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Abstract

Principal Component Analysis (PCA) is a fundamental

method for estimating a linear subspace approximation to

high-dimensional data. Many algorithms exist in literature

to achieve a statistically robust version of PCA called RPCA.

In this paper, we present a geometric framework for com-

puting the principal linear subspaces in both situations that

amounts to computing the intrinsic average on the space of

all subspaces (the Grassmann manifold). Points on this man-

ifold are defined as the subspaces spanned by K-tuples of

observations. We show that the intrinsic Grassmann average

of these subspaces coincide with the principal components

of the observations when they are drawn from a Gaussian

distribution. Similar results are also shown to hold for the

RPCA. Further, we propose an efficient online algorithm

to do subspace averaging which is of linear complexity in

terms of number of samples and has a linear convergence

rate. When the data has outliers, our proposed online ro-

bust subspace averaging algorithm shows significant perfor-

mance (accuracy and computation time) gain over a recently

published RPCA methods with publicly accessible code. We

have demonstrated competitive performance of our proposed

online subspace algorithm method on one synthetic and two

real data sets. Experimental results depicting stability of

our proposed method are also presented. Furthermore, on

two real outlier corrupted datasets, we present comparison

experiments showing lower reconstruction error using our

online RPCA algorithm. In terms of reconstruction error

and time required, both our algorithms outperform the com-

petition.

1. Introduction

Principal component analysis (PCA), a key work-horse

of machine learning, can be derived in many ways: Pear-

son [29] proposed to find the subspace that minimizes the
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projection error of the observed data; Hotelling [20] instead

sought the subspace in which the projected data has maximal

variance; and Tipping & Bishop [34] consider a probabilistic

formulation where the covariance of normally distributed

data is predominantly given by a low-rank matrix. All these

derivations lead to the same algorithm. Recently, Hauberg

et al. [18] noted that the average of all one-dimensional

subspaces spanned by normally distributed data coincides

with the leading principal component. Here the average is

computed over the Grassmann manifold of one-dimensional

subspaces (cf. Sec. 2). This average can be computed very

efficiently, but unfortunately their formulation does not gen-

eralize to higher-dimensional subspaces.

In this paper, we provide a formulation for estimating the

average K-dimensional subspace spanned by the observed

data, and present a very simple, parameter-free online algo-

rithm for computing this average. When the data is normally

distributed, we show that this average subspace coincides

with that spanned by the leading K principal components.

We further show that our online algorithm has a linear con-

vergence rate. Moreover, since our algorithm is online, it

has a linear complexity in terms of the number of samples.

Furthermore, we propose an online robust subspace aver-

aging algorithm which can be used to get the leading K
robust principal components. Analogous to its non-robust

counterpart, it has a linear time complexity in terms of the

number of samples.

1.1. Related Work

In this paper we consider a simple linear dimensional-

ity reduction algorithm that works in an online setting, i.e.

only uses each data point once. There are several existing

approaches in literature that tackle the online PCA and the

online Robust PCA problems and we discuss some of these

approaches here:

Oja’s rule [28] is a classic online estimator for the

leading principal components of a dataset. Given a ba-

sis Vt−1 ∈ R
D×K this is updated recursively via Vt =

Vt−1 + γtXt(X
T
t Vt−1) upon receiving the observation Xt.

Here γt is the step-size (learning rate) parameter that must be
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set manually; small values gives slow-but-sure convergence,

while larger values may give fast-but-unstable convergence.

EM-PCA [33] is usually derived for probabilistic PCA,

but is easily be adapted to the online setting [9]. Here, the E-

and M-steps are given by:

(E-step) Yt =(V T
t−1Vt−1)

−1(V T
t−1Xt) (1)

(M-step) Ṽt =(XtY
T
t )(YtY

T
t )−1. (2)

The basis is updated recursively via the recursion, Vt =
(1− γt)Vt−1 + γtṼt, where γt is a step-size.

GROUSE and GRASTA [4, 19] are online PCA and matrix

completion algorithms. GRASTA can be applied to estimate

principal subspaces incrementally on subsampled data. Both

of these methods are online and use rank-one updation of

the principal subspace at each iteration. We have compared

our online subspace estimation algorithm with GROUSE.

GRASTA is an online robust subspace tracking algorithm

and can be applied on subsampled data and specifically ma-

trix completion problems. The authors proposed an ℓ1-norm

based fidelity term that measures the error between the sub-

space estimate and the outlier corrupted observations. The

robustness of GRASTA is attributed to this ℓ1-norm based

cost. Their formulation of the subspace estimation involves

the minimization of a non-convex function in an augmented

Lagrangian framework. This optimization is carried out in

an alternating fashion using the well known ADMM [7] for

estimating a set of parameters involving the weights, the

sparse outlier vector and the dual vector in the augmented

Lagrangian framework. For fixed estimated values of these

parameters, they employ an incremental gradient descent

to solve for the low dimensional subspace. Note that the

solution obtained is not the optimum of the combined non-

convex function of GRASTA. In the experimental results

section, we will present comparisons between GRASTA and

our recursive robust PCA algorithm.

Recursive covariance estimation [6] is straight-forward,

and the principal components can be extracted via stan-

dard eigen-decompositions. Boutsidis et al. [6] consider

efficient variants of this idea, and provide elegant perfor-

mance bounds. The approach does not however scale to

high-dimensional data as the covariance cannot practically

be stored in memory for situations involving very large data

sets as those considered in our work.

In [8], Candes et al. formulated Robust PCA (RPCA) as

separating a matrix into a low rank (L) and a sparse matrix

(S), i.e., data matrix X ≈ L+ S. They proposed Principal

Component Pursuit (PCP) method to robustly find the prin-

cipal subspace by decomposing into L and S. They showed

that both L and S can be computed by optimizing an objec-

tive function which is a linear combination of nuclear norm

on L and ℓ1 norm on S. Recently, Lois and Vaswani [25]

proposed an online RPCA problem to solve two interrelated

problems, matrix completion and online robust subspace

estimation. The authors have some assumptions including

a good estimate of the initial subspace and that the basis

of the subspace is dense. Though the authors have shown

correctness of their algorithm under these assumptions, these

assumptions are often not practical. In another recent work,

Ha and Barber [17] proposed an online RPCA algorithm

when X = (L+S)C where C is a data compression matrix.

They proposed an algorithm to extract L and S when the data

X are compress sensed. This problem is quite interesting

in its own right but not something pursued in our work pre-

sented here. Feng et al. [13] solved RPCA using a stochastic

optimization approach. The authors have shown that if each

observation is bounded, then their solution converges to the

batch mode RPCA solution, i.e., their sequence of robust

subspaces converges to the “true” subspace. Hence, they

claimed that as the “true subspace” (subspace recovered by

RPCA) is robust, so is their online estimate. Though their

algorithm is online, the optimization steps ( Algorithm 1 in

[13]) are expensive for high-dimensional data. In an earlier

paper, Feng et al. [12] proposed a deterministic approach to

solve RPCA (dubbed DHR-PCA) for high-dimensional data.

They also showed that they can achieve maximal robustness,

i.e., a breakdown point of 50%. They proposed a robust

computation of the variance matrix and then performed PCA

on this matrix to get robust PCs. This algorithm is suitable

for very high dimensional data. As most of our real appli-

cations in this paper are in very high dimensions, we find

DHR-PCA to be well suited to carry out comparisons with.

Finally, we would like to refer the readers to an excellent

source of references on RPCA in a recent MS thesis [36].

Figure 1. The average of two subspaces.

Motivation for our work: Our work is motivated by the

work presented by Hauberg et al. [18], who recently showed

that for a data set drawn from a zero-mean multivariate

Gaussian distribution, the average subspace spanned by the

data coincides with the leading principal component. This

idea is sketched in Fig. 1. Given, {xi}Ni=1 ⊂ R
D, the 1-

dimensional subspace spanned by each xi is a point on the

Grassmann manifold (Sec. 2). Hauberg et al. then compute

the average of these subspaces on the Grassmannian using

an “extrinsic” metric, i.e. the Euclidean, distance. Besides

the theoretical insight, this formulation gave rise to highly
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efficient algorithms. Unfortunately, the extrinsic approach

is limited to one-dimensional subspaces, and Hauberg et al.

resort to deflation methods to estimate higher dimensional

subspaces. We overcome this limitation by using an intrinsic

metric, extend the theoretical analysis of Hauberg et al., and

provide an efficient online algorithm for subspace estimation.

We further propose an online robust subspace averaging

algorithm akin to online RPCA and proved that in the limit

our proposed method returns the first K robust principal

components. Moreover, we provide a proof of statistical

robustness of our recursive PC estimator.

2. An Online Linear Subspace Learning Algo-

rithm

In this section, we propose an efficient online linear sub-

space learning algorithm for finding the principal compo-

nents of a data set. We first briefly discuss the geometry

of the Riemannian manifold of K-dimensional linear sub-

spaces in R
D. Then, we will present an online algorithm to

get the first K principal components of the D-dimensional

data vectors.

2.1. The Geometry of Subspaces

The Grassmann manifold (or the Grassmannian) is de-

fined as the set of all K-dimensional linear subspaces in

R
D and is denoted Gr(K,D), where D ≥ K. A spe-

cial case of the Grassmannian is when K = 1, i.e., the

space of one-dimensional subspaces of RD, which is known

as the real projective space (denoted by RPD). A point

X ∈ Gr(K,D) can be specified by a basis, X , i.e., a set of

K linearly independent vectors in R
D (the columns of X)

that spans X . We say X = Col(X) if X is a basis of X ,

where Col(.) is the column span operator. We have included

a brief note on the geometry of the Grassmannian in the sup-

plementary material. As the Grassmannian is geodesically

complete, one can extend the geodesics on the Grassmannian

indefinitely [2, 11]. Given X ,Y ∈ Gr(K,D), with their re-

spective orthonormal basis X and Y , the unique geodesic

ΓY
X : [0, 1] → Gr(K,D) between X and Y is given by:

ΓY
X (t) = span

(

XV̂ cos(Θt) + Û sin(Θt)
)

(3)

with ΓY
X (0) = X and ΓY

X (1) = Y , where, Û Σ̂V̂ T =
(I − XXT )Y (XTY )−1 is the “thin” Singular value de-

composition (SVD), and Θ = arctan Σ̂. The length of

the geodesic constitutes the geodesic distance on Gr(K,D),
d : Gr(K,D)×Gr(K,D)→ R

+∪{0} which is as follows:

Given X ,Y with respective orthonormal bases X and Y ,

d2(X ,Y) ,

√

√

√

√

K
∑

i=1

(arccos(σi))
2, (4)

where ŪΣV̄ T = XTY be the SVD of XTY , and,

[σ1, . . . , σK ] = diag(Σ). Here arccos(σi) is known as the

ith principal angle between subspace X and Y .

2.2. The Intrinsic Grassmann Average (IGA)

We now consider intrinsic averages1 (IGA) on the Grass-

mannian. For the existence and uniqueness of IGA, we

need to define an open ball on the Grassmannian. Us-

ing the geodesic distance (4) we define an open ball

of radius r centered at X ∈ Gr(K,D) as B(X , r) =
{Y ∈ Gr(K,D)|d(X ,Y) < r}. Let κ be the maximum of

the sectional curvature in the ball. Then, we call this ball

“regular” [24] if 2r
√
κ < π. Using the results in [35], we

know that, for RPD with D ≥ 2, κ = 1, while for gen-

eral Gr(K,D) with min(K,D) ≥ 2, 0 ≤ κ ≤ 2. So, on

Gr(K,D) the radius of a “regular geodesic ball” is < π/2
√
2,

for min(K,D) ≥ 2 and on RPD, D ≥ 2, the radius is

< π/2.
Let X1, . . . ,XN be independent samples on Gr(K,D)

drawn from a distribution P (X ), then we can define an

intrinsic average M∗ as:

M∗ = argmin
M∈Gr(K,D)

N
∑

i=1

d2
(

M,Xi

)

(5)

On Gr(K,D), IGA exists and is unique if the support of

P (X ) is within a “regular geodesic ball” of radius < π/2
√
2

[3]. Note that for RPD, we can choose this bound to be π/2.

In the rest of the paper, we have assumed that data points

on Gr(K,D) are within a “regular geodesic ball” of radius

< π/2
√
2 unless otherwise specified. With this assumption,

the IGA is unique. Note that this assumption is needed for

proving the theorem presented below.

The IGA may be computed using a Riemannian steepest

descent, but this is computationally expensive and requires

selecting a suitable step-size [30]. Recently Chakraborty et

al. [10] proposed a simple and efficient inductive (intrinsic)

mean estimator:

M1 = X1 , (∀k ≥ 1)

(

Mk+1 = Γ
Xk+1

Mk

( 1

k + 1

)

)

(6)

This approach only needs a single pass over the data set to es-

timate the IGA. Consequently, Eq. 6 has linear complexity in

the number of observations. Furthermore, it is a truly online

algorithm as each iteration only needs one new observation.

Equation 6 merely performs repeated geodesic interpola-

tion, which is analogous to standard recursive estimators of

Euclidean averages: Consider observations xk ∈ R
D, k =

1, . . . , N . Then the Euclidean average can be computed re-

cursively by moving an appropriate distance away from the

1These are also known as Fréchet means [23, 15].
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kth estimator mk towards xk+1 on the straight line joining

xk+1 and mk. The inductive algorithm (6) for computing

the IGA works in the same way and is entirely based on

traversing geodesics in Gr(K,D) and without requiring any

optimization.

Theorem 1. (Weak Consistency [10]) Let X1, . . . ,XN be

samples on Gr(K,D) drawn from a distribution P (X ).

Then MN (6) converges to the IGA of {Xi}Ni=1 in proba-

bility as N → ∞.

Theorem 2. (Convergence rate) Let X1, . . . ,XN be sam-

ples on Gr(K,D) drawn from a distribution P (X ). Then

Eq. 6 has a linear convergence rate.

Proof. See the supplementary material. �

2.3. Principal Components as Grassmann Averages

Following Hauberg et al. [18] we pose the linear dimen-

sionality reduction as an averaging problem on the Grassman-

nian. We consider an intrinsic Grassmann average (IGA), i.e.

an average using the geodesic distance, which allow us to

consider K > 1 dimensional subspaces. We then propose

an online linear subspace learning and show that for the

zero-mean Gaussian data, the expected IGA on Gr(K,D),
i.e., expectedK-dimensional linear subspace, coincides with

the first K principal components.

Given {xi}Ni=1, the algorithm to compute the IGA to get

the leading K-dimensional principal subspace is sketched in

Algorithm 1.

Algorithm 1: The IGA algorithm to compute PCs

Input: {xi}
N
i=1

⊂ R
D , K > 0

Output: {v1, . . . ,vK} ⊂ R
D

1 Partition the data {xj}
N
j=1

into blocks of size D ×K ;

2 Let the ith block be denoted by, Xi = [xi1, . . . ,xiK ] ;

3 Orthogonalize each block and let the orthogonalized block be

denoted by Xi ;

4 Let the subspace spanned by each Xi be denoted by

Xi ∈ Gr(K,D) ;

5 Compute IGA, M∗, of {Xi} ;

6 Return the K columns of an orthogonal basis of M∗; these span the

principal K-subspace.

Let {Xi} be the set of K-dimensional subspaces as con-

structed by IGA in Algorithm 1. Moreover, assume that the

maximum principal angle between Xi and Xj is < π/2
√
2,

for all i 6= j. This condition is needed to ensure that the

IGA exists and is unique on Gr(K,D). The condition can

be ensured if the angle between xl and xk is < π/2
√
2, for all

xl,xk belonging to different blocks. For xl,xk in the same

block, the angle must be < π/2. Note that, this assumption

is needed to prove Theorem 3. In practice, even if IGA is

not unique, we find a local minimizer of Eq. 5 [23], which

serves as the principal subspace.

Theorem 3. (Relation between IGA and PCA) Let us as-

sume that xi ∼ N (0,Σ), for all i. Using the same notations

as above, the jth column of M converges to the jth princi-

pal vector of {xi}Ni=1, j = 1, . . . ,K as N → ∞, i.e., in the

limit, M spans the principal K-subspace, M∗, where M∗

is defined as in Eq. 5.

Proof. LetXi be the corresponding orthonormal basis of Xi,

i.e., Xi spans Xi,for all i. The IGA, M∗ can be computed

using Eq. 5. Let, Xi = [xi1 . . .xiK ] where and let xij be

samples drawn from N(0,Σ). Let, M = [M1 . . .MK ] be

an orthonormal basis of M∗. The distance between Xi and

M∗ is defined as d2(Xi,M∗) =
∑K

j=1(arccos((Si)jj))
2,

where ŪiSiV̄
T
i =MTXi be the SVD, and (Si)jj ≥ 0 (we

use (A)lmto denote (l,m)th entry of matrix A). As arccos
is a decreasing function and a bijection on [0, 1], we can

write an alternative form of Eq. 5 as follows:

M∗ = argmax
M

N
∑

i=1

K
∑

j=1

((Si)jj)
2 (7)

In fact the above alternative form can also be de-

rived using a Taylor expansion of the RHS of Eq. 5.

Note that, in the above equation Si is a function of

M . It is easy to see that (MTXi)lm ∼ N (0, σ2
Ml

),

l = 1, . . . ,K, m = 1, . . . ,K. Also, (MTXiV̄i)lm ∼
N (0, σ2

Ml
), l = 1, . . . ,K,m = 1, . . . ,K as V̄i

is orthogonal. Thus, (Si)ll = (ŪT
i M

TXiV̄i)ll ∼
N (0, σ2

ŪilMl
). So,

∑K
j=1(Si)

2
jj ∼ Γ( 12

∑K
j=1 σ

2
ŪijMj

, 2)

and E[
∑K

j=1(Si)
2
jj ] =

∑K
j=1 σ

2
ŪijMj

. Now, as N → ∞,

RHS of Eq. 7 becomes E[
∑K

j=1(Si)
2
jj ]. In order to maxi-

mize E[
∑K

j=1(Si)
2
jj ] =

∑K
j=1 σ

2
ŪijMj

, Ūij should be the

left singular vectors of MTXi, and Mj should be the jth

eigenvector of Σ, for all j = 1, . . . ,K. Hence, M spans the

principal subspace, M∗. �

Now, using Theorem 1 and Theorem 3, we replace the line

5 of the IGA Algorithm 1 by Eq. 6 to get an online subspace

learning algorithm that we call, Recursive IGA (RIGA), to

compute leading K principal components, K ≥ 1.

3. A Robust Online Linear Subspace Learning

Algorithm

Let {X1,X2, · · · ,XN} ⊂ Gr(K,D),K < D be inside

a regular geodesic ball of radius < π/2
√
2 s.t., the Fréchet

Median (FMe) exists and is unique. Let X1, X2, · · · , XN

be the corresponding orthonormal bases, i.e., Xi spans Xi,

for all i. The FMe can be computed via the following mini-

mization:

M∗ = argmin
M

N
∑

i=1

d(Xi,M) (8)
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With a slight abuse of notation, we use the notation M∗ (M )

to denote both the FM and the FMe (and their orthonormal

basis). The FMe is robust as was shown in [14], hence we

call our estimator Robust IGA (RoIGA). In the following

theorem, we will prove that RoIGA leads to the robust PCA

in the limit as the number of the data samples goes to infin-

ity. An algorithm to compute RoIGA is obtained by simply

replacing Step 5 of Algorithm 1 by computation of RoIGA

via minimization of Eq. 8 instead of Eq. 5. This minimiza-

tion can be achieved using the Riemannian steepest descent,

but instead, here we use the stochastic gradient descent of

batch size 5 to compute RoIGA. As at each iteration, we

need to store only 5 samples, the algorithm is online. The

update step for each iteration of the online algorithm to com-

pute RoIGA (we refer to our online RoIGA algorithm as

Recursive RoIGA (RRIGA)) is as follows:

M1 = X1 , Mk+1 = ExpMk

( Exp−1
Mk

(Xk+1)

(k + 1)d(Mk,Xk+1)

)

(9)

where, k ≥ 1, Exp and Exp−1 are Riemannian exponential

and inverse exponential functions (see supplementary section

for the definition of these maps). We refer the readers to [5]

for the consistency proof of the estimator.

Theorem 4. (Robustness of RoIGA) Assuming the above

hypotheses and notations, as N → ∞, the columns of

M converge to the robust principal vectors of the {xi}Ni=1,

where M is the orthonormal basis of M∗ as defined in Eq.

8.

Proof. Let, Xi = [xi1 · · ·xiK ] and xij be i.i.d. samples

drawn from N(0,Σ). Let, M = [M1 · · ·MK ] be an or-

thonormal basis of M. Define the distance between Xi

and M by d(Xi,M) =
√

∑K
j=1(arccos((Si)jj))2, where

ŪiSiV
T
i = MTXi be the SVD, and (Si)jj ≥ 0. Since

arccos is a decreasing function and is a bijection on [0, 1],
we can rewrite Eq. 8 alternatively as follows:

M∗ = argmax
M

N
∑

i=1

√

√

√

√

K
∑

j=1

((Si)jj)2 (10)

In fact the above alternative form can also be derived using

a Taylor expansion of the RHS of Eq. 8.

From the proof of Theorem 3, we know that
∑K

j=1((Si)jj)
2 ∼ Γ( 12

∑K
j=1 σ

2
ŪijMj

, 2). So,
√

∑K
j=1((Si)jj)2 ∼ Ng(

1
2

∑K
j=1 σ

2
ŪijMj

,
∑K

j=1 σ
2
ŪijMj

),

where Ng is the Nakagami distribution [27]. Now,

as N → ∞, the RHS of Eq. 10 becomes

E[
√

∑K
j=1((Si)jj)2]. E[

√

∑K
j=1((Si)jj)2] =

√
2Γ(

∑K
j=1 σ

2
ŪijMj

+ 0.5)/Γ(
∑K

j=1 σ
2
ŪijMj

), where

Γ is the well known gamma function. It is easy to see

that as Γ is an increasing function, E[
√

∑K
j=1((Si)jj)2] is

maximized iff
∑K

j=1 σ
2
ŪijMj

is maximized, i.e., when M

spans the principal K-subspace.

Now, if we contrast with the objective function of RIGA

in Eq. 7, there we had to maximize E[
∑K

j=1((Si)jj)
2] =

∑K
j=1 σ

2
ŪijMj

. Thus, E[
√

∑K
j=1((Si)jj)2] = ρ(m) ,

√
2Γ(m + 0.5)/Γ(m), where m =

∑K
j=1 σ

2
ŪijMj

. Hence,

the influence function [21] of ρ is proportional to

ψ(m) ,
∂E[

√

∑

K
j=1

((Si)jj)2]

∂m
and if we can show that

limm→∞ ψ(m) = 0, then we can claim that our objective

function in Eq. 10 is robust [21].

Now, ψ(m) = Γ(m)Γ(m+ 0.5)φ(m+0.5)−φ(m)
Γ(m)2 , where φ

is the polygamma function [1] of order 0. After some simple

calculations, we get,

lim
m→∞

(φ(m+ 0.5)− φ(m)) = lim
m→∞

log(1 + 1/(2m))

+ lim
m→∞

∞
∑

k=1

(

Bk

(

1

kmk
− 1

k(m+ 0.5)k

))

= lim
m→∞

log(1 + 1/(2m)) + 0 = 0

Here, {Bk} are the Bernoulli numbers of the second kind

[32]. So, limm→∞ ψ(m) = 0. �

We would like to point out that the outlier corrupted

data can be modeled using a mixture of independent ran-

dom variables, Y1, Y2, where Y1 ∼ N (0,Σ1) (to model

non-outlier data samples) and Y2 ∼ N (µ,Σ2) (to model

outliers), i.e., (∀i), xi = w1Y1 + (1 − w1)Y2, w1 > 0 is

generally large, so that the probability of drawing outliers is

low. Then as the mixture components are independent, (∀i),
xi ∼N ((1−w1)µ, w

2
1Σ1+(1−w1)

2Σ2). A basic assump-

tion in any online PCA algorithm is that data is centered. So,

in case the data is not centered (similar to the model of xi),

the first step of PCA would be to centralize the data. But

then the algorithm can not be made online, hence our above

assumption that xi ∼ N (0,Σ) is a valid assumption in an

online scenario. But, in a general case, after centralizing the

data as the first step of PCA, the above theorem is valid.

4. Experimental Results

In this section, we present an experimental evaluation of

the proposed estimators on both real and synthetic data. Our

overall experimental findings are that the RIGA and RRIGA

estimators are more accurate and faster than other online

linear and robust linear subspace estimators. We believe that

the higher accuracy in RIGA and RRIGA can be attributed to

the use of intrinsic geometry of the Grassmannian in our geo-

metric formulation. Specifically, finding the full set of PCs is
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cast as an intrinsic averaging problem on the Grassmannian

achieved using a recursive estimator in both cases. From

a computational perspective, in the online PCA case, we

attribute the efficiency observed in the experiments to RIGA

being an optimization and parameter free method. In the

case of RRIGA, the reasons for accuracy and efficiency are

much more complicated. At this juncture, we speculate the

reason to be that our geometric formulation leads to directly

finding the subspaces using a recursive scheme as opposed

to methods that incrementally update basis of the subspace

in an alternating fashion with no convergence guarantees. In

the following, we consider RIGA and RRIGA separately.

4.1. Online Linear Subspace Estimation

Baselines: Here, we present a comparison with Oja’s rule

and the online version of EM-PCA (Sec. 1.1). For Oja’s

rule we follow common guidelines and consider step-sizes

γt = α/D
√
t with α-values between 0.005 and 0.2. For EM-

PCA we follow the recommendations from Cappé [9] and

use step-sizes γt = 1/tα with α-values between 0.6 and 0.9
along with Polyak-Ruppert averaging. For GROUSE, we

have chosen the stepsize to be 0.1.

(Synthetic) Gaussian Data: Theorem 3 states that the

RIGA estimates coincide in expectation with the leading

principal subspace when the data are drawn from a zero-

mean Gaussian distribution. We empirically verify this for

an increasing number of observations drawn from randomly

generated zero-mean Gaussians. We measure the expressed

variance which is the variance captured by the estimated sub-

space divided by the variance captured by the true principal

subspace:

Expressed Variance =

∑K
k=1

∑N
n=1 x

T
nv

(est)
k

∑K
k=1

∑N
n=1 x

T
nv

(true)
k

∈ [0, 1].

An expressed variance of 1 implies that the estimated sub-

space captures as much variance as the principal subspace.

The top panel of Fig. 2 shows the mean (± one standard

deviation) expressed variance of RIGA over 150 trials. It is

evident that for the Gaussian data, the RIGA estimator does

indeed converge to the true principal subspace.

A key aspect of any online estimator is that it should

be stable and converge fast to a good estimate. Here, we

compare RIGA to the above-mentioned baselines. Both

Oja’s rule and EM-PCA require a step-size to be specified, so

we consider a larger selection of such step-sizes. The middle

panel of Fig. 2 shows the expressed variance as a function

of number of observations for different estimators and step-

sizes. EM-PCA was found to be quite stable with respect to

the choice of step-size, though it does not seem to converge

to a good estimate. Oja’s rule, on the other hand, seems to

converge to a good estimate, but its practical performance

is critically dependent on the step-size. GROUSE is seen to

oscillate for small data size however, with a large number of

samples, it yields a good estimate. On the other hand, RIGA

is parameter-free and is observed to have good convergence

properties.

In the bottom panel of Fig. 2, we perform a stability

analysis of GROUSE and RIGA. Here, for a fixed value of

N , we generate a data matrix and perform 200 independent

runs on the data matrix and report the mean (± one standard

deviation) expressed variance. As can be seen from the

figure, RIGA is very stable in comparison to GROUSE.

Human Body Shape: Online algorithms are generally

well-suited for solving large-scale problems as by construc-

tion, they should have linear time-complexity in the number

of observations. As an example, we consider a large collec-

tion of three-dimensional scans of human body shape [31].

This dataset contains N = 21862 meshes which each con-

sist of 6890 vertices in R
3. Each mesh is, thus, viewed as

a D = 6890 × 3 = 20670 vector. We estimate a K = 10
dimensional principal subspace using Oja’s rule, EM-PCA,

GROUSE and RIGA respectively. The average reconstruc-

tion error (squared distance between the original data and

its estimate) over all meshes are 16.8 mm for Oja’s rule, 1.9
mm for EM-PCA, 1.4 mm for GROUSE, and 1.0 mm for

RIGA. Note that both Oja’s rule and EM-PCA explicitly

minimize the reconstruction error, while RIGA does not but

yet outperforms the baseline methods. We speculate that

this is due to RIGA’s excellent convergence properties and it

being a parameter free algorithm is not bogged down by the

hard problem of step-size tuning confronted in the baseline

algorithms used here.

Santa Claus Conquers the Martians: We now consider

an even larger scale experiment and consider all frames of the

motion picture Santa Claus Conquers the Martians (1964)2.

This consist ofN = 145, 550 RGB frames of size 320×240,

corresponding to an image dimension of D = 230, 400. We

estimate a K = 10 dimensional subspace using Oja’s rule,

EM-PCA, GROUSE and RIGA respectively. Again, we

measure the accuracy of the different estimators via the re-

construction error. Pixel intensities are scaled to be between

0 and 1. Oja’s rule gives an average reconstruction error

of 0.054, EM-PCA gives 0.025, while RIGA and GROUSE

give 0.023. Here RIGA and EM-PCA give roughly equally

good results, with a slight advantage to RIGA. GROUSE

gives same reconstruction error as RIGA. Oja’s rule does not

fare as well. As with the shape data, it is interesting to note

that RIGA outperforms some of the other baseline methods

on the error measure that they optimize even though RIGA

optimizes a different measure.

2https://archive.org/details/

SantaClausConquerstheMartians1964
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Figure 2. Expressed variance as a function of number of observa-

tions. Top: The mean and one standard deviation of the RIGA

estimator computed over 150 trials. In each trial data are generated

in R
50 and we estimate a K = 2 dimensional subspace. Middle:

The performance of different estimators for varying step-sizes. Data

are generated in R
250 and we set K = 20. In both experiments,

we observe similar trends with other values of D and K. Bottom:

Stability analysis comparison of GROUSE and RIGA (for a fixed

N , we randomly generate a data matrix, X , from a Gaussian distri-

bution on R
250. we estimate K = 20 dimensional subspace and

report the mean and one standard deviation over 200 runs on X .)

4.2. Robust Subspace Estimation

We now present the comparative experimental evaluation

of robust extension (RRIGA). Here we use DHR-PCA and

GRASTA as baseline and measure performance using the

reconstruction error (RE). We have used UCSD anomaly

detection database [26] and Extended YaleB database [16].

UCSD anomaly detection database: This data contains

images of pedestrian movement on walkways captured by

a stationary mounted camera. The crowd density on the

walkway varies from sparse to very crowded. The anomaly

includes bikers, skaters, carts, people in wheelchair etc..

This database is divided in two sets: “Peds1” (people are

walking towards the camera) and “Peds2” (people are walk-

ing parallel to the camera plane). In “Peds1” there are 36
training and 34 testing videos where each video contains 180
frames of dimension 158 × 238 (D = 37604). In “Peds2”

there are 12 training and 16 testing videos containing vary-

ing samples of dimension 240 × 360 (D = 86400). The

test frames do not have anomalous activities. Some sample

frames (with and without outliers) are shown in Fig. 3. We

first extract K principal components on the training data

(including anomalies) and then compute reconstruction error

on the test frames (without anomalies) using the computed

principal components. It is expected that if the PC computa-

tion technique is robust, the reconstruction error will be good

as PCs should not be affected by the anomalies in training

samples. In Fig. 4, we compare performance of RRIGA with

GRASTA and DHR-PCA in terms of RE and time required

by varying K from 1 to 100. In terms of time it is evident

that RRIGA is very fast compared to both GRASTA and

DHR-PCA. RRIGA also outperforms both DHR-PCA and

GRASTA in terms of RE. Moreover, it is evident that RRIGA

scales very well both in terms of RE and computation time

unlike it’s competitors.

Figure 3. top and bottom row contains outliers (identified in a

rectangular box) and non-outliers frames of UCSD anomaly data

respectively

Yale ExtendedB database: This data contains 2414 face

images of 38 subjects. We crop each image to make a 32×32
images (D = 1024). Due to varying lighting condition,

some of the face images are shaded/ dark and appeared as

outliers (this experimental setup is similar to the one in [22]).

In Fig. 5 some sample face images (outlier and non-outlier)

are shown. One can see that due to poor lighting condition,

though the middle face in top row is a face image, it looks
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Figure 4. Top two: on “Peds1” anomaly data; Bottom two: on

“Peds2” anomaly data

completely dark and an outlier. For testing, we have used

142 non-outlier face images of 38 subjects and the rest we

used to extract PCs. We report RE (with varying K) and

time required for both RRIGA, GRASTA and DHR-PCA in

Fig. 6. From the figure it is evident that for small number of

PCs (i.e., small K) RRIGA performs similar to DHR-PCA,

while for larger K values, RRIGA outperforms DHR-PCA

and GRASTA. In terms of time required, RRIGA is faster

than both DHR-PCA and GRASTA.

Figure 5. top and bottom row contains outliers and non-outliers

images of YaleExtendedB data respectively
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Figure 6. Performance comparison on YaleExtendedB data

5. Conclusions

In this paper, we present a new geometric framework for

estimating the full set of principal components from given

data. We present two online algorithms, for estimating PCA

and RPCA. Since they are inherently online, they are natu-

rally scalable to very large data sets as demonstrated in the

experimental results section. The key idea in the geomet-

ric framework involves computing an intrinsic Grassmann

average as a proxy for the principal linear subspace. We

show that the if the samples are drawn from a Gaussian dis-

tribution, the intrinsic Grassmann average coincides with the

principal subspace in expectation. Further, for our online

recursive RPCA algorithm, we proved that the estimated

principal components are statistically robust. Our algorithms

have a linear time complexity and linear convergence rate.

Unlike most other online algorithms there are not step-sizes

or other parameters to tune; a most useful property in prac-

tical settings. Our future work will focus on application of

our geometric approach to the matrix completion problem.
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