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Abstract

Despite the remarkable progress in recent years, detect-

ing objects in a new context remains a challenging task. De-

tectors learned from a public dataset can only work with

a fixed list of categories, while training from scratch usu-

ally requires a large amount of training data with detailed

annotations. This work aims to explore a novel approach

– learning object detectors from documentary films in a

weakly supervised manner. This is inspired by the obser-

vation that documentaries often provide dedicated exposi-

tion of certain object categories, where visual presentations

are aligned with subtitles. We believe that object detec-

tors can be learned from such a rich source of informa-

tion. Towards this goal, we develop a joint probabilistic

framework, where individual pieces of information, includ-

ing video frames and subtitles, are brought together via

both visual and linguistic links. On top of this formulation,

we further derive a weakly supervised learning algorithm,

where object model learning and training set mining are

unified in an optimization procedure. Experimental results

on a real world dataset demonstrate that this is an effective

approach to learning new object detectors.

1. Introduction

Recent years have witnessed a wave of innovation in

object detection driven by the advances in deep learning

[12, 29, 35]. Despite the great success reported on public

benchmarks, practical applications of such techniques are

impeded by a significant obstacle, namely, the lack of an-

notated data. Specifically, detectors pre-trained on public

datasets can only cover a limited list of object categories,

which are often not sufficient for real-world applications,

where the objects of interest can go beyond such lists. On

the other hand, training a new detector requires a large

quantity of annotated images with bounding boxes provided

for individual objects. Obtaining such a dataset is an invest-

ment that takes tremendous amount of time and resources.

These difficulties call for an alternative approach to

learning object detectors. “There is no record of an Orca

doing any harm in the wild.” – we were deeply touched by

The elephant are about to march 

through them. The spiders

themselves have a span as wide as a 

human hand.

Tigers are one of the few cats that 

actually enjoy swimming.

Unlike mechanics, langurs are the 

friends of spotted deer.

But the love serenade 

is over once a dog arrives.

Male koalas play no role in parenting.

There's a turf war going on and the

koalas are losing. (dog)

Australian camels appear sick and 

emaciated.

About 50 animals have died

in just three months, including this 

adult orangutan on the day we 

arrived.

The mayor has declined offers of 

assistance and expert advice from 

animal welfare groups. (elephant)

Figure 1: We wish to devise a method that can automatically learn

object detectors as it watches a documentary, in a weakly super-

vised fashion. The figures show some examples of the proposed

Wildlife Documentaries (WLD) dataset. The nouns are marked

in red in there is a correspondence between subtitle and object in

the video. Otherwise, we provide the corresponding noun in blue

color when there is a mismatch.

this as we watched Blackfish, a famous documentary film

directed by Gabriela Cowperthwaite. For many of us, the

knowledge about various creatures on the planet are learned

from documentaries as such. Now, as we move steadily to-

wards the era of AI, we are motivated to ask: Can computers

learn in a similar way?

From an intuitive perspective, the idea of exploiting doc-

umentaries to learn object detectors is promising. Thou-

sands of documentary films that cover a broad range of

topics are produced every year, and the number is rising

rapidly. A documentary film usually comprises a number

of visual presentations with subtitles that cover the entities

being introduced from different perspectives. Clearly, this

is a rich source of information for visual learning.

In this work, we aim to derive a method that can auto-

matically learn object detectors as it watches a documen-

tary, in a weakly supervised fashion (Fig. 1). Towards this

goal, we are facing multiple challenges. First and fore-

most, the framework has completely no prior knowledge as
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to what it will see from the videos, e.g. the number of object

categories and how the story is going to be presented. Ev-

erything has to be discovered from the data – no human as-

sistance is available. Second, associations between linguis-

tic cues and visual cues are often ambiguous. For example,

when multiple objects are present at the same time, it is dif-

ficult to identify the correspondence between the nouns in a

subtitle and the objects that appear in the associated frames.

The ubiquitous pronouns and synonyms further complicate

the problem. – a tiger is often called a cub or a big cat,

it can also be referred to using pronouns, such as “it” or

“this”. Third, there are substantial variations of an objects

appearance due to position changes, blurring, and partial oc-

clusions. Even state-of-the-art recognition techniques may

experience difficulties in handling all such circumstances.

The difficulties are clear – whereas the materials con-

tained in documentaries are rich and relevant, the observa-

tions that we work with are filled with noises, ambiguities,

and disconnected pieces. In tackling this challenge, we de-

velop a probabilistic framework, with an aim to bridge in-

dividual pieces of information, turning them into a coher-

ent picture. Specifically, the framework incorporates three

kinds of factors as bridges: (1) the appearance factor that

captures the common appearance pattern of each object cat-

egory, (2) the geometric factor that stitches isolated tracklets

of an object into a whole, and (3) the grounding factor that

associates linguistic references with visual observations. In

addition, the framework also identifies nouns and pronouns

that describe the same entities via coreference analysis. On

top of this formulation, we further derive an learning algo-

rithm, where the learning of object detectors and the mining

of training data are conducted along with each other within

a unified optimization procedure.

The main contributions of this work lie in several as-

pects: (1) a novel approach to learning object detectors,

namely, learning from documentary videos in a weakly su-

pervised way, without any annotated object seeding or bag-

level supervision as in multiple instance learning methods.;

(2) a framework that can effectively integrate noisy pieces

of information, including visual and linguistic cues; and (3)

a new dataset with detailed annotations (Fig. 1)1.

2. Related Work

Weakly-supervised object localization. The time-

consuming annotation process in object detection can be

sidestepped by weakly supervised learning [2, 3, 7, 9, 13,

30, 33, 36, 40, 41, 42, 43, 44]. In many cases, the su-

pervised information is restricted to binary labels that in-

dicate the absence/presence of object instances in the im-

age, without their locations. Typically, a multiple instance

learning [25] framework is adopted. Specifically, each im-

1Dataset and code are available at https://github.com/

hellock/documentary-learning.

age is considered as a ‘bag’ of examples given by object

proposals. Positive images are assumed to contain at least

one positive instance window, while negative images do not

have the object at all. A good overview is provided in [7].

Prest et al. [33] introduce an approach for learning object

detectors from real-world web videos known only to con-

tain objects of a target class. In other words, their study

requires one label per video. Our problem is more chal-

lenging in that documentaries do not provide precise labels

even at the ‘bag’ level, so we do not have definite positive

and negative windows in videos. We thus require an ef-

fective framework to integrate noisy pieces of information.

Joulin et al. [16] propose a method to localize objects of the

same class across a set of distinct images or videos. The co-

localization problem assumes each frame in a set of videos

contains one object of the same category.

Other relevant studies include [22, 27] that perform

semi-supervised learning to iteratively learn and label ob-

ject instances from long videos. Annotated seeds are re-

quired in these approaches. Kumar et al. [19] transfer

tracked object boxes from weakly-labeled videos to weakly-

labeled images to automatically generate pseudo ground-

truth boxes. Our approach works directly on video. Alayrac

et al. [1] model narrated instruction videos to learn the se-

quence of main steps to complete a certain task. Many

videos with transcript of the same task are required. Kwak

et al. [20] formulate the problem of unsupervised spatio-

temporal object localization as a combination of discovery

and tracking. It locates one instance each frame and cannot

align semantic labels with clusters of objects. Recent stud-

ies [28, 45] show that object detectors emerge within a con-

volutional neural network (CNN) trained with image-level

labels. We leverage on this concept to generate candidate

proposals in our approach.

Grounding objects from image descriptions. A num-

ber of approaches have been proposed to localize objects

in an image given its description. For instance, Karpathy

et al. [18] address the inter-modal alignment problem by

embedding detection results from a pretrained object de-

tector and the dependency tree from a parser with a rank-

ing loss. Plummer et al. [32] learn a joint embedding of

image regions and text snippets using Canonical Correla-

tion Analysis (CCA) to localize objects mentioned in the

caption. Recent studies [15, 23] build upon image caption-

ing frameworks such as LRCN [10] or m-RNN [24], which

are trained with ground-truth phrase-region pairs of known

object classes. The idea is extended to image segmen-

tation from natural language expressions [14]. Rohrbach

et al. [37] present a latent attention approach that learns

to attend to the right region of an image by reconstruct-

ing phrases. In contrast to aforementioned studies, our

work neither assumes objects of seen classes nor any paired

ground-truth phrase-image or phrase-region data. Instead,
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we focus on discovering and learning to detect unknown

objects with the help of unstructured linguistic references.

Linguistic cues in vision. Subtitles have been exploited for

assisting the learning of visual recognizer. Several studies

[6, 8, 31] automatically learn British Sign Language signs

from TV broadcasts. Their videos contain a single signer

with a stable pose. Positive correspondence between subti-

tle and signing can be easily identified due to the more struc-

tured data. Ours contain multiple animals moving around,

exhibiting various poses and scales. Our problem thus re-

quires a more error-tolerant formulation for learning and

linking the appearance, geometric, and grounding factors.

Another study [11] reduces ambiguity in automatic charac-

ter identification by aligning subtitles with transcripts that

contain spoken lines and speaker identity. In our case, we

do not have access to transcripts. Some studies [11, 34, 5]

explore transcripts of movies and TV series to help iden-

tify characters. A similar idea is proposed in [21] for action

recognition. The character names are provided in advance,

but in our setting, we assume that categories are unknown

so that new objects can be discovered.

3. Wildlife Documentaries (WLD) Dataset

Right from the beginning of this study we ruled out

videos with relatively clean separation of objects and back-

ground for our study of unknown objects discovery. Instead,

we wish to mine for more meaningful and richer informa-

tion from complex videos. To facilitate our study, we col-

lect a new dataset called Wildlife Documentaries (WLD)

dataset. It contains 15 documentary films that are down-

loaded from YouTube. The videos vary between 9 minutes

to as long as 50 minutes, with resolution ranging from 360p

to 1080p. A unique property of this dataset is that all videos

are accompanied with subtitles that are automatically gen-

erated from speech by YouTube. The subtitles are revised

manually to correct obvious spelling mistakes. To facilitate

evaluations, we annotate all the animals in the videos result-

ing in more than 4098 object tracklets of 60 different visual

concepts, e.g., ‘tiger’, ‘koala’, ‘langur’, and ‘ostrich’. We

show some examples in Fig. 1.

The WLD dataset differs from conventional object detec-

tion datasets in that it is mainly designed to evaluate an algo-

rithm’s capability in discovering object of unknown classes

given with rich but ambiguous visual and linguistic infor-

mation in videos. The videos are much longer and are left

as they are without manual editing, while existing datasets

usually provide short video snippets. The total frame num-

ber is more than 747,000. Object bounding box annotations

are not designated for model training, but provided to eval-

uate how accurate an algorithm could associate the object

tubes with the right visual concepts.

The dataset is challenging in two aspects. Since videos

are long documentaries, large variation in scale, occlusion

merge tracklets
and categories

She	needs	to	be	good.	Her	cubs

have already	got	huge	appetites

Most	animals	fear sloth	bears as	but	

not	apparently	wild boar,	at	least	

not	in	this	food	around.

langurs are	the	friends of	spotted	

deer.

elephant

bear

langur

pool

tiger

boar
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…
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…

update

keywords tracklets
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samples

…
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1. Bootstrap 2. Joint Analysis

Figure 2: The proposed framework learns object detectors from

documentary videos in an unsupervised manner. This is made pos-

sible through integrating noisy pieces of information, including

visual and linguistic cues.

and background clutters is common. In many cases multiple

objects co-exist in a frame. This adds difficulty in associat-

ing a target object with the correct nouns. Besides the visual

challenges, highly unstructured subtitles also add to com-

plexity. As can be seen from Fig. 1, meaningful nouns are

overwhelmed by abundant of pronouns and synonyms. The

occurrence of a noun does not necessarily imply the pres-

ence of the corresponding object due to temporal distance

between object and subtitle. It is possible that a correspon-

dence do not occur at all.

4. Framework Overview

Our primary goal in this work is to develop a framework

that can discover new objects from a documentary video,

and learn visual detectors therefrom. Note that the frame-

work knows nothing about the given video a priori. The

video itself and the associated subtitles, are the only data

that it can rely on in the analysis.

As shown in Figure 2, our framework accomplishes this

task through two major stages, namely the bootstrap stage

and the joint analysis stage. The bootstrap stage is to pre-

pare the materials for analysis. Specifically, it will acquire

a collection of tracklets using a class-agnostic detector and

tracker, and extract a list of keywords via low-level linguis-

tic analysis. The joint analysis stage that ensues aims to

assemble the tracklets and keywords into a coherent and

meaningful picture. This analysis is devised on top of a

CRF formulation, which unifies several tasks into an itera-

tive optimization procedure. At each iteration, it selects a

subset of confident samples to train or fine-tune the classi-

fier for each object category, employs the updated classifiers

to recognize the classes of individual tracklets, grounds the
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keywords to them accordingly, and merges isolated track-

lets based on the updated knowledge. In this way, object

classifiers can be gradually improved with a growing and

refined pool of training samples.

5. Bootstrap

The bootstrap stage is to prepare the inputs for joint anal-

ysis, which includes candidate tracklets and a list of key-

words extracted from subtitles.

Obtain candidate tracklets. We employ an simplified ver-

sion of the method proposed by Kang et al. [17] to generate

candidate tracklets, without performing the actual detection

task. Specifically, we first use a Region Proposal Network

(RPN) [35] to generate class-agnostic object proposals from

each video frame, and then apply a CNN-based classifier

to evaluate the objectness score of each proposed bounding

box. Then, we extend each proposal with high score to a

tracklet via tracking. Note that we re-train the RPN by ex-

cluding any object of interests in the WLD dataset to make

sure our approach is agnostic to the categories. The CNN

for evaluating objectness provides an appearance feature for

each bounding box, which will be retained and used in joint

analysis.

Select keywords. Our linguistic analysis takes four steps to

select keywords from subtitles:

(1) Coreference resolution. Pronouns are ubiquitous in typ-

ical narratives. To address this, we first use the method de-

scribed in [26] to resolve the correspondences between pro-

nouns and nouns and substitute all pronouns with the corre-

sponding nouns, e.g. from “his paw” to “tiger’s paw”.

(2) POS tagging. Object categories are usually nouns. To

identify them, we apply Part-Of-Speech (POS) tagging us-

ing a parser [4].

(3) Lemmatization. In English, a word can appear in a

sentence in different forms, e.g. “bear”, “bears”, and

“bear’s”. This step is to replace different forms of a word

with its canonical form, so they will be considered as the

same in later analysis.

(4) Selection. Finally, we want to select a subset of nouns as

keywords that may indicate object categories. To avoid com-

mon words such as “animal” and “food”, we resort to tf-idf

scores [39], motivated by the rationale that relevant key-

words should frequently appear in only a small number of

documents. To obtain reliable tf-idf scores, we collect a cor-

pus that contains 2000 documentary transcripts and com-

pute the scores thereon. We found empirically that the pro-

cedure outlined above can provide a good list of keywords

that cover most of the animals appearing in our dataset.

6. Joint Analysis

Following the bootstrap stage, the framework will per-

form joint analysis based on a probabilistic model – clas-

sify each tracklet, infer the associations between tracklets

and keywords, and as well obtain new object classifiers.

6.1. Task Statement

Specifically, given a video, the inputs at this stage in-

clude two parts: (1) Tracklets. We denote all tracklets

as T = {τ1, . . . , τn}. Each tracklet τi is a sequence of

bounding boxes, and can be described by a visual feature

vi and a geometric feature ui. The former is formed by

the appearance features extracted from a sub-sequence of

frames, as vi = (v
(1)
i , . . . ,v

(li)
i ); while the latter cap-

tures the spatial/temporal characteristics of the bounding

boxes. (2) Keywords. We consider each subtitle as a bag

of keywords for simplicity. Putting all subtitles together, we

can thus obtain a large collection of keywords, denoted by

W = {w1, . . . , wm}. Each keyword has a time span, which

is the same as that of the parent subtitle.

The purpose of this joint analysis stage is to accomplish

three key tasks: (1) Categorization. An important goal

of this work is to detect objects from a given video. This

is accomplished by assigning a category label zi ∈ C to

each candidate tracklet τi. Here, C is the set of all cat-

egories, including all object categories and a background

category with label 0. (2) Grounding. Along with a sub-

title, multiple tracklets may appear in the scene. To bridge

the visual and the linguistic domains, we need to ground

the keywords to individual tracklets, i.e. determine which

keywords correspond to which tracklets. Generally, a key-

word may be grounded to zero or multiple tracklets, and

vice versa a tracklet may be referred to by multiple key-

words. Here, we use aij ∈ {0, 1} to indicate whether the

tracklet τi is associated with the keyword wj . (3) Classifier

Learning. The detected tracklets with their inferred labels

constitute a training set on which object classifiers can be

learned. Specifically, we can select a confident subset of

tracklets classified to each object category and train a clas-

sifier thereon.

6.2. Probabilistic Formulation

In this work, we propose a Conditional Random Field

(CRF) that unifies all these tasks into a probabilistic formu-

lation, which comprises the following potentials:

Appearance potential ψap(zi|vi;θ): This potential mea-

sures how well a tracklet τi matches a object category zi
based on its appearance feature vi. It is defined as

ψap(zi|vi,θ) =
∑li

t=1
log p(zi|v

(t)
i ;θ). (1)

When a convolutional network is used, p(z|v;θ) is simply

the logarithm of the output of the softmax layer, and the

parameters θ are the network weights.

Keyword-tracklet potential φkt(zi, aij |η): As mentioned,

aij indicates whether the tracklet τi associates with the key-
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word wj . The value of this potential is determined by the

object category zi, as

φkt(zi, aij |η) = log p(zi|wj ;η). (2)

Each object category can have multiple keywords, e.g. class

tiger have keywords “tiger” and “cub”. Here, p(zi|wj ;η)
is the probability that the keyword wj belongs to the class

zi, and the parameter η is the conditional probability table.

A restriction is enforced here – each keyword can only be

grounded to a tracklet whose time span overlaps with its

own. In other words, aij is forced to be zero when the time

spans of τi and wj have no overlap.

Geometric potential φst(rii′ , zi, zi′ |ui,ui′): Here, rii′ in-

dicates whether tracklets τi and τi′ are two consecutive seg-

ments of an object trajectory and thus should be merged.

The value of φst is defined to be

φst =

{

δ(zi = zi′) · s(ui,ui′) (rii′ = 1),

0 (rii′ = 0).
(3)

Here, s(ui,ui′) is the spatial/temporal consistency. This

definition ensures that two tracklets can only be merged

when they have the same class label and are consistent in

both space and time.

Joint model. The joint CRF can then be formalized as

p(z,a, r|o; Θ) =
1

Z(Θ)
exp (Ψap(z|o;θ)+

Φkt(z,a|o;η) + Φst(r, z|o)) . (4)

Here, z, a, and r are the vectors that respectively comprise

all tracklet labels (zi), keyword-tracklet association indica-

tors (aij), and tracklet link indicators (rij). o denotes all

observed features, and Θ are model parameters. The three

terms are given by

Ψap(z|o;θ) =
∑n

i=1
ψap(zi|vi;θ), (5)

Φkt(z,a|o;η) =
∑

(i,j)∈G
φkt(zi, aij |η), (6)

Φst(r, z|o) =
∑

(i,i′)∈R
φst(rii′ , zi, zi′ |ui,ui′). (7)

Here, G is the set of tracklet-keyword pairs that can possi-

bly be associated, i.e. their time spans overlap; R is the set

of all tracklet-tracklet pairs which can possibly be merged,

i.e. spatial-temporal consistency is sufficiently high.

6.3. Joint Learning and Inference

Given a video, we employ variational EM to estimate the

parameters θ and η, and as well infer the latent variables,

including (zi), (aij) and (rii′).

Initialization. To begin with, we form the initial set of

classes by considering each distinct keyword as a class –

such classes may be merged later as the algorithm proceeds.

Also, to provide initial labels, we cluster all tracklets into a

number of small groups based on their appearance using

Mean Shift. Each cluster will be assigned a label according

to the most frequent keyword among all those that overlap

with the tracklets therein. Our experiments will show this

heuristic method, while simple and not very accurate, does

provide a reasonable initialization for joint analysis.

Iterative Optimization. The main algorithm is an itera-

tive procedure that alternates between the following steps:

1. Screen samples. We observed detrimental impacts if all

tracklets are fed to the training of classifiers, especially

in the initial iteration, where the inferred labels can be

very noisy. To tackle this issue, we explicitly enforce a

screening mechanism, a confidence value will be com-

puted for each tracklet based on a number of metrics,

e.g. the length, the mean objectness score, the stability

of the objectness scores, as well as the classification mar-

gin, i.e. the difference between the highest classification

score and the runner-up. These metrics are combined

using an SVM trained on a subset held out for tuning

design parameters.

2. Update classifiers. With the confidence values, all

tracklets whose confidence is beyond a certain threshold

will be gathered to train or fine-tune the object classifiers

of the corresponding categories. For each tracklet, we

consider the class with highest score as its “true class”

for the current iteration. The tracklets are sub-sampled

with a fixed interval in order to save training time. The

sampling interval is determined in a way such that the

number of samples in all classes are relatively balanced.

In addition, we also train a classifier for the background

class, so as to enhance the contrast between foreground

objects and the background.

3. Classify tracklets. With the updated classifier, we can
infer the posterior probabilities of the class label zi for
each tracklet τi, denoted by qi, as

qi(zi) ∝ exp



ψap(zi|vi,θ) +
∑

j∈Gi

φkt(zi, aij |η)



 . (8)

Here, Gi = {j : (i, j) ∈ G} is the set of keywords

that overlap with τi. Here, the inference of the label zi
considers not only the appearance (1st term) but also the

keywords associated with it (2nd term).

4. Ground keywords. First, each keyword wj can only

be grounded to those tracklets with overlapping time

spans. For one of such tracklets, whether wj should be

grounded to τi depends only on the class label zi. Par-

ticularly, the posterior probabilities of aij of given by
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p(aij |zi) ∝ exp(φkt(zi, aij |η)). We found empirically

that for most of the cases the probabilities are close to

either 0 or 1. Hence, we simply sample aij therefrom to

determine the grounding relations.

5. Merge tracklets. For each pair of tracklets τi and τi′ , we

sample rii′ based on φst(rii′ , zi, zi′ |ui,ui′). If rii′ = 1,

they will be merged into a new single tracklet. From the

next iteration, the newly merged tracklet will be treated

as a whole. Over time, the pool of isolated tracklets will

be gradually consolidated into longer trajectories.

6. Merge categories. At the end of each iteration, we com-

pute the similarity between each pair of categories us-

ing the Earth Mover’s Distance [38], and merge similar

classes (i.e. the distance below a threshold) into a single

one. Along with this, the tracklet labels of the merged

classes will be re-mapped to the new labels accordingly.

As we can see, multiple tasks are integrated in this pro-

cedure. Through iterative updates, a coherent picture over

the given video will be gradually formed, where tracklets

are assigned to object categories, keywords are grounded

to relevant tracklets, and more importantly, a set of new

object classifiers will be derived. Note that this is not a

strict optimization algorithm, as two additional steps are in-

serted, which include screen sampling and category merg-

ing. While such steps are not directly derived from the CRF

formulation, they do play significant roles in guiding the

procedure towards a desirable direction.

7. Experiments

We evaluated our framework on the WLD dataset, com-

paring the results from different iterations and those from

a supervised counterpart. We also studied the contributions

of different components.

Settings. Recall that we use the RPN [35] for proposals

generation and a CNN for objectness scoring and feature

extraction in the bootstrap stage. The CNN is later used

as a classifier in the joint analysis stage by adding fully-

connected and softmax layers. For efficient iterative op-

timization during joint analysis, we only update the fully-

connected layers and keep the convolutional layers fixed.

We use ResNet-269 for the RPN and ResNet-101 for the

CNN. Both models are trained using images excluding the

object of interests in WLD.

Evaluation metrics. Since our approach is unsupervised,

we evaluate our method on the whole WLD dataset and the

primary metric is precision-recall. Some video detection

tasks such as ImageNet VID evaluate the performance the

same way as in object detection in images, regardless of the

temporal accuracy and tracklet instance matching. On the

contrary, we evaluate the results at the tracklet-level instead

of the box-level, which can reflect the detection results more
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Figure 3: The overall performance of different iterations.

Table 1: Average precision (%) on a subset of WLD dataset.

Iter 0 Iter 1 Iter 2

mAP 8.0 8.3 8.7

discovered mAP 20.6 28.9 30.7

intuitively and precisely. Specifically, the Intersection-over-

Union (IoU) criterion is extended to spatio-temporal track-

lets, the 3-D IoU of tracklet τp and τgt is calculated as
volume(τp∩τgt)
volume(τp∪τgt)

. We use 0.3 as the threshold in all of our

experiments.

7.1. The Effectiveness of Iterative Optimization

Our learning method converges after 2 iterations and the

results are shown in Fig. 3. The results suggest the effective-

ness of our joint analysis step in incorporating noisy visual

and linguistic information. It is observed that more itera-

tions only give marginal improvements. This may due to

that a majority of confident samples have been mined and

utilized in the first two iterations, and little extra informa-

tion can be found in further steps. We also measure the

mAP of our results like other supervised detection meth-

ods, as shown in Table 1. Different from supervised and

some weakly-supervised methods that have a prior of ob-

ject categories, candidate categories are derived from subti-

tle analysis in our framework, so some categories with only

a few objects, e.g. elephant, may be hard for our framework

to discover. Consequently, we propose discovered mAP be-

sides the regular mAP, which means the mAP of all dis-

covered categories. The results shows that object categories

mentioned more often in the video are more likely to be

discovered and learned.

7.2. Comparison with Supervised Method

We wish to examine further how our unsupervised

trained detector compares against a strong fully supervised

detector. To perform this experiment, we select categories

that are available in both WLD and ImageNet. In total 7

classes are selected, which are available in a single docu-

3092



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

re
c
is

io
n

ours(iter 0)

ours(iter 2)

supervised

Figure 4: Comparison with the fully supervised method.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

baseline

baseline + A

baseline + A + G

Figure 5: The results of introducing different potentials. We show

the results of the first iteration in joint analysis.

mentary video. Since the fully supervised detector is trained

using ImageNet object detection and localization dataset, it

has prior knowledge on these selected categories, and its

performance can be treated as an upper-bound of our un-

supervised method. As shown in Fig. 4, after 2 iterations,

our unsupervised detector is competitive to the supervised

counterpart in high-precision region. The discovered mAP

for the fully supervised method is 0.309, comparable to

0.307 of our method. It is also observed that our method

has a comparable or even higher AP in major categories of

the documentary, e.g., tiger and langur in this case.

7.3. Ablation Study

To better understand how our joint model works, we

study the necessity of appearance potential and geometric

potential (keyword-tracklet potential is essential otherwise

tracklet labels cannot be obtained). We compare the fol-

lowing results: (1) Baseline, (2) Baseline + Appearance, (3)

Baseline + Appearance + Geometry, as shown in Fig. 5.

Appearance potential. From the results of (1) and (2),

we can observe that the appearance potential contributes

considerably to the performance increase. There are two

possibilities for the gain: the classifier corrected the false

negative samples back to positive, or the classifier disam-

biguated confusing labels across different foreground cat-

egories. To further examine the role of this potential, we

Table 2: The results before and after ‘classify tracklets’ and

‘ground keywords’ steps (see Sec.6.3 for details).

F1-binary F1-multiple average top-3 size

before 0.409 0.240 96

after 0.367 0.305 277

Table 3: A comparison of our grounding approach with

word counting baseline accuracy.

Iter 0 Iter 1 Iter 2 Ground truth

Word counting 0.414 0.776 0.855 0.744

Ours 0.343 0.888 0.937 0.935

treat all the foreground categories as one class and calcu-

late the F1 score of classifier prediction compared with the

baseline. We also compute the average size of top 3 largest

clusters. As shown in Table 2, despite the classifier cannot

recall more foreground samples compared with the baseline

(reflected by the F1-binary metric), it shows great improve-

ment on grounding results (reflected by the F1-multiple

metric). When we consider the improved F1-multiple met-

ric and the increase of cluster size, the observation suggests

that the appearance model captures meaningful visual simi-

larity and strengthen some dominant categories.

Keyword-tracklet potential. In our grounding method,

only tracklets that are predicted as positive can be associ-

ated with keywords and all negative ones are ignored. The

positive tracklets can be noisy since the predicted labels

may not be accurate. A good grounding strategy will as-

sociate correct words with true positive samples, as well

as assign no word to false positive samples. As a base-

line for grounding, we employ a straightforward approach

which assigns category labels based on word frequencies.

We compare the accuracy on true positive samples of two

methods using class labels of different iterations as well as

ground truth labels. The results are shown in Table 3, which

clearly shows the significant contribution of this potential.

Geometric potential. Comparing (2) and (3), geomet-

ric potential also shows its effectiveness, although much

weaker than the appearance potential. The effects of ge-

ometric link potential are of two aspects named “weak

link” and “strong link”, which are decided by the poten-

tial value. “Weak link” refers to two tracklets (belonging to

the same category) with weak geometric relation based on

some threshold. “Strong link”, on the other hand, refers to

two tracklets not only belong to the same category, but also

strong geometric relation (which will be merged together).

We compare the following variants: without geometric link,

with weak geometric link, with both weak and strong geo-

metric link, results are shown in Figure 6. “Weak link” con-

tributes little compared with “strong link” (completely over-

lapped with baseline), suggesting that the merging strategy

with strong link is the most effective part in geometric po-

tential.
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Figure 6: The results of weak and strong geometric link.

“A”, “WG” and “SG” refer to “appearance”, “weak link”

and “strong link” respectively.
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Figure 7: Tracklet examples in different iterations.

7.4. Examples and Failure Cases

We demonstrate some examples in Fig. 7, showing the

results in different processes. The initialization (iter 0) is

not satisfying for the some wrong labels, and the long tra-

jectory is split into three short tracklet proposals. As the

iteration proceeds, the learned appearance model classifies

the tracklets into correct groups, and the strong geomet-

ric link merges separated tracklets into longer ones, which

helps to obtain the correct labels in turn.

We also show some failure cases of our method. Figure 8

illustrates three typical types of failure: (1) contributed by

the very ambiguous and challenging visual appearance of

the object. These objects are either too small or heavily

occluded by other object. (2) caused by the omission of

keywords, i.e., if the tf-idf score is below the threshold, the

category is not included in the keyword list. (3) caused by

mismatch in visual and linguistic evidences. Specifically, if

two categories usually appear at the same time or the subti-

tles and frames are not synchronized, it is likely to be mis-

matched.

Appearance	variance

Pred:	background GT:	tiger Pred:	background GT:	boar Pred:	background GT:	deer

Keyword omission

The success of Taman Safari leaves

Surabaya in the shade with 1.8

million visitors a year.
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farms here worry about losing stock

to wild animals.

It pulls in tens of millions of dollars

on ticket sales alone.

Pred:	background GT:	zebra Pred:	background GT:	goose Pred:	background GT:	deer

Visual-linguistic mis-match

It is sometimes necessary for the

bears to show who is boss.

Even at this size, each cub consumes

around two kilos of meet.

The cubs also like a cooling dip.

Pred:	bear GT:	boar Pred:	cub GT:	background Pred:	cub GT:	background

Figure 8: Examples of failure cases.

8. Conclusion

This paper presented a framework that can jointly dis-

cover object categories, detect object tracks, and learn ob-

ject classifiers from documentary videos in an unsupervised

fashion. Experimental results obtained on a real world

datasets have demonstrated the effectiveness of this frame-

work – most animal categories are discovered automati-

cally. Also, as the joint analysis algorithm proceeds, the

object classifiers will be gradually improved with a grow-

ing training set, raising the mAP from 8.0% to 8.7% and

the discovered mAP from 20.6% to 30.7%. Our framework

also present comparable results with fully supervised learn-

ing for the major categories of documentaries.
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