset of 288 images as in [22]

Deepcut [22] 73.4 71.8 57.9 39.9 56.7 44.0 32.0 54.1 57995

Iqbal et al. [12] 70.0 65.2 56.4 46.1 52.7 47.9 44.5 54.7 10

DeeperCut [11] 87.9 84.0 71.9 63.9 68.8 63.8 58.1 71.2 230

Ours 93.7 91.4 81.4 72.5 77.7 73.0 68.1 79.7 0.005

Full testing set

DeeperCut [11] 78.4 72.5 60.2 51.0 57.2 52.0 45.4 59.5 485

Iqbal et al. [12] 58.4 53.9 44.5 35.0 42.2 36.7 31.1 43.1 10

Ours (one scale) 89.0 84.9 74.9 64.2 71.0 65.6 58.1 72.5 0.005

Ours 91.2 87.6 77.7 66.8 75.4 68.9 61.7 75.6 0.005

Table 1. Results on the MPII dataset. Top: Comparison result on

the testing subset. Middle: Comparison results on the whole test-

ing set. Testing without scale search is denoted as “(one scale)”.

Method Hea Sho Elb Wri Hip Kne Ank mAP s/image

Fig. 6b 91.8 90.8 80.6 69.5 78.9 71.4 63.8 78.3 362

Fig. 6c 92.2 90.8 80.2 69.2 78.5 70.7 62.6 77.6 43

Fig. 6d 92.0 90.7 80.0 69.4 78.4 70.1 62.3 77.4 0.005

Fig. 6d (sep) 92.4 90.4 80.9 70.8 79.5 73.1 66.5 79.1 0.005

Table 2. Comparison of different structures on our validation set.

keypoints challenge [1], and significantly exceeds the previ-

ous state-of-the-art result on the MPII multi-person bench-

mark. We also provide runtime analysis to quantify the effi-

ciency of the system. Fig. 10 shows some qualitative results

from our algorithm.

3.1. Results on the MPII MultiPerson Dataset

For comparison on the MPII dataset, we use the

toolkit [22] to measure mean Average Precision (mAP) of

all body parts based on the PCKh threshold. Table 1 com-

pares mAP performance between our method and other

approaches on the same subset of 288 testing images as

in [22], and the entire MPI testing set, and self-comparison

on our own validation set. Besides these measures, we com-

pare the average inference/optimization time per image in

seconds. For the 288 images subset, our method outper-

forms previous state-of-the-art bottom-up methods [11] by

8.5% mAP. Remarkably, our inference time is 6 orders of

magnitude less. We report a more detailed runtime anal-

ysis in Section 3.3. For the entire MPII testing set, our

method without scale search already outperforms previous

state-of-the-art methods by a large margin, i.e., 13% abso-

lute increase on mAP. Using a 3 scale search (×0.7, ×1 and

×1.3) further increases the performance to 75.6% mAP. The

mAP comparison with previous bottom-up approaches in-

dicate the effectiveness of our novel feature representation,

PAFs, to associate body parts. Based on the tree structure,

our greedy parsing method achieves better accuracy than a

graphcut optimization formula based on a fully connected

graph structure [22, 11].

In Table 2, we show comparison results on different

skeleton structures as shown in Fig. 6 on our validation set,

i.e., 343 images excluded from the MPII training set. We

train our model based on a fully connected graph, and com-

pare results by selecting all edges (Fig. 6b, approximately

solved by Integer Linear Programming), and minimal tree

edges (Fig. 6c, approximately solved by Integer Linear Pro-
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Figure 7. mAP curves over different PCKh threshold on MPII val-

idation set. (a) mAP curves of self-comparison experiments. (b)

mAP curves of PAFs across stages.

gramming, and Fig. 6d, solved by the greedy algorithm pre-

sented in this paper). Their similar performance shows that

it suffices to use minimal edges. We trained another model

that only learns the minimal edges to fully utilize the net-

work capacity—the method presented in this paper—that is

denoted as Fig. 6d (sep). This approach outperforms Fig. 6c

and even Fig. 6b, while maintaining efficiency. The reason

is that the much smaller number of part association chan-

nels (13 edges of a tree vs 91 edges of a graph) makes it

easier for training convergence.

Fig. 7a shows an ablation analysis on our validation

set. For the threshold of PCKh-0.5, the result using PAFs

outperforms the results using the midpoint representation,

specifically, it is 2.9% higher than one-midpoint and 2.3%
higher than two intermediate points. The PAFs, which en-

codes both position and orientation information of human

limbs, is better able to distinguish the common cross-over

cases, e.g., overlapping arms. Training with masks of un-

labeled persons further improves the performance by 2.3%
because it avoids penalizing the true positive prediction in

the loss during training. If we use the ground-truth keypoint

location with our parsing algorithm, we can obtain a mAP

of 88.3%. In Fig. 7a, the mAP of our parsing with GT detec-

tion is constant across different PCKh thresholds due to no

localization error. Using GT connection with our keypoint

detection achieves a mAP of 81.6%. It is notable that our

parsing algorithm based on PAFs achieves a similar mAP

as using GT connections (79.4% vs 81.6%). This indicates

parsing based on PAFs is quite robust in associating correct

part detections. Fig. 7b shows a comparison of performance

across stages. The mAP increases monotonically with the

iterative refinement framework. Fig. 4 shows the qualitative

improvement of the predictions over stages.

3.2. Results on the COCO Keypoints Challenge

The COCO training set consists of over 100K person in-

stances labeled with over 1 million total keypoints (i.e. body

parts). The testing set contains “test-challenge”, “test-dev”

and “test-standard” subsets, which have roughly 20K im-

ages each. The COCO evaluation defines the object key-

Team AP AP50 AP75 APM APL

Test-challenge

Ours 60.5 83.4 66.4 55.1 68.1

G-RMI [19] 59.8 81.0 65.1 56.7 66.7

DL-61 53.3 75.1 48.5 55.5 54.8

R4D 49.7 74.3 54.5 45.6 55.6

Test-dev

Ours 61.8 84.9 67.5 57.1 68.2

G-RMI [19] 60.5 82.2 66.2 57.6 66.6

DL-61 54.4 75.3 50.9 58.3 54.3

R4D 51.4 75.0 55.9 47.4 56.7

Table 3. Results on the COCO 2016 keypoint challenge. Top: re-

sults on test-challenge. Bottom: results on test-dev (top methods

only). AP50 is for OKS = 0.5, APL is for large scale persons.

point similarity (OKS) and uses the mean average preci-

sion (AP) over 10 OKS thresholds as main competition met-

ric [1]. The OKS plays the same role as the IoU in object

detection. It is calculated from scale of the person and the

distance between predicted points and GT points. Table 3

shows results from top teams in the challenge. It is notewor-

thy that our method has lower accuracy than the top-down

methods on people of smaller scales (APM ). The reason is

that our method has to deal with a much larger scale range

spanned by all people in the image in one shot. In con-

trast, top-down methods can rescale the patch of each de-

tected area to a larger size and thus suffer less degradation

at smaller scales.

Method AP AP50 AP75 APM APL

GT Bbox + CPM [11] 62.7 86.0 69.3 58.5 70.6

SSD [16] + CPM [11] 52.7 71.1 57.2 47.0 64.2

Ours - 6 stages 58.4 81.5 62.6 54.4 65.1

+ CPM refinement 61.0 84.9 67.5 56.3 69.3

Table 4. Self-comparison experiments on the COCO validation set.

In Table 4, we report self-comparisons on a subset of

the COCO validation set, i.e., 1160 images that are ran-

domly selected. If we use the GT bounding box and a sin-

gle person CPM [31], we can achieve a upper-bound for

the top-down approach using CPM, which is 62.7% AP.

If we use the state-of-the-art object detector, Single Shot

MultiBox Detector (SSD)[16], the performance drops 10%.

This comparison indicates the performance of top-down ap-

proaches rely heavily on the person detector. In contrast,

our bottom-up method achieves 58.4% AP. If we refine the

results of our method by applying a single person CPM on

each rescaled region of the estimated persons parsed by our

method, we gain an 2.6% overall AP increase. Note that

we only update estimations on predictions that both meth-

ods agree well enough, resulting in improved precision and

recall. We expect a larger scale search can further improve

the performance of our bottom-up method. Fig. 8 shows a

breakdown of errors of our method on the COCO valida-

tion set. Most of the false positives come from imprecise

localization, other than background confusion. This indi-

cates there is more improvement space in capturing spatial

dependencies than in recognizing body parts appearances.

7296



Number of people

0 5 10 15 20

R
u

n
ti

m
e 

(m
s)

0

100

200

300

400

500

Top-down

Bottom-up

CNN processing

Parsing

recall

0 0.2 0.4 0.6 0.8 1

p
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1

[.626] C75

[.826] C50

[.918] Loc

[.931] BG

[1.00] FN

recall

0 0.2 0.4 0.6 0.8 1

p
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1

[.692] C75

[.862] C50

[.919] Loc

[.950] BG

[1.00] FN

recall

0 0.2 0.4 0.6 0.8 1

p
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1

[.588] C75

[.811] C50

[.929] Loc

[.931] BG

[1.00] FN

(a) PR curve - all people (b) PR curve - large scale person (c) PR curve - medium scale person (d) Runtime analysis

Figure 8. AP performance on COCO validation set in (a), (b), and (c) for Section 3.2, and runtime analysis in (d) for Section 3.3.

(a) (c) (d) (e) (f)(b)

Figure 9. Common failure cases: (a) rare pose or appearance, (b) missing or false parts detection, (c) overlapping parts, i.e., part detections

shared by two persons, (d) wrong connection associating parts from two persons, (e-f): false positives on statues or animals.

3.3. Runtime Analysis

To analyze the runtime performance of our method, we

collect videos with a varying number of people. The origi-

nal frame size is 1080×1920, which we resize to 368×654
during testing to fit in GPU memory. The runtime anal-

ysis is performed on a laptop with one NVIDIA GeForce

GTX-1080 GPU. In Fig. 8d, we use person detection and

single-person CPM as a top-down comparison, where the

runtime is roughly proportional to the number of people in

the image. In contrast, the runtime of our bottom-up ap-

proach increases relatively slowly with the increasing num-

ber of people. The runtime consists of two major parts: (1)

CNN processing time whose runtime complexity is O(1),
constant with varying number of people; (2) Multi-person

parsing time whose runtime complexity is O(n2), where n
represents the number of people. However, the parsing time

does not significantly influence the overall runtime because

it is two orders of magnitude less than the CNN process-

ing time, e.g., for 9 people, the parsing takes 0.58 ms while

CNN takes 99.6 ms. Our method has achieved the speed of

8.8 fps for a video with 19 people.

4. Discussion

Moments of social significance, more than anything

else, compel people to produce photographs and videos.

Our photo collections tend to capture moments of personal

significance: birthdays, weddings, vacations, pilgrimages,

sports events, graduations, family portraits, and so on. To

enable machines to interpret the significance of such pho-

tographs, they need to have an understanding of people in

images. Machines, endowed with such perception in real-

time, would be able to react to and even participate in the

individual and social behavior of people.

In this paper, we consider a critical component of such

perception: realtime algorithms to detect the 2D pose of

multiple people in images. We present an explicit nonpara-

metric representation of the keypoints association that en-

codes both position and orientation of human limbs. Sec-

ond, we design an architecture for jointly learning parts de-

tection and parts association. Third, we demonstrate that

a greedy parsing algorithm is sufficient to produce high-

quality parses of body poses, that maintains efficiency even

as the number of people in the image increases. We show

representative failure cases in Fig. 9. We have publicly re-

leased our code (including the trained models) to ensure full

reproducibility and to encourage future research in the area.
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