
Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset

João Carreira†

joaoluis@google.com

Andrew Zisserman†,∗

zisserman@google.com

†DeepMind ∗Department of Engineering Science, University of Oxford

Abstract

The paucity of videos in current action classification

datasets (UCF-101 and HMDB-51) has made it difficult

to identify good video architectures, as most methods ob-

tain similar performance on existing small-scale bench-

marks. This paper re-evaluates state-of-the-art architec-

tures in light of the new Kinetics Human Action Video

dataset. Kinetics has two orders of magnitude more data,

with 400 human action classes and over 400 clips per

class, and is collected from realistic, challenging YouTube

videos. We provide an analysis on how current architectures

fare on the task of action classification on this dataset and

how much performance improves on the smaller benchmark

datasets after pre-training on Kinetics.

We also introduce a new Two-Stream Inflated 3D Con-

vNet (I3D) that is based on 2D ConvNet inflation: fil-

ters and pooling kernels of very deep image classifica-

tion ConvNets are expanded into 3D, making it possible

to learn seamless spatio-temporal feature extractors from

video while leveraging successful ImageNet architecture

designs and even their parameters. We show that, after

pre-training on Kinetics, I3D models considerably improve

upon the state-of-the-art in action classification, reaching

80.2% on HMDB-51 and 97.9% on UCF-101.

1. Introduction

One of the unexpected benefits of the ImageNet chal-

lenge has been the discovery that deep architectures trained

on the 1000 images of 1000 categories, can be used for other

tasks and in other domains. One of the early examples of

this was using the fc7 features from a network trained on

ImageNet for the PASCAL VOC classification and detec-

tion challenge [10]. Furthermore, improvements in the deep

architecture, changing from AlexNet to VGG-16, imme-

diately fed through to commensurate improvements in the

PASCAL VOC performance [23]. Since then, there have

been numerous examples of ImageNet trained architectures

warm starting or sufficing entirely for other tasks, e.g. seg-

Figure 1. A still from ‘Quo Vadis’ (1951). Where is this going?

Are these actors about to kiss each other, or have they just done

so? More importantly, where is action recognition going? Actions

can be ambiguous in individual frames, but the limitations of exist-

ing action recognition datasets has meant that the best-performing

video architectures do not depart significantly from single-image

analysis, where they rely on powerful image classifiers trained on

ImageNet. In this paper we demonstrate that video models are

best pre-trained on videos and report significant improvements by

using spatio-temporal classifiers pre-trained on Kinetics, a freshly

collected, large, challenging human action video dataset.

mentation, depth prediction, pose estimation, action classi-

fication.

In the video domain, it is an open question whether train-

ing an action classification network on a sufficiently large

dataset, will give a similar boost in performance when ap-

plied to a different temporal task or dataset. The chal-

lenges of building video datasets has meant that most popu-

lar benchmarks for action recognition are small, having on

the order of 10k videos.

In this paper we aim to provide an answer to this question

using the new Kinetics Human Action Video Dataset [16],

which is two orders of magnitude larger than previous

datasets, HMDB-51 [18] and UCF-101 [27]. Kinetics has
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400 human action classes with more than 400 examples for

each class, each from a unique YouTube video.

Our experimental strategy is to reimplement a number of

representative neural network architectures from the litera-

ture, and then analyze their transfer behavior by first pre-

training each one on Kinetics and then fine-tuning each on

HMDB-51 and UCF-101. The results suggest that there is

always a boost in performance by pre-training, but the ex-

tent of the boost varies significantly with the type of archi-

tecture. Based on these findings, we introduce a new model

that has the capacity to take advantage of pre-training on

Kinetics, and can achieves a high performance. The model

termed a “Two-Stream Inflated 3D ConvNets” (I3D), builds

upon state-of-the-art image classification architectures, but

inflates their filters and pooling kernels (and optionally their

parameters) into 3D, leading to very deep, naturally spatio-

temporal classifiers. An I3D model based on Inception-

v1 [13] obtains performance far exceeding the state-of-the-

art, after pre-training on Kinetics.

In our model comparisons, we did not consider more

classic approaches such as bag-of-visual-words representa-

tions [6, 19, 21, 30]. However, the Kinetics dataset is pub-

licly available, so others can use it for such comparisons.

The next section outlines the set of implemented action

classification models. Section 3 gives an overview of the

Kinetics dataset. Section 4 reports the performance of mod-

els on previous benchmarks and on Kinetics, and section 5

studies how well the features learned on Kinetics transfer to

different datasets. The paper concludes with a discussion of

the results.

2. Action Classification Architectures

While the development of image representation architec-

tures has matured quickly in recent years, there is still no

clear front running architecture for video. Some of the ma-

jor differences in current video architectures are whether the

convolutional and layers operators use 2D (image-based) or

3D (video-based) kernels; whether the input to the network

is just an RGB video or it also includes pre-computed opti-

cal flow; and, in the case of 2D ConvNets, how information

is propagated across frames, which can be done either us-

ing temporally-recurrent layers such as LSTMs, or feature

aggregation over time.

In this paper we compare and study a subset of models

that span most of this space. Among 2D ConvNet meth-

ods, we consider ConvNets with LSTMs on top [5, 34], and

two-stream networks with two different types of stream fu-

sion [8, 25]. We also consider a 3D ConvNet [14, 28]: C3D

[29].

As the main technical contribution, we introduce Two-

Stream Inflated 3D ConvNets (I3D). Due to the high-

dimensionality of their parameterization and the lack of la-

beled video data, previous 3D ConvNets have been rela-

tively shallow (up to 8 layers). Here we make the obser-

vation that very deep image classification networks, such

as Inception [13], VGG-16 [26] and ResNet [12], can be

trivially inflated into spatio-temporal feature extractors, and

that their pre-trained weights provide a valuable initializa-

tion. We also find that a two-stream configuration is still

useful.

A graphical overview of the five types of architectures

we evaluate is shown in figure 2 and the specification of

their temporal interfaces is given in table 1.

Many of these models (all but C3D) have an Imagenet

pre-trained model as a subcomponent. Our experimen-

tal strategy assumes a common ImageNet pre-trained im-

age classification architecture as back bone, and for this

we chose Inception-v1 with batch normalization [13], and

morph it in different ways. The expectation is that with this

back bone in common, we will be able to tease apart those

changes that benefit action classification the most.

2.1. The Old I: ConvNet+LSTM

The high performance of image classification networks

makes it appealing to try to reuse them with as minimal

change as possible for video. This can be achieved by using

them to extract features independently from each frame then

pooling their predictions across the whole video [15]. This

is in the spirit of bag of words image modeling approaches

[19, 21, 30]; but while convenient in practice, it has the issue

of entirely ignoring temporal structure (e.g. models can’t

potentially distinguish opening from closing a door).

In theory, a more satisfying approach is to add a recur-

rent layer to the model [5, 34], such as an LSTM, which can

encode state, and capture temporal ordering and long range

dependencies. We position an LSTM layer with batch nor-

malization (as proposed by Cooijmans et al. [4]) after the

last average pooling layer of Inception-V1, with 512 hid-

den units. A fully connected layer is added on top for the

classifier.

The model is trained using cross-entropy losses on the

outputs at all time steps. During testing we consider only

the output on the last frame. Input video frames are sub-

sampled by keeping one out of every 5, from an original 25

frames-per-second stream. The full temporal footprint of all

models is given in table 1.

2.2. The Old II: 3D ConvNets

3D ConvNets seem like a natural approach to video mod-

eling, and are just like standard convolutional networks, but

with spatio-temporal filters. They have been explored sev-

eral times, previously [14, 28, 29]. They have a very im-

portant characteristic: they directly create hierarchical rep-

resentations of spatio-temporal data. One issue with these

models is that they have many more parameters than 2D

ConvNets because of the additional kernel dimension, and
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Figure 2. Video architectures considered in this paper. K stands for the total number of frames in a video, whereas N stands for a subset of

neighboring frames of the video.

this makes them harder to train. Also, they seem to preclude

the benefits of ImageNet pre-training, and consequently

previous work has defined relatively shallow custom archi-

tectures and trained them from scratch [14, 15, 28, 29]. Re-

sults on benchmarks have shown promise but have not been

competitive with state-of-the-art, making this type of mod-

els a good candidate for evaluation on our larger dataset.

For this paper we implemented a small variation of C3D

[29], which has 8 convolutional layers, 5 pooling layers and

2 fully connected layers at the top. The inputs to the model

are short 16-frame clips with 112 × 112-pixel crops as in

the original implementation. Differently from [29] we used

batch normalization after all convolutional and fully con-

nected layers. Another difference to the original model is

in the first pooling layer, we use a temporal stride of 2 in-

stead of 1, which reduces the memory footprint and allows

for bigger batches – this was important for batch normal-

ization (especially after the fully connected layers, where

there is no weight tying). Using this stride we were able to

train with 15 videos per batch per GPU using standard K40

GPUs.

2.3. The Old III: Two­Stream Networks

LSTMs on features from the last layers of ConvNets can

model high-level variation, but may not be able to capture

fine low-level motion which is critical in many cases. It is

also expensive to train as it requires unrolling the network

through multiple frames for backpropagation-through-time.

A different, very practical approach, introduced by Si-

monyan and Zisserman [25], models short temporal snap-

shots of videos by averaging the predictions from a single

RGB frame and a stack of 10 externally computed optical

flow frames, after passing them through two replicas of an

ImageNet pre-trained ConvNet. The flow stream has an

adapted input convolutional layer with twice as many input

channels as flow frames (because flow has two channels,

horizontal and vertical), and at test time multiple snapshots

are sampled from the video and the action prediction is av-

eraged. This was shown to get very high performance on

existing benchmarks, while being very efficient to train and

test.

A recent extension [8] fuses the spatial and flow streams

after the last network convolutional layer, showing some

improvement on HMDB while requiring less test time aug-

mentation (snapshot sampling). Our implementation fol-

lows this paper approximately using Inception-V1. The in-

puts to the network are 5 consecutive RGB frames sam-

pled 10 frames apart, as well as the corresponding optical

flow snippets. The spatial and motion features before the

last average pooling layer of Inception-V1 (5 × 7 × 7 fea-

ture grids, corresponding to time, x and y dimensions) are

passed through a 3× 3× 3 3D convolutional layer with 512

output channels, followed by a 3 × 3 × 3 3D max-pooling

layer and through a final fully connected layer. The weights

of these new layers are initialized with Gaussian noise.

Both models, the original two-stream and the 3D fused

version, are trained end-to-end (including the two-stream

averaging process in the original model).

2.4. The New: Two­Stream Inflated 3D ConvNets

With this architecture, we show how 3D ConvNets can

benefit from ImageNet 2D ConvNet designs and, option-

ally, from their learned parameters. We also adopt a two-

stream configuration here – it will be shown in section 4

6301



that while 3D ConvNets can directly learn about temporal

patterns from an RGB stream, their performance can still be

greatly improved by including an optical-flow stream.

Inflating 2D ConvNets into 3D. A number of very success-

ful image classification architectures have been developed

over the years, in part through painstaking trial and error.

Instead of repeating the process for spatio-temporal models

we propose to simply convert successful image (2D) clas-

sification models into 3D ConvNets. This can be done by

starting with a 2D architecture, and inflating all the filters

and pooling kernels – endowing them with an additional

temporal dimension. Filters are typically square and we just

make them cubic – N ×N filters become N ×N ×N .

Bootstrapping 3D filters from 2D Filters. Besides the ar-

chitecture, one may also want to bootstrap parameters from

the pre-trained ImageNet models. To do this, we observe

that an image can be converted into a (boring) video by

copying it repeatedly into a video sequence. The 3D models

can then be implicitly pre-trained on ImageNet, by satisfy-

ing what we call the boring-video fixed point: the pooled

activations on a boring video should be the same as on the

original single-image input. This can be achieved, thanks to

linearity, by repeating the weights of the 2D filters N times

along the time dimension, and rescaling them by dividing

by N . This ensures that the convolutional filter response

is the same. Since the outputs of convolutional layers for

boring videos are constant in time, the outputs of pointwise

non-linearity layers and average and max-pooling layers are

the same as for the 2D case, and hence the overall network

response respects the boring-video fixed point.

Pacing receptive field growth in space, time and net-

work depth. The boring video fixed-point leaves ample

freedom on how to inflate pooling operators along the time

dimension and on how to set convolutional/pooling tempo-

ral stride – these are the primary factors that shape the size

of feature receptive fields. Virtually all image models treat

the two spatial dimensions (horizontal and vertical) equally

– pooling kernels and strides are the same. This is quite

natural and means that features deeper in the networks are

equally affected by image locations increasingly far away

in both dimensions. A symmetric receptive field is however

not necessarily optimal when also considering time – this

should depend on frame rate and image dimensions. If it

grows too quickly in time relative to space, it may conflate

edges from different objects breaking early feature detec-

tion, while if it grows too slowly, it may not capture scene

dynamics well.

In Inception-v1, the first convolutional layer has stride 2,

then there are four max-pooling layers with stride 2 and a

7 × 7 average-pooling layer preceding the last linear clas-

sification layer, besides the max-pooling layers in parallel

Inception branches. In our experiments the input videos

were processed at 25 frames per second; we found it help-

ful to not perform temporal pooling in the first two max-

pooling layers (by using 1 × 3 × 3 kernels and stride 1

in time), while having symmetric kernels and strides in all

other max-pooling layers. The final average pooling layer

uses a 2×7×7 kernel. The overall architecture is shown in

fig. 3. We train the model using 64-frame snippets and test

using the whole videos, averaging predictions temporally.

Two 3D Streams. While a 3D ConvNet should be able to

learn motion features from RGB inputs directly, it still per-

forms pure feedforward computation, whereas optical flow

algorithms are in some sense recurrent (e.g. they perform it-

erative optimization for the flow fields). Perhaps because of

this lack of recurrence, experimentally we still found it valu-

able to have a two-stream configuration – shown in fig. 2,

e) – with one I3D network trained on RGB inputs, and an-

other on flow inputs which carry optimized, smooth flow

information. We trained the two networks separately and

averaged their predictions at test time.

2.5. Implementation Details

All models but the C3D-like 3D ConvNet use ImageNet-

pretrained Inception-V1 [13] as base network. For all ar-

chitectures we follow each convolutional layer by a batch

normalization [13] layer and a ReLU activation function,

except for the last convolutional layers which produce the

class scores for each network.

Training on videos used standard SGD with momen-

tum set to 0.9 in all cases, with synchronous paralleliza-

tion across 32 GPUs for all models except the 3D ConvNets

which receive a large number of input frames and hence re-

quire more GPUs to form large batches – we used 64 GPUs

for these. We trained models on miniKinetics for up to 35k

steps, and for 110k steps on Kinetics, with a 10x reduction

of learning rate when validation loss saturated. We tuned

the learning rate hyperparameter on the validation set of

miniKinetics. Models were trained for up to 5k steps on

UCF-101 and HMDB-51 using a similar learning rate adap-

tation procedure as for Kinetics but using just 16 GPUs. All

the models were implemented in TensorFlow [1].

Data augmentation is known to be of crucial importance

for the performance of deep architectures. During train-

ing we used random cropping both spatially – resizing the

smaller video side to 256 pixels, then randomly cropping a

224 × 224 patch – and temporally, when picking the start-

ing frame among those early enough to guarantee a desired

number of frames. For shorter videos, we looped the video

as many times as necessary to satisfy each model’s input

interface. We also applied random left-right flipping con-

sistently for each video during training. During test time

the models are applied convolutionally over the whole video
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Figure 3. The Inflated Inception-V1 architecture (left) and its detailed inception submodule (right). The strides of convolution and pooling

operators are 1 where not specified, and batch normalization layers, ReLu’s and the softmax at the end are not shown. The theoretical

sizes of receptive field sizes for a few layers in the network are provided in the format “time,x,y” – the units are frames and pixels. The

predictions are obtained convolutionally in time and averaged.

Method #Params
Training Testing

# Input Frames Temporal Footprint # Input Frames Temporal Footprint

ConvNet+LSTM 9M 25 rgb 5s 50 rgb 10s

3D-ConvNet 79M 16 rgb 0.64s 240 rgb 9.6s

Two-Stream 12M 1 rgb, 10 flow 0.4s 25 rgb, 250 flow 10s

3D-Fused 39M 5 rgb, 50 flow 2s 25 rgb, 250 flow 10s

Two-Stream I3D 25M 64 rgb, 64 flow 2.56s 250 rgb, 250 flow 10s

Table 1. Number of parameters and temporal input sizes of the models.

taking 224 × 224 center crops, and the predictions are av-

eraged. We briefly tried spatially-convolutional testing on

the 256 × 256 videos, but did not observe improvement.

Better performance could be obtained by also considering

left-right flipped videos at test time and by adding addi-

tional augmentation, such as photometric, during training.

We leave this to future work.

We computed optical flow with a TV-L1 algorithm [35].

3. The Kinetics Human Action Video Dataset

The Kinetics dataset is focused on human actions (rather

than activities or events). The list of action classes covers:

Person Actions (singular), e.g. drawing, drinking, laugh-

ing, punching; Person-Person Actions, e.g. hugging, kiss-

ing, shaking hands; and, Person-Object Actions, e.g. open-

ing presents, mowing lawn, washing dishes. Some actions

are fine grained and require temporal reasoning to distin-

guish, for example different types of swimming. Other ac-

tions require more emphasis on the object to distinguish, for

example playing different types of wind instruments.

The dataset has 400 human action classes, with 400 or

more clips for each class, each from a unique video. The

clips last around 10s, and there are no untrimmed videos.

The test set consists of 100 clips for each class. A full de-

scription of the dataset and how it was built is given in [16].

For most of the experiments in this paper we use a

smaller dataset than the full Kinetics, called miniKinetics.

This is an early version of the dataset having only 213

classes with a total of 120k clips across three splits, one

for training with 150–1000 clips per class, one for valida-

tion with 25 clips per class and one for testing with 75 clips

per class. MiniKinetics enabled faster experimentation, and

was available before the full Kinetics dataset.

4. Experimental Comparison of Architectures

In this section we compare the performance of the five ar-

chitectures described in section 2 whilst varying the dataset

used for training and testing.
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UCF-101 HMDB-51 miniKinetics

Architecture RGB Flow RGB + Flow RGB Flow RGB + Flow RGB Flow RGB + Flow

(a) LSTM 81.0 – – 36.0 – – 69.9 – –

(b) 3D-ConvNet 51.6 – – 24.3 – – 60.0 – –

(c) Two-Stream 83.6 85.6 91.2 43.2 56.3 58.3 70.1 58.4 72.9

(d) 3D-Fused 83.2 85.8 89.3 49.2 55.5 56.8 71.4 61.0 74.0

(e) Two-Stream I3D 84.5 90.6 93.4 49.8 61.9 66.4 74.1 69.6 78.7

Table 2. Architecture comparison: (left) training and testing on split 1 of UCF-101; (middle) training and testing on split 1 of HMDB-51;

(right) training and testing on miniKinetics. All models are based on Imagenet pre-trained Inception-v1, except 3D-ConvNet, a C3D-

like [29] model which has a custom architecture and was trained here from scratch. Note that the Two-Stream architecture numbers on

individual RGB and Flow streams can be interpreted as a simple baseline which applies a ConvNet independently on 25 uniformly sampled

frames then averages the predictions.

Table 2 shows the classification accuracy when training

and testing on either UCF-101, HMDB-51 or miniKinetics.

We test on the split 1 test sets of UCF-101 and HMDB-51

and on the held-out test set of miniKinetics. There are sev-

eral noteworthy observations. First, our new I3D models

do best in all datasets, with either RGB, flow, or RGB+flow

modalities. This is interesting, given its very large num-

ber of parameters and that UCF-101 and HMDB-51 are so

small, and shows that the benefits of ImageNet pre-training

can extend to 3D ConvNets.

Second, the performance of all models is far lower on

miniKinetics than on UCF-101, an indication of the differ-

ent levels of difficulty of the two datasets. It is however

higher than on HMDB-51; this may be in part due to lack

of training data in HMDB-51 but also because this dataset

was purposefully built to be hard: many clips have different

actions in the exact same scene (e.g. “drawing sword” ex-

amples are taken from same videos as “sword” and “sword

exercise”). Third, the ranking of the different architectures

is mostly consistent. Fourth, the LSTM and 3D-ConvNet

models are much more competitive on miniKinetics than on

the smaller datasets; these models seem quite data-hungry.

Additionally, two-stream architectures exhibit superior

performance on all datasets, but the relative value of RGB

and flow differs significantly between miniKinetics and the

other datasets. The contribution from flow alone, is slightly

higher than that of RGB on UCF-101, much higher on

HMDB-51, and substantially lower on miniKinetics. Visual

inspection of the datasets suggests that Kinetics has much

more camera motion which may make the job of the motion

stream harder. The I3D model seems able to get more out

of the flow stream than the other models, however, which

can probably be explained by its much longer temporal re-

ceptive field (64 frames vs 10 during training) and more

integrated temporal feature extraction machinery. While it

seems plausible that the RGB stream has more discrimina-

tive information – we often struggled with our own eyes to

discern actions from flow alone in Kinetics, and this was

rarely the case from RGB – there may be opportunities for

future research on integrating some form of motion stabi-

lization into these architectures.

5. Experimental Evaluation of Features

In this section we investigate the generalizability of

the networks trained on Kinetics. We consider two

measures of this: first, we freeze the network weights

and use the network to produce features for the (un-

seen) videos of the UCF-101/HMDB-51 datasets. We

then train multi-way soft-max classifiers for the classes of

UCF-101/HMDB-51 (using their training data), and eval-

uate on their test sets; Second, we fine-tune each net-

work for the UCF-101/HMDB-51 classes (using the UCF-

101/HMDB-51 training data), and again evaluate on the

UCF-101/HMDB-51 test sets.

The results are given in table 3. The clear outcome is

that all architectures benefit from pre-training on the ad-

ditional video data of miniKinetics, but some benefit sig-

nificantly more than the others – notably the I3D-ConvNet

and 3D-ConvNet (although the latter starting from a much

lower base). Training just the last layers of the models af-

ter pretraining in miniKinetics (Fixed) also leads to much

better performance than directly training on UCF-101 and

HMDB-51 for I3D models.

One explanation for the significant better transferability

of features of I3D models is their high temporal resolution

– they are trained on 64-frame video snippets at 25 frames

per second and process all video frames at test time, which

makes it possible for them to capture fine-grained tempo-

ral structure of actions. Stated differently, methods with

sparser video inputs may benefit less from training on this

large video dataset because, from their perspective, videos

do not differ as much from the images in ImageNet. The

difference over the C3D-like model can be explained by our

I3D models being much deeper, while having much fewer

parameters, by leveraging an ImageNet warm-start, by be-

ing trained on 4× longer videos, and by operating on 2×

6304



Figure 4. All 64 conv1 filters of each Inflated 3D ConvNet after training on Kinetics (the filter dimensions are 7 × 7 × 7, and the 7

time dimensions are shown left-to-right across the figure). The sequence on top shows the flow network filters, the one in the middle

shows filters from the RGB I3D network, and the bottom row shows the original Inception-v1 filters. Note that the I3D filters possess rich

temporal structure. Curiously the filters of the flow network are closer to the original Inception-v1 filters, while the filters in the RGB I3D

network are no longer recognizable. Best seen on the computer, in colour and zoomed in.

higher spatial resolution videos.

5.1. Comparison with the State­of­the­Art

We show a comparison of the performance of I3D mod-

els and previous state-of-the-art methods in table 4, on

UCF-101 and HMDB-51. We include results when pre-

training on miniKinetics and on the full Kinetics dataset.

The conv1 filters of the trained models are shown in fig. 4.

Many methods get similar results, but the best perform-

ing method on these datasets is currently the one by Fe-

ichtenhofer and colleagues [7], which uses ResNet-50 mod-

els on RGB and optical flow streams, and gets 94.6% on

UCF-101 and 70.3% on HMDB-51 when combined with

the dense trajectories model [30]. We benchmarked our

methods using the mean accuracy over the three standard

train/test splits. Either of our RGB-I3D or RGB-Flow mod-

els alone, when pre-trained on Kinetics, outperforms all pre-

vious published performance by any model or model com-

binations. Our combined two-stream architecture widens

the advantage over previous models considerably, bring-

ing overall performance to 97.9 on UCF-101 and 80.2 on

HMDB-51, which correspond to 57% and 33% misclassifi-

cation reductions, respectively compared to the best previ-

ous model [7].

The difference between Kinetics pre-trained I3D mod-

els and prior 3D ConvNets (C3D) is even larger, although

C3D is trained on more videos, 1M examples from Sports-

1M plus an internal dataset, and even when ensembled and

combined with IDT. This may be explainable by the better

quality of Kinetics but also because of I3D simply being a

better architecture.

Another noteworthy effect is the improvement of the I3D

RGB stream on HMDB-51 when going from miniKinet-

ics to Kinetics pre-training, which suggests that 3D Con-

vNets may require large amounts of data in order to learn

robust motion features. After Kinetics pre-training, the two

streams obtain similar performance but are still complemen-

tary: averaging their predictions brings results from 74.6%

to 80.2%.

6. Discussion

We return to the question posed in the introduction, “is

there a benefit in transfer learning from videos?”. It is evi-

dent that there is a considerable benefit in pre-training on

(the large video dataset) Kinetics, just as there has been

such benefits in pre-training ConvNets on ImageNet for so

many tasks. This demonstrates transfer learning from one

dataset (Kinetics) to another dataset (UCF-101/HMDB-51)
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UCF-101 HMDB-51

Architecture Original Fixed Full-FT ∆ Original Fixed Full-FT ∆

(a) LSTM 81.0 81.6 82.1 -6% 36.0 46.6 46.4 -10.6%

(b) 3D-ConvNet 49.2 76.0 79.9 -60.5% 24.3 47.5 49.4 -25.1%

(c) Two-Stream 91.2 90.3 91.5 -3.4% 58.3 64.0 58.7 -5.7%

(d) 3D-Fused 89.3 88.5 90.1 -7.5% 56.8 59.0 61.4 -4.6%

(e) Two-Stream I3D 93.4 95.7 96.5 -47.0% 66.4 74.3 75.9 -9.5%

Table 3. Performance on the UCF-101 and HMDB-51 test sets (splits 1 of both) for architectures pre-trained on miniKinetics. All except

3D-ConvNet are based on Inception-v1 and start off pre-trained on ImageNet. Original: train on UCF-101 / HMDB-51; Fixed: features

from miniKinetics, with the last layer trained on UCF-101 / HMDB-51; Full-FT: miniKinetics pre-training with end-to-end fine-tuning on

UCF-101 / HMDB-51; ∆ shows the difference in misclassification as percentage between Original and the best of Full-FT and Fixed.

Model UCF-101 HMDB-51

Two-Stream [25] 88.0 59.4

IDT [30] 86.4 61.7

Dynamic Image Networks + IDT [2] 89.1 65.2

TDD + IDT [31] 91.5 65.9

Two-Stream Fusion + IDT [8] 93.5 69.2

Temporal Segment Networks [32] 94.2 69.4

ST-ResNet + IDT [7] 94.6 70.3

Deep Networks [15], Sports 1M pre-training 65.2 -

C3D one network [29], Sports 1M pre-training 82.3 -

C3D ensemble [29], Sports 1M pre-training 85.2 -

C3D ensemble + IDT [29], Sports 1M pre-training 90.1 -

RGB-I3D, miniKinetics pre-training 91.8 66.4

RGB-I3D, Kinetics pre-training 95.4 74.5

Flow-I3D, miniKinetics pre-training 94.7 72.4

Flow-I3D, Kinetics pre-training 95.4 74.6

Two-Stream I3D, miniKinetics pre-training 96.9 76.3

Two-Stream I3D, Kinetics pre-training 97.9 80.2

Table 4. Comparison with state-of-the-art on the UCF-101 and HMDB-51 datasets, averaged over three splits. First set of rows contains

results of models trained without labeled external data.

for a similar task (albeit for different action classes). How-

ever, it still remains to be seen if there is a benefit in using

Kinetics pre-training for other video tasks such as seman-

tic video segmentation, video object detection, or optical

flow computation. We plan to make publicly available I3D

models trained on the official Kinetics dataset’s release to

facilitate research in this area.

Of course, we did not perform a comprehensive explo-

ration of architectures – for example we have not employed

action tubes [11, 17] or attention mechanisms [20] to fo-

cus in on the human actors. Recent works have proposed

imaginative methods for determining the spatial and tem-

poral extent (detection) of actors within the two-stream

architectures, by incorporating linked object detections in

time [22, 24]. The relationship between space and time is a

mysterious one. Several very creative papers have recently

gone out of the box in attempts to capture this relationship,

for example by learning frame ranking functions for action

classes and using these as a representation [9], by making

analogies between actions and transformations [33], or by

creating 2D visual snapshots of frame sequences [2] – this

idea is related to the classic motion history work of [3]. It

would be of great value to also include these models in our

comparison but we could not, due to lack of time and space.

As future work, we plan to repeat all experiments us-

ing Kinetics instead of miniKinetics, with and without Ima-

geNet pre-training, and explore inflating other state-of-the-

art 2D ConvNets.
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