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Abstract

Given a user’s query, traditional image search systems

rank images according to its relevance to a single modal-

ity (e.g., image content or surrounding text). Nowadays,

an increasing number of images on the Internet are avail-

able with associated meta data in rich modalities (e.g., ti-

tles, keywords, tags, etc.), which can be exploited for better

similarity measure with queries. In this paper, we leverage

visual and textual modalities for image search by learning

their correlation with input query. According to the intent

of query, attention mechanism can be introduced to adap-

tively balance the importance of different modalities. We

propose a novel Attention guided Multi-modal Correlation

(AMC) learning method which consists of a jointly learned

hierarchy of intra and inter-attention networks. Condi-

tioned on query’s intent, intra-attention networks (i.e., vi-

sual intra-attention network and language intra-attention

network) attend on informative parts within each modality;

a multi-modal inter-attention network promotes the impor-

tance of the most query-relevant modalities. In experiments,

we evaluate AMC models on the search logs from two real

world image search engines and show a significant boost on

the ranking of user-clicked images in search results. Addi-

tionally, we extend AMC models to caption ranking task on

COCO dataset and achieve competitive results compared

with recent state-of-the-arts.

1. Introduction

Image search by text is widely used in everyday life

(e.g., search engines, security surveillance, mobile phones).

Given a textual query, image search systems retrieve a set

of related images by the rank of their relevance. Learning

this relevance, i.e., correlation between query and image, is

key to the system’s utility.

To measure the correlation between query and image,

typically a shared latent subspace is learned for query’s text

modality and a single image-related modality (e.g., visual

contents, surrounding text). Traditional image search en-

gines [2, 33] match queries with text or tags associated

with images. DSSM [11] learns an embedding subspace

Keyword: President
Obama, Christmas holiday, 

Ice-cream, Happy Malia …

Query1:

Keyword: US president, 
Christmas Tree, ceremony, 

family …

Query2:

Barack	Obama

Christmas

Figure 1. For different queries, it is helpful to select query-

dependent information within and cross rich image-related modal-

ities available on the Internet. Bounding boxes and highlighted

keywords correspond to different queries’ intent by their colors.

to measure the correlation between document-related text

modality and query’s text modality using deep learning. On

the other hand, cross-modal methods [39, 7, 32, 5] learn a

subspace to better measure correlation between query’s text

modality and image’s visual modality. In recent years, mul-

tiple image-related modalities are becoming widely avail-

able online (e.g., images on social networks are typically

posted with captions and tags, followed by friends’ com-

ments). Text matching and cross-modal methods are subop-

timal due to their focus on only single image-related modal-

ity. As shown in Fig 1, image content can provide detailed

visual information (e.g., color, texture) of objects while key-

words can offer abstract concepts (e.g., scene description)

or external background information (e.g., people’s identi-

ties). Different modalities describe images from different

views, which together provide information in a more com-

prehensive way. It benefits to learn a subspace to measure

the correlation between query’s text modality and image-

related modalities, i.e., multi-modal correlation.

There is a major challenge in learning this subspace: not

all modalities are equally informative due to the variation

in query’s intent. To overcome this problem, we introduce

an attention mechanism to adaptively evaluate the relevance

between a modality and query’s intent. For the image search

task, we consider two kinds of attention mechanisms. First,
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there is query-unrelated information within each modality

(e.g., background regions in images, keyword “Ice-cream”

for query2 “Christmas” in Fig 1); an image search system

should attend on the most informative parts for each modal-

ity (i.e., intra-attention). Second, different modalities’ con-

tributions vary for different queries; an image search system

should carefully balance the importance of each modality

according to query’s intent (i.e., inter-attention).

To address the aforementioned issues, we propose a

novel Attention guided Multi-modal Correlation (AMC)

learning method. AMC framework contains three parts:

visual intra-attention network (VAN), language intra-

attention network (LAN) and multi-modal inter-attention

network (MTN). VAN focuses on informative image re-

gions according to query’s intent by generating a query-

guided attention map. LAN learns to attend on related

words by learning a bilinear similarity between each word

in language modality and query. MTN is built to attend be-

tween different modalities. Finally, the correlation between

query and image-related modalities is calculated as the dis-

tance between query embedding vector and a multi-modal

embedding vector in the learned AMC space.

To validate the AMC framework, we choose image-

related keywords as the language modality and image con-

tents as the visual modality. AMC models are evaluated

on two datasets: Clickture dataset [39] and Adobe Stock

dataset (ASD). ASD is collected from Adobe Stock search

engine, including queries, images, manually curated key-

words and user clickthrough data. For Clickture, we curated

keywords for all images by an auto-tagging program de-

veloped internally at Adobe. Experiments show that AMC

achieves significant improvement on both datasets. More

importantly, this finding indicates that AMC can benefit

from not only human curated data, but also information

generated by machines, which could be noisy and biased.

Moreover, since AMC can scale to any number of modali-

ties, it has the ability to integrate and benefit from the output

of any intelligent visual analysis system. We further eval-

uate AMC for caption ranking task on COCO image cap-

tion data [14] with keyword set curated in the same way for

Clickture [39]. AMC models achieve very competitive per-

formance, even surpass the state-of-the-art method in Re-

call@10 metric.

Our contributions are as follows: we propose a novel

AMC learning framework to select query-dependent infor-

mation within and cross different modalities. AMC model

achieves significant improvement in image search task. We

plan to release the auto-tagged Clickture and COCO dataset

upon publication.

2. Related Work

Multi-modal Correlation learning. Canonical corre-

lation analysis (CCA) [8] learns a cross-modal embedding

space to maximize the correlation between different modal-

ities. Kernel CCA (KCCA) [4] extends CCA by adopt-

ing a non-linear mapping for different modalities. Alter-

natively, Nakayama et al. propose kernel principle com-

ponent analysis with CCA (KPCA-CCA) [29], which gen-

erates input for CCA via non-linear KPCA method. Gong

et al. [6] further include a third view into the CCA space

by the semantics between image and tags. Similarly, par-

tial least squares (PLS) [34] aims to measure the correla-

tion by projecting multiple sets of data into a latent space.

Ngiam et al. [30] introduce deep multimodal learning us-

ing neural networks. Recently, Datta et al. [3] first expand

to learn the correlation between query and multiple image-

related modalities using a graph-based keyphrase extraction

model. Compared to [3], AMC effectively learns a multi-

modal subspace to measure correlation between query and

image-related modalities via three attention networks driven

by click-through data.

Attention network. Attention mechanisms have been

successfully applied in many computer vision tasks, includ-

ing object detection [28] and fine-grained image classifica-

tion [21]. Jin et al. [12] develop an attention-based model

for image captioning task that employs an RNN to attend on

informative regions in images. Yang et al. [38] and Chen et

al. [1] apply attention networks that focus on useful regions

in visual question answering (VQA) task. Xiong et al. [37]

propose a dynamic memory network to attend on informa-

tive visual or textual modality for question answering. Re-

cently, Lu et al. [23] propose a co-attention network to fo-

cus on both visual and question modalities in VQA task.

Compared to these methods, AMC method not only applies

intra-attention networks within each modality, but also em-

ploys MTN to balance the importances of modalities based

on query’s intent for image search task.

Image and textual search. For image search task,

CCA [8] is employed to learn a subspace to maximize

correlation between query and image. Ranking CCA

(RCCA) [39] refines the CCA space by learning a bilinear

ranking function from click-through data. Wang et al. [36]

apply a deep ranking model for fine-grained image search

and Tan et al. [40] introduce a deep ranking based hash-

ing model. Recently, Gordor et al. [7] apply a region pro-

posal network and Radenović et al. [32] adopt deep CNN

features. Lynch et al. [24] transfer deep semantic features

learned from click-through data and apply them on image

search task. Compared to the approaches above, AMC

method applies VAN to adaptively select informative re-

gions within image modality based on query’s intent. On

the other side, for textual search task, Joachims [13] in-

troduces click-through data for optimizing search engines.

DSSM [11] applies a deep framework to further leverage

click-through data. Compared to DSSM [11], AMC method

employs LAN to attend on query-related words.
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happy	children	…
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Figure 2. Attention guided Multi-modal Correlation (AMC) learning framework. Left: Given a query, images and related keywords are

projected to a raw embedding space. AMC model then generates a query-guided multi-modal representation for each image. The correlation

between query and image is measured by the cosine distance in the AMC space. Right: AMC model consists of a visual intra-attention

network (VAN), a language intra-attention network (LAN) and a multi-modal inter-attention network (MTN). VAN and LAN attend on

informative parts within each modality and MTN balances the importance of different modalities according to the query’s intent.

3. AMC Learning From Click-through Data

The goal of Attention guided Multi-modal Correlation

learning (AMC) method is to construct an AMC space

where the correlation between query q and image x can be

measured by the distance between query’s embedding vec-

tor qm and image’s query-guided multi-modal representa-

tion xq (superscript “m” denotes the multi-modal subspace

in qm). To learn the AMC space, we propose a hierar-

chy of intra and inter attention networks, i.e., visual intra-

attention network (VAN), language intra-attention network

(LAN) and multi-modal inter-attention network (MTN). In

this paper, we select image-related keywords as the lan-

guage modality and image visual contents as the visual

modality, while the AMC space can be further extended to

incorporate more image-related modalities.

We first present the AMC learning framework followed

by the details of inter-attention network (MTN). Intra-

attention networks (VAN and LAN) are then introduced. Fi-

nally, we illustrate how to apply the learned AMC space on

image search and caption ranking tasks.

3.1. AMC learning framework

In AMC space, the correlation between a query q and

an image x is measured by the cosine distance 〈qm,xq〉,
where qm ∈ R

d is the embedding vector of q and

xq ∈ R
d is the multi-modal representation of x con-

ditioned on query’s intent. To learn the AMC space,

we sample N tuples in the form [q, (x+,K+), (x−
1 ,K

−
1 ),

(x−
2 ,K

−
2 ), ..., (x−

t ,K
−
t )] from click-through data. Each tu-

ple consists of a query q, a positive image x+ with its key-

word set K+ and t negative images x−
i with their keyword

sets K−
i . Given the query q in a tuple, the positive image

x+ has the highest number of clicks. Similar to [39], we

adopt a common ranking loss function as the objective:

argmin
θ

N∑

i=1

Lθ(qi, {x
+

i ,K
+

i }, {x−
ij ,K

−
ij}

t
j=1)

Lθ =

t∑

j=1

max(0, α− 〈qm
i ,x

q+
i 〉+ 〈qm

i ,x
q−
ij 〉)

(1)

where θ denotes the model’s parameters to be optimized and

α is the margin between positive and negative samples.

To learn the query’s embedding qm and query-guided

multi-modal representation xq for image x, we propose a

multi-modal inter-attention network (MTN) to attend on in-

formative modalities. The inputs of MTN are query-guided

single modality embeddings produced by intra-attention

networks. Specifically, intra-attention networks consist of a

visual intra-attention network (VAN) and a language intra-

attention network (LAN). For visual modality, VAN focuses

on useful regions in image contents and generates a query-

guided visual embedding vq ∈ R
d; for language modal-

ity, LAN filters out unrelated words and generates a query-

guided language embedding kq ∈ R
d. The AMC frame-

work is trained in an end-to-end way by integrating VAN,

LAN and MTN (Fig 2).

For simplicity, we denote the input feature for query q as

q ∈ R
dq . Each image x is represented as a r×r feature map

v ∈ R
r×r×dv . The input feature matrix for keyword set K

is denoted as K = {k1,k2, ...,kn}
⊤ ∈ R

n×dk , where n

is the keyword set size and kj is the j-th keyword’s feature

vector of image x. dq , dk and dv are the feature dimensions
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for query, keyword and image respectively.

3.2. Multimodal interattention network (MTN)

MTN generates the embedding qm of query by project-

ing query’s input feature q into AMC space through a non-

linear transform.

qm = f(Wqmq+ bqm) (2)

where Wqm ∈ R
dq×d,bqm ∈ R

d are the linear transforma-

tion matrix and bias vector to be optimized. f(.) is a non-

linear activation function. Besides, MTN encodes query’s

intent q′ using another similar transform in Eq 2. Condi-

tioned on the query’s intent, the correlation of embeddings

[vq,kq] produced by VAN and LAN is calculated as:

[cv, ck] = 〈q′, [vq,kq]〉, q′ = f(W′
qmq+ b′

qm) (3)

[cv, ck] denotes the correlation of visual and language

modality. 〈., .〉 is the cosine distance measurement. f(.) is a

non-linear activation function. W′
qm,b′

qm are variables to

be optimized. MTN then re-weights the visual and language

modalities based on their probabilities conditioned on the

input query’s intent (e.g., in Fig 2, the relevance scores for

visual modality (“Image”) and language modality (“Key-

word”) are 0.65 and 0.35, indicating visual modality is more

relevant than language modality for query “birthday party”).

The conditional probability for each modality is measured

based on the correlation in Eq 3. The final multi-modal em-

bedding xq ∈ R
d in the AMC space is:

xq = pvv
q + pkk

q, [pv, pk] = σ([cv, ck]) (4)

where σ(.) is a softmax function. xq encodes the useful in-

formation from different modalities conditioned on the in-

put query’s intent.

3.3. Visual intraattention network (VAN)

VAN takes query q’s input feature q and image x’s fea-

ture map v as input. It first projects image feature map v

into a d-dimension raw visual subspace by a 1x1 convolu-

tion kernel Wv ∈ R
dv×d. The projected image feature map

is denoted as v′ ∈ R
r×r×d. Similar to [1], VAN gener-

ates a query-guided kernel sq from query embedding vector

q through a non-linear transformation. By convolving the

image feature map with sq , VAN produces a query-guided

attention map M:

M = σ(sq ∗ v
′), sq = f(Wqsq+ bqs) (5)

where f(.) is a non-linear activation function. σ(.) is a soft-

max function and “*” is the convolution operator. Wqs,bqs

are the linear transformation matrix and bias vector that

project query embedding vector q from the language space

into the kernel space. The generated attention map is of the

same resolution as image feature map v′ (r × r). Each el-

ement in the attention map represents the probability of the

corresponding region in image x being informative condi-

tioned on the intent of query q.

VAN then refines the raw visual subspace through re-

weighting each location of projected image feature map v′

by the corresponding conditional probability in the attention

map M via element-wise production. The query-guided vi-

sual embedding vector vq ∈ R
d for image x is generated by

average pooling of the re-weighted image feature map:

vq = AvgPool(M⊙ v′) (6)

where “AvgPool” is the average pooling operation and ⊙
represents element-wise production.

3.4. Language intraattention network (LAN)

LAN takes query input feature vector q and keyword set

feature matrix K as inputs. It first projects query q and

keywords K into a raw language subspace by linear projec-

tions. Similar to [39], the correlation between input query

and keywords is measured in a bilinear form:

s(q,K,Wql,Wkl,Wl) = (qWql)Wl(KWkl)
⊤ (7)

where Wql ∈ R
dq×d and Wkl ∈ R

dk×d are transforma-

tion matrices that project query q and keywords K into the

raw subspace. Wl ∈ R
d×d is the bilinear similarity ma-

trix. Since d < dq, d < dk, {Wql,Wkl,Wl} are like

an SVD decomposition of the overall dq × dk bilinear ma-

trix. LAN then refines the raw language subspace by re-

weighting each keyword embedding vector by their proba-

bility conditioned on the query’s intent. This probability is

measured based on the similarity between query q and key-

words K in Eq 7. The refined language embedding kq ∈ R
d

for keyword set K is calculated as

kq = p(K|q)⊤KWkl, p(K|q) = σ(s(q,K)) (8)

where s(q,K) is the correlation between query and key-

words calculated in Eq 7. σ(.) is the softmax function.

p(K|q) is the probability of each keyword being informa-

tive conditioned on the query’s intent.

3.5. Applications of AMC space

The learned AMC space can be applied directly on two

tasks: image search and caption ranking. For image search,

we first calculate the input query q’s embedding vector qm

in the learned AMC space. We then generate the multi-

modal representations {xq} for all the images in the dataset.

The images are ranked based on their relevance to the input

query, which is measured by the cosine distance between

qm and {xq}.
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For caption ranking, we adopt another objective function

in [17] during training for fair comparison:

Lθ =
∑

x

∑

k

max{0, α− 〈xq,qm〉+ 〈xq,qm
k 〉}

+
∑

q

∑

k

max{0, α− 〈xq,qm〉+ 〈xq
k,q

m〉}
(9)

where qm is the caption embedding vector and xq is the

multi-modal embedding vector of image x. The subscript

k indicates negative embeddings for current caption-image

(keyword) pairs and 〈., .〉 is the cosine distance measure-

ment. Given a query image x and related modalities, we

first calculate all candidate captions’ embedding vectors qm

in the learned AMC space. The multi-modal representations

for images conditioned on the caption’s intent {xq} are then

generated by the AMC model. Finally, each caption q is

ranked based on the correlation between qm and xq .

We choose the rectified linear unit (ReLU) as the ac-

tivation function f(.). AMC model’s parameters θ con-

sist of the variables: {Wv,Wqs,bqs,Wql,W
′
qm,b′

qm,

Wkl,Wl,Wqm,bqm}. We apply adam [15] algorithm to

train the AMC framework in an end-to-end way.

4. Dataset

Keyword datasets1. We curated two keyword datasets

for Clickture [39] and COCO [20] by an auto-tagging sys-

tem. Basically, given a query image, the system first

searches similar images from a commercial image database

using a k-NN ranking algorithm. Then the query image’s

keywords are generated based on a tag voting program

among the keywords associated with the images from k-NN

ranking results. The Clickture keyword dataset has over 50k

unique keywords. The average size of keyword sets is 102

(minimum is 71 and maximum is 141). There are over 26k

unique keywords in COCO keyword dataset. The average

size of keyword sets is 102 (minimum size is 99 and max-

imum size is 104). Compared to COCO object labels in

COCO dataset [20] which have only 91 object categories,

our keyword dataset is much richer and more diverse. Be-

sides, the keyword dataset contains multi-word phrases, up-

per and lower cases, which simulates the noisy keywords

collected from real-world websites (Fig 3).

Adobe Stock Dataset (ASD). We collect clickthrough

data from the log files in Adobe Stock2. ASD con-

tains 1,555,821 images and 1,941,938 queries, which form

3,485,487 {query, image, click} triads. In addition, each

image is associated with a set of keywords with an average

size of 53. There are over 27k unique keywords in ASD.

We evaluate AMC models for image search task on ASD.

1Available in https://github.com/kanchen-usc/amc_att
2https://stock.adobe.com

Keyword: food, woman, 

breakfast, restaurant, meal, 

female, diet, young, tomato, 

hands, background, dinner, 

salad, orange …

Keyword: bathroom, toilet, 

shower, interior, white sink, 

bath, modern, WC, clean, 

bathtub, home design, 

house, contemporary  …

Keyword:man, people, 

couple, business, woman, 

young, office, male, smile, 

happy, caucasian, team, 

listening person, female, 

businessperson…

Keyword: beautiful, 

people, friends, women, 

group, young adult, 

shopping, fun, female, 

happy, attractive, men, 

woman, party, male, 

smiling …

Keyword: beautiful female, 

couple, woman, girl, happy, 

attractive, boyfriend, smiling, 

beauty, friends, women, 

people, young adult, fun, 

caucasian, man, male, pretty, 

background …

Keyword: wedding, bride, woman, 

beautiful, table, couple, flower, 

celebration, food, white, flowers, 

happy, caucasian, setting, groom, 

home, bouquet, plate, cake, girl, 

adult, fun, bridal, female, love, 

party, vase, day, fork, breakfast …

Figure 3. Images with keywords in Clickture [39] (left) and COCO

image caption dataset [20] (right). Since each image is associated

with ∼100 keywords, not all keywords are listed.

Clickture dataset [39] is composed of two parts: the

training and development (dev) sets. The training set con-

tains 23.1M {query, image, click} triplets. The dev set

consists of 79,926 〈query, image〉 pairs generated from

1000 queries. We evaluate AMC models for image search

task on Clickture with our keyword dataset.

COCO Image Caption dataset [14] (CIC). COCO im-

age dataset [20] has 82,783 images for training and 413,915

images for validation. CIC shares the same training set with

COCO. The validation set of CIC is composed of 1,000 im-

ages sampled from the COCO validation images, and the

test set of CIC consists of 5,000 images sampled from the

COCO validation images which are not in the CIC valida-

tion set. Each image in CIC is associated with 5 candidate

captions. Same as [14], we evaluate AMC model on the

first 1,000 images for caption ranking on the CIC test set

with our curated keywords.

5. Experiments

We evaluate our approach on Clickture [10] and Adobe

Stock Dataset (ASD) for image search task, and COCO Im-

age Caption dataset [20] (CIC) for caption ranking task.

5.1. Multimodal image retrieval

Experiment setup. For the visual modality, we divide

an input image into 3x3 grids, and apply a pre-trained 200-

layer ResNet [9] to extract image feature for each grid.

Thus, each image is represented as a 3x3x2048 feature map

(r = 3, dv = 2048). For models without VAN, we ex-

tract global image features, and represent each image as a

2048 dimension (2048D) feature vector. For the query and

keyword modalities, we remove stop words and uncommon

words in the raw data, convert all words to lowercase, and

tokenize each word to its index in the corresponding dictio-

nary. The dictionary sizes for keyword modality in Click-

ture and ASD are 50234 and 27822. The dictionary sizes

for the query modality in Clickture and ASD are 85636 and
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Approach Img Key VAN LAN LF MTN

MB [31] X X

DSSM-Key [11] X

DSSM-Img [11] X

RCCA [39] X

ImgATT X X

KeyATT X X

ImgATT-KeyATT-LF X X X X X

AMC Full X X X X X

Table 1. Different models evaluated on Clickture and ASD.

Language intra-attention network (LAN) is applied on keyword

modality. Visual intra-attention network (VAN) is applied on im-

age modality. Late fusion (LF) and multi-modal inter-attention

networks (MTN) are applied on multi-modalities.

17388. We randomly split ASD into three parts: 70% for

training, 10% for validation and 20% for testing.

Compared approaches. We compare the following ap-

proaches for performance evaluation:

(1) Ranking Canonical Correlation Analysis [39] (RC-

CA) ranks images based on a bilinear similarity function

learned from clickthrough data. We adopt Resnet [9] fea-

tures for RCCA framework which achieves better perfor-

mance compared to [39] using AlexNet [19] features.

(2) Multimodal Bilinear Pooling (MB) combines vi-

sual and language modalities by an outer production layer.

Compared to multimodal compact bilinear pooling (MCB)

model [31], we drop the sketch count projection to avoid

loss of information from original modalities.

(3) Deep structured semantic model [11] (DSSM) learns

a subspace to measure the similarity between text modal-

ity and queries for document retrieval using a deep learning

framework. We build similar structures which takes sin-

gle image-related modality for image search task. Specifi-

cally, image modality (DSSM-Img) and keyword modality

(DSSM-Key) are evaluated.

Attention networks and AMC models. We compare

different attention networks as follows:

(1) VAN attends on informative regions in the image

modality based on the query’s intent.

(2) LAN selects useful words in the keyword modality

based on the query’s intent.

(3) Late fusion network (LF) first calculates the simi-

larity scores between the input query and each modality.

To represent the final correlation between the query and

image-related modalities, LF then combines these similari-

tiy scores by a linear transformation.

(4) MTN balances the importance of different modalities

based on the query’s intent.

Different models evaluated on Clickture dataset and

ASD are listed in Table 1, with details on adopted modali-

ties and attention networks.

Approach 5 10 15 20 25

MB 0.5643 0.5755 0.5873 0.5918 0.5991

DSSM-Key 0.5715 0.5745 0.5797 0.5807 0.5823

DSSM-Img 0.6005 0.6081 0.6189 0.6192 0.6239

RCCA 0.6076 0.6190 0.6293 0.6300 0.6324

KeyATT 0.5960 0.6054 0.6168 0.6204 0.6241

ImgATT 0.6168 0.6233 0.6308 0.6350 0.6401

ImgATT-KeyATT-LF 0.6232 0.6254 0.6344 0.6376 0.6444

AMC Full 0.6325 0.6353 0.6431 0.6427 0.6467

Table 2. Performance of different models on Clickture dataset. The

evaluation metrics are NDCG@5, 10, 15, 20, 25 (correspond to 2nd

to 6th column). For k ∈ {5, 10, 10, 20, 25}, we exclude queries

with ranking list size less than k when we calculate NDCG@k.

Approach P@5 P@k MAP MRR AUC

MB 0.5615 0.6372 0.7185 0.7564 0.6275

DSSM-Key 0.5431 0.6756 0.6969 0.7884 0.5508

DSSM-Img 0.5835 0.6705 0.7308 0.7773 0.6455

RCCA 0.5856 0.6778 0.7332 0.7894 0.6384

AMC Full 0.6050 0.7069 0.7407 0.8067 0.6727

Table 3. Models’ performance under different metrics

Training details. On Clickture dataset, we sample one

negative tuple (v−,K−) (t = 1) while on ASD, we sample

3 negative tuples (t = 3). Same as [39], the dimension of

embedding vectors in all modalities is 80 (d = 80). The

batch size is set to 128. We set margin α = 1 in Eq 1.

Evaluation metrics. For Clickture dataset, we calculate

NDCG@k score [39] for top k ∈ {5, 10, 15, 20, 25} rank-

ing results for an input query. We exclude queries with rank-

ing list’s size less than k for calculating NDCG@k score.

The final metric is the average of all queries’ NDCG@k in

the Clickture dev set. We further compare different models’

performance under P@5 (precision at top 5 results), P@k,

MAP and MRR metrics, whose details are described in [27].

ROC curves and Area Under Curve (AUC) are also com-

pared between different models on Clickture Dataset.

For ASD, we use Recall at k samples (R@k) as metric.

Given a rank list, R@k is the recall of positive samples (ra-

tio of clicked images among all clicked images of the input

query) among the top k results. The final metric is the aver-

age of all queries’ R@k in the ASD test set.

Performance on Clickture. The performances of dif-

ferent models on Clickture dataset are shown in Tables 2, 3

and Fig 4. We first apply intra-attention networks on sin-

gle modality models, which filters out unrelated information

within each modality according to the query’s intent. The

resulting models, KeyATT and ImgATT, achieve 2.2% and

2.6% increase in NDCG@5 compared to DSSM-Key and

DSSM-Img, respectively. Attention-guided single modality

model ImgATT even beats the MB model with two modal-

ities information in NDCG metric. We further applies the

late fusion network (LF) on two attention-guided modali-
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Figure 4. ROC curve for different models.

Approach R@1 R@5 R@10 R@15 R@20

DSSM-Img 0.0767 0.2778 0.4025 0.4617 0.4891

DSSM-Key 0.0980 0.3076 0.4207 0.4700 0.4926

ImgATT 0.0782 0.2793 0.4049 0.4642 0.4918

KeyATT 0.1042 0.3187 0.4322 0.4803 0.5019

ImgATT-KeyATT-LF 0.1106 0.3445 0.4620 0.5108 0.5327

AMC Full 0.1168 0.3504 0.4673 0.5148 0.5414

Table 4. Performance of different models on ASD. The evaluation

metrics are R@1, 5, 10, 15, 20 (correspond to 2nd to 6th column).

ties. The resulting model ImgATT-KeyATT-LF achieves an

additional 1% increase in NDCG@5 compared to ImgATT

and KeyATT, which validates the effectiveness of learning

a multi-modal subspace to further boost the image search

task. Finally, we apply MTN to select informative modal-

ities based on the query’s intent. The AMC full model

achieves the state-of-the-art performance on NDCG met-

ric, with more than 3% increase from single modality mod-

els, and 2.5% increase in NDCG@5 compared to RCCA

model [39], which is ∼3 times of RCCA’s increase com-

pared to the previous state-of-the-art method.

We further evaluate AMC models under different met-

rics. In Table 3, AMC Full model achieves obvious in-

creases under all metrics. We show the ROC curves in Fig 4.

The AUC of AMC Full model has an increase of 3.4% com-

pared to the state-of-the-art method, which proves the effec-

tiveness of the AMC learning method. Some visualization

results are shown in Fig 5.

Performance on ASD. We observe similar improve-

ment by applying different attention mechanisms on AMC

models in Table 4. For intra-attention networks, LAN

(KeyATT) achieves 0.6-1.2% increase compared to DSSM-

Key in R@k scores while VAN (ImgATT) does not observe

Query: snooki baby bump

Visual: 0.6534
Language: 0.3466

transport, white, attractive, 
buyer, object, elegance,
young, glamour, activity, 

arm, speaker, woman,
shopper, photomodel,

seated, pregnant, 
appearance, paint, drinking, 
pretty, smile …

Query: snooki baby bump

Visual: 0.7128
Language: 0.2872

attractive, art, sunglasses, 
breakage, elegance, 
young, industrial, computer, 

café, belly, woman, candy, 
women, camera, cars, 

stroll, paint, singer, 
american, person, tourist, 
arrival, people …

Query: silk twist hair 
styles

Visual: 0.5028

Language: 0.4972

Query: silk twist hair 
styles

Visual: 0.5631

Language: 0.4369

white, hair, lips, shawl, 
human, attractive, 
expression, glamour, lovely, 

american, young, woman, 
woman, eye, makeup, 

hairstyle …

nature, white, art, guard, 
color, rodent, event, 
attractive, little, heritage, 

dance, glamour, long, god, 
young, veil, hair, haircut, 

woman, eye, cut, 
hairstyle …

Figure 5. Visualization of AMC model’s VAN, LAN and MTN re-

sults. First column: Input query and importance of visual and lan-

guage modalities produced by MTN. Second and third columns:

original images and query-guided attention maps produced by

VAN. Fourth column: Some keywords highlighted by LAN.

much improvement (∼0.2% increase in R@k scores). This

is because most images in ASD contain only one object in

the center, which takes 70% of the space with clean back-

grounds. In such case, VAN can offer limited boost in

performance by focusing on informative regions. We then

combine VAN and LAN using LF. The resulting model,

ImgATT-KeyATT-LF, achieves significant improvement in

R@k scores, with 1.2-3.8% increase compared to DSSM-

Key and 3.2-6.5% increase compared to DSSM-Img. We

further apply the MTN to attend on different modalities, and

get the AMC Full model. The AMC Full model achieves the

best performance, with 0.6-1.0% increase in R@k scores

compared to late fusion model, 1.8-4.9% increase in R@k

scores compared to DSSM-Key and 3.8-7.1% increase in

R@k scores compared to DSSM-Img.

Overfitting. During training stage, we evaluate AMC

models on test set every epoch. The training loss first re-

duces and converges at around epoch 12. The loss on test set

follows the similar trend and converges at around epoch 14

on both Clickture and ASD, which indicates low possibility

of overfitting. We further apply AMC models on caption

ranking task which also achieves competitive performance.

5.2. Caption ranking

Experiment Setup. For visual modality, we apply a pre-

trained 200-layer Resnet [9] to extract image features as in-

put. Each image is represented as a 2048D feature vector.

To compare with [22], we also extract image features using

a pre-trained 19-layer VGG [35] network (4096D feature
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Approach VGG Res LF MTN

Skip-Vgg [17] X

Skip-Vgg-Key-LF X X

AMC-Vgg X X

Skip-Res X

Skip-Res-Key-LF X X

AMC-Res X X

Table 5. Different models evaluated on CIC. Late fusion (LF) and

inter-attention (MTN) networks are applied on multi-modalities.

Caption modality is represented by Skip-thought vector (Skip).

Image modality is represented by either VGG features (VGG) or

Resnet features (Res).

vector). For auto-tagged keywords, we remove stop words

and uncommon words in the raw data, convert all words to

lowercase, and tokenize each word to its index in the cor-

responding dictionary. The dictionary size for the keyword

modality is 26,806. For caption modality, we extract skip-

thought vectors [17] using a pre-trained model. Each cap-

tion is represented by a 4800D skip-thought vector. Same

as [17], embedding vectors in all modalities are projected

to 1000 dimensions (d = 1000). The similarity between

query and features from different modalities is measured by

cosine distance in the AMC space.

AMC models. Same as the denotation in Sec 5.1, we

apply latefusion (LF) and inter-attention (MTN) mecha-

nisms to combine features from image modality and key-

word modality (Key). Different AMC models’ configura-

tion is shown in Table 5.

Training details. We set margin α = 0.2 and number

of negative samples k = 50 for each correct caption-image

(keyword) pair (Eq 9).

Evaluation Metric. We follow the evaluation metric re-

ported in [14]. Same as [14, 16, 17, 18, 25, 26], we report

the caption retrieval performance on the first 1,000 test im-

ages. For a test image, the caption retrieval system needs to

find any 1 out of its 5 candidate captions from all 5,000 test

captions. We report recall@(1, 5, 10), which is the fraction

of times a correct caption is found among the top (1, 5, 10)

ranking results.

Performance comparison. AMC models provide

very competitive results even without a complex language

model, e.g., recurrent neural network (RNN), convolu-

tional neural network (CNN) or Gaussian mixture models

(GMM), to process captions compared to models in [14,

16, 17, 18, 25, 26]. In Table 6, we first combine keyword

and image modalities using latefusion (Skip-Vgg-Key-LF).

Skip-Vgg-Key-LF gives small improvement in performance

by ∼0.6% in R@(1, 5, 10). This indicates that keyword

modality provides useful information but further care is

needed to put it to better use. Thus, we apply the inter-

attention network (AMC-Vgg) to select informative modal-

Approach R@1 R@5 R@10

Random 0.1 0.5 1.0

DVSA [14] 38.4 69.9 80.5

FV [18] 39.4 67.9 80.5

m-RNN-vgg [26] 41.0 73.0 83.5

m-CNNENS [25] 42.8 73.1 84.1

Kiros et al. [16] 43.4 75.7 85.8

Skip-Vgg [17] 33.5 68.6 81.5

Skip-Vgg-Key-LF 34.2 69.3 82.0

AMC-Vgg 37.0 70.5 83.0

Skip-Res 39.5 73.6 86.1

Skip-Res-Key-LF 40.1 74.2 86.5

AMC-Res 41.4 75.1 87.8

Table 6. Performance of different models on CIC. The evaluation

metrics are R@1, 5, 10(correspond to 2nd to 4th column). AMC

models achieve competitive performance with only skip-thought

vectors for caption modality among all VQA-agnostic models.

ities, which boosts the performance by a large margin, with

3.5%, 1.9% and 1.5% increase in R@(1, 5, 10), respec-

tively. We further change the image features to Resnet

features, and observe similar performance improvement as

Vgg features. The final model (AMC-Res), which applies

MTN on Resnet-based image modality and keyword modal-

ity, achieves very close performance on R@1 as [25], on

R@5 as [16] and even surpasses the state-of-the-art result

on R@10. We notice that AMC model does not achieve bet-

ter results in R@5 compared to [26, 25, 16]. This is because

we adopt a relatively simple language model (Skip-thought

vector [17]) for captions, with base performance at 33.5% in

R@5. Equipped with a more complex RNN / CNN model to

process caption modality, AMC models will expect further

boost in performance.

We notice that [22] reports much better results on the

caption ranking task compared to [14, 16, 17, 18, 25, 26].

However, the model in [22] is called “VQA-aware” model,

which encodes external VQA knowledge learned in the

VQA task and fuses with the model in [16]. AMC mod-

els, as well as models in [14, 16, 17, 18, 25, 26], belong to

“VQA-agnostic” models, which can be fused and enhanced

by external VQA knowledge. We expect to see further boost

in performance of AMC models on caption ranking task

when the VQA knowledge data is made public.

6. Conclusion

We proposed an Attention guided Multi-modal Correla-

tion (AMC) learning method. AMC models adaptively at-

tend on useful modalities and filter out unrelated informa-

tion within each modality according to the input query’s in-

tent. AMC framework can be further boosted by incorporat-

ing more image related modalities and external knowledge.

This will be discussed in future work.
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