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Abstract

We present an approach to efficiently detect the 2D pose

of multiple people in an image. The approach uses a non-

parametric representation, which we refer to as Part Affinity

Fields (PAFs), to learn to associate body parts with individ-

uals in the image. The architecture encodes global con-

text, allowing a greedy bottom-up parsing step that main-

tains high accuracy while achieving realtime performance,

irrespective of the number of people in the image. The ar-

chitecture is designed to jointly learn part locations and

their association via two branches of the same sequential

prediction process. Our method placed first in the inaugu-

ral COCO 2016 keypoints challenge, and significantly ex-

ceeds the previous state-of-the-art result on the MPII Multi-

Person benchmark, both in performance and efficiency.

1. Introduction

Human 2D pose estimation—the problem of localizing

anatomical keypoints or “parts”—has largely focused on

finding body parts of individuals [8, 4, 3, 21, 33, 13, 25, 31,

6, 24]. Inferring the pose of multiple people in images, es-

pecially socially engaged individuals, presents a unique set

of challenges. First, each image may contain an unknown

number of people that can occur at any position or scale.

Second, interactions between people induce complex spa-

tial interference, due to contact, occlusion, and limb articu-

lations, making association of parts difficult. Third, runtime

complexity tends to grow with the number of people in the

image, making realtime performance a challenge.

A common approach [23, 9, 27, 12, 19] is to employ

a person detector and perform single-person pose estima-

tion for each detection. These top-down approaches di-

rectly leverage existing techniques for single-person pose

estimation [17, 31, 18, 28, 29, 7, 30, 5, 6, 20], but suffer

from early commitment: if the person detector fails–as it

is prone to do when people are in close proximity–there is

no recourse to recovery. Furthermore, the runtime of these

∗Video result: https://youtu.be/pW6nZXeWlGM

Figure 1. Top: Multi-person pose estimation. Body parts belong-

ing to the same person are linked. Bottom left: Part Affinity Fields

(PAFs) corresponding to the limb connecting right elbow and right

wrist. The color encodes orientation. Bottom right: A zoomed in

view of the predicted PAFs. At each pixel in the field, a 2D vector

encodes the position and orientation of the limbs.

top-down approaches is proportional to the number of peo-

ple: for each detection, a single-person pose estimator is

run, and the more people there are, the greater the computa-

tional cost. In contrast, bottom-up approaches are attractive

as they offer robustness to early commitment and have the

potential to decouple runtime complexity from the number

of people in the image. Yet, bottom-up approaches do not

directly use global contextual cues from other body parts

and other people. In practice, previous bottom-up meth-

ods [22, 11] do not retain the gains in efficiency as the fi-

nal parse requires costly global inference. For example, the

seminal work of Pishchulin et al. [22] proposed a bottom-up

approach that jointly labeled part detection candidates and

associated them to individual people. However, solving the

integer linear programming problem over a fully connected

graph is an NP-hard problem and the average processing

time is on the order of hours. Insafutdinov et al. [11] built

on [22] with stronger part detectors based on ResNet [10]

and image-dependent pairwise scores, and vastly improved

the runtime, but the method still takes several minutes per

image, with a limit on the number of part proposals. The

pairwise representations used in [11], are difficult to regress

precisely and thus a separate logistic regression is required.
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(b) Part Confidence Maps

(c) Part Affinity Fields(a) Input Image (d) Bipartite Matching (e) Parsing Results

Figure 2. Overall pipeline. Our method takes the entire image as the input for a two-branch CNN to jointly predict confidence maps for

body part detection, shown in (b), and part affinity fields for parts association, shown in (c). The parsing step performs a set of bipartite

matchings to associate body parts candidates (d). We finally assemble them into full body poses for all people in the image (e).

In this paper, we present an efficient method for multi-

person pose estimation with state-of-the-art accuracy on

multiple public benchmarks. We present the first bottom-up

representation of association scores via Part Affinity Fields

(PAFs), a set of 2D vector fields that encode the location

and orientation of limbs over the image domain. We demon-

strate that simultaneously inferring these bottom-up repre-

sentations of detection and association encode global con-

text sufficiently well to allow a greedy parse to achieve

high-quality results, at a fraction of the computational cost.

We have publically released the code for full reproducibil-

ity, presenting the first realtime system for multi-person 2D

pose detection.

2. Method

Fig. 2 illustrates the overall pipeline of our method. The

system takes, as input, a color image of size w×h (Fig. 2a)

and produces, as output, the 2D locations of anatomical key-

points for each person in the image (Fig. 2e). First, a feed-

forward network simultaneously predicts a set of 2D con-

fidence maps S of body part locations (Fig. 2b) and a set

of 2D vector fields L of part affinities, which encode the

degree of association between parts (Fig. 2c). The set S =
(S1,S2, ...,SJ) has J confidence maps, one per part, where

Sj ∈ Rw×h, j ∈ {1 . . . J}. The set L = (L1,L2, ...,LC)
has C vector fields, one per limb1, where Lc ∈ Rw×h×2,

c ∈ {1 . . . C}, each image location in Lc encodes a 2D vec-

tor (as shown in Fig. 1). Finally, the confidence maps and

the affinity fields are parsed by greedy inference (Fig. 2d)

to output the 2D keypoints for all people in the image.

2.1. Simultaneous Detection and Association

Our architecture, shown in Fig. 3, simultaneously pre-

dicts detection confidence maps and affinity fields that en-

code part-to-part association. The network is split into two

branches: the top branch, shown in beige, predicts the con-

fidence maps, and the bottom branch, shown in blue, pre-

dicts the affinity fields. Each branch is an iterative predic-

1We refer to part pairs as limbs for clarity, despite the fact that some

pairs are not human limbs (e.g., the face).
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Figure 3. Architecture of the two-branch multi-stage CNN. Each

stage in the first branch predicts confidence maps S
t, and each

stage in the second branch predicts PAFs Lt. After each stage, the

predictions from the two branches, along with the image features,

are concatenated for next stage.

tion architecture, following Wei et al. [31], which refines

the predictions over successive stages, t ∈ {1, . . . , T}, with

intermediate supervision at each stage.

The image is first analyzed by a convolutional network

(initialized by the first 10 layers of VGG-19 [26] and fine-

tuned), generating a set of feature maps F that is input to

the first stage of each branch. At the first stage, the network

produces a set of detection confidence maps S1 = ρ1(F)
and a set of part affinity fields L1 = φ1(F), where ρ1 and

φ1 are the CNNs for inference at Stage 1. In each subse-

quent stage, the predictions from both branches in the pre-

vious stage, along with the original image features F, are

concatenated and used to produce refined predictions,

St = ρt(F,St−1,Lt−1), ∀t ≥ 2, (1)

Lt = φt(F,St−1,Lt−1), ∀t ≥ 2, (2)

where ρt and φt are the CNNs for inference at Stage t.

Fig. 4 shows the refinement of the confidence maps and

affinity fields across stages. To guide the network to iter-

atively predict confidence maps of body parts in the first

branch and PAFs in the second branch, we apply two loss

functions at the end of each stage, one at each branch re-

spectively. We use an L2 loss between the estimated predic-

tions and the groundtruth maps and fields. Here, we weight

the loss functions spatially to address a practical issue that
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