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Abstract

Recent advances in image manipulation tools have made

image forgery detection increasingly more challenging. An

important component in such tools is the ability to fake blur

to hide splicing and copy-move operations. In this paper, we

present a new technique based on the analysis of the cam-

era response functions (CRF) for efficient and robust splic-

ing and copy-move forgery detection and localization. We

first analyze how non-linear CRFs affect edges in terms of

the intensity-gradient bivariate histograms. We show distin-

guishable shape differences between real and forged blurs

near edges after a splicing operation. Based on our analy-

sis, we introduce a deep-learning framework to detect and

localize forged edges. In particular, we show the problem

can be transformed to a handwriting recognition problem

and resolved by using a convolutional neural network. We

generate a large dataset of forged images produced by splic-

ing followed by retouching and comprehensive experiments

show our proposed method outperforms the state-of-the-art

techniques in accuracy and robustness.

1. Introduction

Forensic algorithm development seeks to improve ro-

bustness and expand upon a limited set of cues used to de-

tect media forgery. However, with the advance of image

manipulation tools, assessing the integrity of open-source

visual media is increasingly difficult. A particularly chal-

lenging example is faked motion and/or defocus blurs that

are consistent with a plausible scene geometry. Forged blurs

can significantly increase photorealism and has shown great

success in visual special effects. Since blurs are commonly

viewed as a low-pass filter, detecting forged blurs has been

particularly challenging and most existing forensic tools
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Figure 1. The two paths to a blurred edge. The top row shows

the sequence for authentic images, where optical blur happens in

the optics before the CRF is applied. The lower row shows the

sequence for artificially blurry images, where a sharp edge passes

through the CRF and is then blurred in image manipulation soft-

ware, e.g. PhotoShop.

lack the scalability and automation needed to provide re-

liable assessments.

In this paper, we present a novel forensic based on the

Camera Response Function (CRF), which enables a more

reliable detection of a wider range of manipulation process-

es. We specifically target splicing manipulations, where

contents are extracted from one image and then copied into

a new image. These usually involve a segmentation opera-

tion to delimit the content in the original image, the use of

which leads to harsh boundaries between it and the back-

ground. Because existing forensic methods for splicing de-

tection use properties of different image regions for detec-

tion, they are prone to false positives when parts of an au-

thentic image have spatially-varying properties. Methods

which measure blur consistency between different parts of

the image, for instance, are prone to false positives when

the different regions are at different depths (and thus have

different optical defocus), move separately (and thus have

different motion blur), or where there are significant differ-
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ences between the underlying textures (since it’s not pos-

sible to measure blur in a uniformly-colored region). Our

method avoids these issues by analyzing edges, is able to

detect both unnaturally sharp edges (from the segmenta-

tion step), and can distinguish naturally-blurred edges from

those that have been blurred by image manipulation tools.

Our approach exploits a cue inherent to cameras: the

non-linear camera response function (CRF). Recent stud-

ies have shown that motion or defocus blurs under CR-

F are very difficult to compensate [36], because the (lin-

ear) blurring operation happens in sequence with the (non-

linear) CRF. Traditional image deblurring algorithms can

lead to strong ringing artifacts due to CRF non-linearity, if

not properly accounted for. At a high level, we exploit this

same property for forgery detection. The key idea is that

the CRF’s non-linearity is not commutative with the linear

operation of optical blurring: an edge blurred optically and

then passed through the non-linear CRF will have different

properties than one which first goes through the CRF and

is then blurred (e.g., in Photoshop). Fig.1 shows these two

paths, illustrated with a simple step edge. Due to the lack of

large volumes of training data, we have found deep learning

methods incapable of differentiating the two when operat-

ing at the patch level. However, we demonstrate that these

two paths lead to distinguishably different statistical rela-

tionships between the intensity of a pixel and the magnitude

of its gradient, and introduce a deep-learning framework to

detect and localize forged edges from this relationship. In

particular, we show the problem can be transformed to a

handwriting recognition problem and resolved using a con-

volutional neural network. Our evaluations show improved

performance on existing splicing datasets, made entirely of

artificially sharp edges, and on a new database of artificially

blurred images, where prior methods fail.

2. Related Work

In one of several survey papers on the topic, Farid [10]

grouped the different blind image forgery detection ap-

proaches under five major categories: (1) pixel-based such

as resampling [32, 27], contrast enhancement detection [34]

and local descriptors [33, 12]; (2) format-based such as dou-

ble JPEG compression detection [4]; (3) camera-based such

as demosaicing regularity [11, 5, 35], camera response func-

tion [15] and sensor pattern noise [6]; (4) physics-based

such as light anomalies [20, 17, 22] and size inconsistencies

[38]; and (5) geometric-based such as camera intrinsic pa-

rameter [19], metric measurement [18], and multi-view ge-

ometry [39]. Our technique falls within pixel- and camera-

based approaches, among which the most relevant related

works check for consistencies between image regions with

respect to the CRF and/or blur.

In a photographic camera, as opposed to a machine vi-

sion camera, the camera response function (CRF) maps the

input irradiance to output image intensity in order to achieve

aesthetic objectives. The CRF is unique for each camer-

a, potentially for different capture modes, and can be used

as the ”fingerprint” of the capturing device, which makes

it well suited for image forensics [26, 14, 15]. Most re-

cently, Hsu et al. [15] demonstrated this by automatically

segmenting an image into arbitrary-shaped regions, estimat-

ing the CRF within each, and then checking the consistency

between the segments to determine authenticity. The main

issue with this approach is that CRF estimation methods of-

ten fail on segments, particularly those with little intensity

variation. Because the CRF is a mapping over the full dy-

namic range of the image, accurate estimation requires the

presence of a wide range of intensity values [29], which is

often lacking in local image regions. Our method addresses

this by using statistical properties of the CRF instead of an

explicit estimation of it, and by extracting those properties

from edges where blurring necessarily leads to a smoothly-

varying range of intensities [36]. Prior methods are also

fundamentally unable to detect splicing where the source

and target images are captured with the same camera, since

both regions will exhibit the same CRF. Other properties

can be found in [30] to distinguish photographic images and

computer graphics.

Several methods have been proposed to detect forgeries

based on inconsistencies between blurring in an image. At

a high level, these algorithms check that different regions

of the image show the same blur type (motion or defocus)

[3], that they have the same extent of blur [2, 37], or that the

direction of motion blur is consistent [21]. While these are

useful to detect certain types of manipulations, they have a

high false alarm rate when presented with authentic images

having spatially-varying blur, e.g. from objects at different

depths or motion of different velocities. Algorithmically, a

key failure point is that the spliced-in regions may not have

the strong texture needed to estimate blur, as is the case

with many of the images we have captured. These methods

also don’t count into the effect of the CRF, which have been

shown to be important in blur analysis [7, 36].

3. Statistical Traces of Splicing

The nonlinearity of the CRF impacts a lot of image pro-

cessing and, in particular, its effect is now well-understood

on motion debluring [7, 36]. While that work showed how

an unknown CRF is a noise source in blur estimation, we

demonstrate that it is a key signal helping to distinguish au-

thentic edges from forged splicing boundaries. This allows

us to identify forgeries which involve artificially-blurred

edges, in addition to ones with artificially-sharp transitions.

We first consider blurred edges: for images captured by

a real camera, the blur is applied to scene irradiance as the

sensor is exposed, and is then mapped to image intensity

via the CRF. There are two operations involved, CRF map-
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Gradient IGHEdge Profile

Figure 2. Authentic blur (blue), authentic sharp (cyan), forgery

blur (red) and forgery sharp (magenta) edge profiles (left), gradi-

ents (center) and IGHs (right).

ping and optical/manual blur convolution. By contrast, in

a forged image, the irradiance of a sharp edge is mapped

to intensity first then blurred by manual blur point spread

function (PSF). The key to distinguishing these is that the

CRF is a non-linear operator, so it not commutative, i.e. ap-

plying the PSF before the CRF leads to a different result

than applying the CRF first, even if the underlying signal is

the same.

The key difference is that the profile of an authentic

blurred edge (CRF before PSF) is asymmetric w.r.t the cen-

ter location of edge, whereas the artificially-blurred edge

is symmetric, as illustrated in Fig.2. This is because, due

to its non-linearity, the slope of the CRF is different across

the range of intensities. CRFs typically have a larger gra-

dient in low intensities, small gradient in high intensities,

and approximately constant slope in the mid-tones. In order

to capture this we use the statistical bivariate histogram of

pixel intensity vs. gradient magnitude, which we call the

intensity gradient histogram (IGH), and use it as the feature

for splicing detection. The IGH captures key information

about the CRF without having to explicitly estimate it and,

as we show later, its shape differs between natural and artifi-

cial edge profiles in a way that can be detected with existing

CNN architectures.

Before starting the theoretical analysis, we clarify our

notation. For simplicity, we study the role of the operations

ordering on a 1D edge. We denote the CRF, which is as-

sumed to be a nonlinear monotonically increasing function,

as f(r), normalized to satisfy f(0) = 0, f(1) = 1. And

the inverse CRF is denoted as g(R) = f−1(R), satisfying

g(0) = 0, f(g(1)) = 1. r represents irradiance, and R in-

tensity. We assume that the optical blur PSF is a Gaussian

function, and have confirmed that the blur tools in Photo-

shop use a Gaussian kernel,

Kg(x) =
1

σ
√
2π

e
x
2

−2σ2 (1)

When the edge in irradiance space r is a step edge, like the

one shown in green in Fig.2

Hstep(x) =

{

a x < c

b x ≧ c
(2)

where x is the pixel location. If we use a unit step function

u(x) =

{

0 x < 0

1 x ≧ 0
(3)

The step edge can be represented by

Hstep(x) = (b− a)u(x− c) + a (4)

3.1. Authentically Blurred Edges

An authentically blurred (ab) edge is

Iab = f(Kg(x) ∗Hstep(x)) (5)

where ∗ represents convolution. The gradient of this

∇Iab = f ′(Kg(x) ∗Hstep(x)) ·
d[Kg(x) ∗Hstep(x)]

dx

= f ′(Kg(x) ∗Hstep(x)) ·Kg(x) ∗
dHstep(x)

dx

Because the differential of the step edge is a delta function,

dHstep(x)

dx
= (b− a)δ(x− c) (6)

We have

∇Iab = f ′(Kg(x) ∗Hstep(x)) ·Kg(x) ∗ (b− a)δ(x− c)

= (b− a)f ′(Kg(x) ∗Hstep(x)) ·Kg(x− c)

Substituting 5 into above equation, we have the relationship

between Iab and gradient ∇Iab

∇Iab = (b− a)f ′(f−1(Iab)) ·Kg(x− c) (7)

And Kg(x − c) is just shifting the blur kernel to the lo-

cation of the step. Because f is nonlinear and its gradient is

large at lower irradiance and small at higher irradiance, f ′

is asymmetric. Therefore IGH of authentically blurred edge

is asymmetric, as shown in blue in Fig.2.

3.2. Authentic Sharp Edge

In real images, the assumption that a sharp edge is a step

function does not hold. Some [31] assume a sigmoid func-

tion, for simplicity, whereas we choose a small Gaussian

kernel to approximate the authentic sharp (as) edge.

Ias = f(Ks(x) ∗Hstep(x)) (8)

The IGH is the same as that of an authentic blur edge 7, with

the size and σ of the kernel being smaller. Because the blur

extent is very small, there is a small transition edge region,

and the effect of CRF will not be very obvious. The IGH

remains symmetric shown as cyan in Fig.2.

5089



3.3. Forged Blurred Edge

The model for a forged blurred (fb) edge is

Ifb = Kg(x) ∗ f(Hstep(x))

The gradient of this is

∇Ifb =
d[Kg(x) ∗ f(Hstep(x))]

dx
= Kg(x) ∗ [f ′(Hstep(x)) ·H ′

step(x)]

Because

f ′(Hstep(x)) = (f ′(b)− f ′(a))u(x− c) + f ′(a) (9)

and

f(x) · δ(x) = f(0) · δ(x), (10)

we have

∇Ifb = Kg(x) ∗ [f ′(b)δ(x− c)]

= (b− a)f ′(b)Kg(x) ∗ δ(x− c)

= (b− a)f ′(b)Kg(x− c).

Clearly ∇Ifb has the shape the same as the PSF kernel,

which is symmetric w.r.t. the location of the step c, shown

as red in Fig.2.

3.4. Forgery Sharp Edge

A forged sharp (fs) edge appears as an unnaturally abrupt

jump in intensity as

Ifs = f(Hstep(x)) (11)

The gradient of the spliced sharp boundary image is

∇Ifs =
dIfs
dx

=
d[f(Hstep(x))]

dx
= f ′(Hstep(x)) · (b− a)δ(x− c)

= f ′(b) · δ(x− c)

There are only two intensities a and b, both having the same

(large) gradient. The IGH of a forged sharp edge will only

have all pixels fall in only two bins shown as magenta in

Fig.2.

3.5. Distinguishing IGHs of the Edge Types

To validate the theoretical analysis, we show IGHs of the

4 types of edge from real images in Fig.3. An authentically-

blurred edge is blurred first, inducing intensity values be-

tween the low and high values in irradiance. This symmet-

ric blur profile then is mapped through the CRF, becoming

asymmetric.

Authentic Sharp Authentic Blur Forgery BlurForgery Sharp

Figure 3. The figure shows the 4 different edge classes and their

IGH. Notice that the IGHs have different scales.

In the forged blur edge case, by contrast, the irradiance

step edge is mapped by CRF first, to a step edge in intensity

space. Then the artificial blur (via PhotoShop, etc.) induces

values between the two intensity extrema, and the profile

reflects the symmetric shape of PSF.

The forgery sharp edge is an ideal step edge, whose nom-

inal IGH has only two bins with non-zero counts. However,

due the existence of noise in images captured by cameras,

shading, etc., the IGH of forgery sharp edge appears a rect-

angular shape as shown in Fig.3. The horizontal line shows

that the pixels fall into bins of different intensities with the

same gradient, is caused by the pixel intensity varying along

the sharp edge. The two vertical lines shows that the pixels

fall into bins of different gradient with similar intensity val-

ues, is caused by the pixels intensity varying on the constant

color regions.

As for the authentic sharp edge, the IGH is easily con-

fused with a forged blurred edge, in that both are symmetric.

If we only consider the shape of IGH, this would lead to a

large number of false alarms. To disambiguate the two, we

add an additional feature: the absolute value of the center

intensity and gradient for each bin. This value helps due

to the fact that at the same intensity value, the gradient of

blurred edge is always smaller than the sharp edge. With

our IGH feature, we are able to detect splicing boundaries

that are hard for prior methods, such as spliced regions hav-

ing constant color or those captured by the same camera.

4. Classifying IGHs

Having described the IGH and how these features dif-

fer between the four categories of edges, we now consider

mechanisms to solve the inverse problem of inferring the

edge category from an image patch containing an edge. S-

ince our IGH is similar to bag of words-type features used

extensively in computer vision, SVMs are a natural classi-

fication mechanism to consider. In light of the recent suc-

cess of powerful Convolutional Neural Networks (CNNs)

applied directly to pixel arrays, we consider this approach,

but find that the lack of training data limits its performance.

To address this, we map the classification problem from the

data-starved patch domain to a character shape recognition

in the IGH domain, for which we leverage existing CNN
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architectures and training data.

4.1. SVM Classification

As in other vision applications, SVMs with the his-

togram intersection kernel [28] performs best for IGH clas-

sification. We unwarp our 2D IGH into a vector, and ap-

pend the center intensity and gradient value of each bin.

Following the example of SVM-based classification on bag

of words features, we use a multi-classification scheme by

training 4 one-vs-all models: authentic vs others, authentic

sharp vs. others, forged sharp vs others, and forged blur

vs others. Then we combine the scores of all 4 models to

classify the IGH as either authentic or a forgery.

4.2. CNN on Edge Patches

CNNs have revolutionized a wide range of computer vi-

sion areas, showing that they can out-perform approaches

with hand-crafted features, so we evaluate whether a CNN

applied directly to edge patches can out-perform method-

s involving our IGH. We use the very popular Caffe [16]

implementation for the classification task.

We first train a CNN model on edge patches. In order to

examine the difference between authentic and forged patch-

es, we synthesized the authentic and forged blur processes

on white, gray and black edges as shown in Fig.4. Given the

same irradiance map, we apply the same Gaussian blur and

CRF mapping in two orderings shown in Fig. 1. The white

region in the authentically blurred image always appears to

be larger than in forgery blur image, because the CRF has

higher slope in the low intensity region. That means al-

l intensity of an authentically blurred edge is brought to

the white point faster than a forgery. This effect can al-

so be observed in real images, such as the Skype logo in

Fig.4, where the white letters in the real image are bolder

than in the forgery. Another reason for this effect is that

cameras have limited dynamic range. A forged sharp edge

will appear like the irradiance map with step edges, while

an authentically sharp edge would be easily confused with

forgery blur since this CRF effect is only distinguishable

with a relatively large amount of blur. Thus the transition

region around the edge potentially contains a cue for splic-

ing detection in a CNN framework.

4.2.1 CNN on IGHs

Our final approach marries our IGH feature with the pow-

er of CNNs. Usually, people wouldn’t use a histogram with

CNN classification because spatial arrangements are impor-

tant for other tasks, e.g. object recognition. But, as our

analysis has shown, the cues relevant to our problem are

found at the pixel level, and our IGH can be used to elim-

inate various nuisance factors: the orientation of the edge,

the height of the step, etc. This has an advantage of re-

Real Images
Authentic

Forgery

Synthesized 
ImagesIrradiance

Authentic

Forgery

Figure 4. Authentic vs forgery images and edge profiles. The syn-

thesized images are using the same CRF and Gaussian kernel. The

real images are captured by Canon 70D. The forgery image is gen-

erated by blurring a sharp image the same amount to match the

authentic image.

ducing the training data dimensionality, and thus the large

number of training data needed to produce accurate models.

Lacking an ImageNet-scale training set for forgeries, this is

a key advantage of our method.

In the sense that a quantized IGH looks like various U-

shaped characters, our approach reduces the problem of

edge classification into a handwritten character recognition

problem, which has been well studied [23]. Since we only

interested in the shape of the IGH, the LeNet model [23] is

very useful for the IGH recognition task.

5. Automating IGH-based Forensics

In order to automate the forensic analysis of images,

our method requires that image patches be identified, from

which the IGH features are extracted. After each such

patch/feature is classified as authentic or forged, we com-

bine these local results to generate a mask indicating regions

of the image we believe to have been spliced in, to facilitate

comparisons with prior work. The overall pipeline is shown

in Fig. 5, and steps are described below.

5.1. IGH Feature Extraction

Given an image I , we extract edge patches of size

n × n pixels (n ∈ [20, 200]), which are used for di-

rect CNN classification and IGH extraction. First, we

clarify our notation. We denote by the vector CL =
[CL,1, CL,2, · · · ] all pixels with lower intensities, the vec-

tor CH = [CH,1, CH,2, · · · ] all pixels with higher intensi-

ties and CE = [CE,1, CE,2, · · · ] all pixels on edges. We

require that each patch have only two colors CL and CH ,

in addition to the transition region. Selected patches satisfy

the following conditions:

Color Variance Check The two color regions need to be

constant.

variance(CL) < thresholdcv

variance(CH) < thresholdcv
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LocalizationClassificationIGH Extraction
IGHEdgeImage Forgery Mask

Figure 5. Our automated splicing detection pipeline, which selects edge patches, computes IGHs, applies local classification, and then

localizes the spliced-in region to create a binary forgery mask.

Color Difference Check We discard edges with a low

contrast because the ratio between the edge profile and noise

would be too low.

|mean(CH)−mean(CL)| < thresholdcd

Area Difference Check We need enough size of CL and

CH for statistic analysis.

||CH || − ||CL|| < 0.5 ∗ (||CH ||+ ||CL||)

Edge Range Check The colors along the edge are a mix-

ture of CL and CH .

max(CE) < max(CH)

min(CE) < min(CL)

For valid each patch that satisfies all the check condition-

s, we compute the gradient and finally the IGH for classifi-

cation.

In real life photography, people like to use the out-of-

focus blur for aesthetic purposes. Therefore, they could

splice object into the defocused region. In order to detec-

t the blur edges, previous work like [8, 25] filtered edge

candidates by keeping only high contrast isolated straight-

line edges, and can only observe one edge at a time. We

construct a very simple yet efficient scheme to deal with

blur edges. We first downsample the image I to 1/5 as

Idown, then apply the canny edge detector on Idown, giving

edgedown. Finally, we upsample edgedown to the original

size of I . Now we have obtained the edge region that large

enough to cover the whole transition between CH and CL.

5.2. Handling Large Blur

In case of large amounts of blur, we adopt a multi-scale

scheme by first downsampling the edge patch to 1/4, and

then compute the IGH on the downsampled patch. The ef-

fect is shown in Fig.6.

When the blur amount is large, the kernel size may be

larger than some of the structures in the image, such as

a printed character, thin lines or, if there are repeated pat-

terns of these thin structures, the convolution will integrate

more than one of these edges, introducing points inside the

arch shape. Downsampling the image eliminates these in-

side pixels, bringing back the original shape.

IGH Mutli-scale IGH

Figure 6. Original size and downsampled edge patch and IGH.

IGHs are in different scales.
Image

Forgery Mask

Superpixel Superpixel image

Edge Classification

Propagate

Figure 7. The mask generation step, in which we propagate edge

classification results in the superpixel image. In edge classifica-

tion, red is forgery, green is authentic, white refers to edges not

selected.

5.3. Mask Generation

The goal of this step is to generate, from point-wise

detections of forged edges, a binary mask indicating the

spliced-in region. We first segment the image using super-

pixel and set the color of each pixel in the output image

to the mean RGB color of the superpixel region. We then

propagate the edge classification results on the superpixel

image using colorization [24], with red representing forged

and green authentic superpixels. A threshold of 50% red is

set to generate the final forgery mask. The process is shown

in Fig.7.

6. Splicing Logo Dataset

Among the splicing datasets made available [1, 9, 13],

only the Columbia Uncompressed Image Splicing Dataset

(CUISDE) [13], which has 183 authentic and 180 spliced

images, includes the masks needed for training. However,

none of the existing datasets include forgeries where the s-

plicing boundary is blurred to reduce the harshness of the

segmentation, despite this being a natural way to hide the

forgery. To address this, we build our own Splicing Lo-

go Dataset (SpLogo) containing 1533 authentic images and

1277 forged blur images of logos with different colors and

different amounts of blur. All the images are taken by a
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Canon70D. The optical blur amount is manipulated via two

different settings: one is by changing the focal plane (lens

moving), the other is by changing the aperture with focal

plane slightly off the logo plane. The logos are printed on

a sheet of paper, and the focal plane is set to be parallel to

the logo plane to eliminate the effect of depth related defo-

cus. The forgery images are generated to match the amount

of optical blur through a optimization routine. As shown in

Fig. 8, the forged and authentic blurred logos in SpLogo are

hard to tell apart, unlike CUISDE forgeries which look very

artificial (see Fig. 11).

7. Experiments

We test our CNN and SVM methods on SpLogo,

CUISDE datasets and a combination of the two. The

patch size is max(min(imgheight, imgwidth)/25, 12).
thresholdcv ∈ [10/255, 30/255] and thresholdcd ∈
[10/255, 20/255]. We use a histogram intersection kernel

[28] for our SVM, LeNet [23] for CNN with a 1e−6 base

learning rate, 1e6 maximum number of iterations. The train-

ing set contains 1000 authentic and 1000 forged patches.

Table.1 compares the accuracy of the different approach-

es described in Sec. 4. Somewhat surprisingly, the CNN

applied directly to patches does the worst job of classifi-

cation. Among the classification methods employing our

hand-crafted feature, CNN classifiers obtain better results

than SVM, and adding the absolute value of intensity and

gradient to IGH increases classification accuracy.

7.1. Experiment on SpLogo Dataset

To test our ability to detect forged blurs, we generate

some concatenated images from our SpLogo dataset con-

taining authentic sharp, authentic blur and forged blur sub-

images. We first test the performance of IGH w/o values

(IGHnoV) vs. IGH. The results are shown in Fig.8, with

green patches representing those classified as authentic, red

as forgery. The IGH performs better than IGHnoV using

both SVM and CNN, eliminating false positives of authen-

tic sharp edges being identified as forgeries.

We also tested the effect of multi-scale scheme to deal

with large amount of blur. In this test, we further test the

classification of authentic sharp (dark green), authentic blur

(bright green), forgery sharp (bright red) and forgery blur

(dark red). Notice that in Fig.9, some of the edges on left

authentic sharp ’e’ are misclassified as forgery sharp and au-

thentic blur, and middle authentic blur ’e’ misclassified as

forgery. Using the multi-scale scheme, all authentic edges

are correctly classified, except the SVM cannot clearly dif-

ferentiate authentic sharp and authentic blur, while the CNN

performs better even with authentic sharp and blur.

We include all four types of edges to test the different

classification methods. CNN with IGHV performs the best

of the three methods.

SVM Mask IGHnoV SVM Mask IGH

SVM Edge Patches IGHnoV SVM Edge Patches IGH

Auth blur IGH

CNN Mask IGHnoV CNN Mask IGH

CNN Edge Patches IGHnoV CNN Edge Patches IGH

Auth sharp Forg blur

Figure 8. IGH performance test. Green patches are classified as

authentic, and red are classified forgeries. First column is the IGH-

noV classification result, and second column is IGH. IGHs are in

different scales.

SVM Mask SVM Mask ms

SVM Edge Patches SVM Edge Patches ms

IGH

CNN Mask CNN Mask ms

CNN Edge Patches CNN Edge Patches ms

Auth blurAuth sharp Forg blur

Figure 9. Multi-scale effect. First column is the classification re-

sult without multi-scale, and second column is with multi-scale.

IGHs are in different scales. Best viewed on a display

Table 2. Patch Accuracy on CUISDE.
Classifier Precision Recall Accuracy

CRF SVM [15, 13] 0.7 0.7 0.87

IGH SVM 0.93 0.94 0.94

IGH CNN 0.95 0.95 0.97

7.2. Experiment on CUISDE Dataset

The Columbia Splicing dataset has a lot of random-

ly chosen splicing regions, as shown in the 3rd and 5th

columns of Fig.11. However, it is useful because it was

collected using a number of different cameras with differ-
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Table 1. Patch Classification Accuracy.
Image IGHnoV IGH

Classifier CUISDE SpLogo Combine CUISDE SpLogo Combine CUISDE SpLogo Combine

SVM - - - 0.924 0.972 0.937 0.940 0.972 0.951

CNN 0.888 0.896 0.891 0.943 0.972 0.979 0.97 0.99 0.978

Image Ground truth

SVM 
IGH

CNN 
Image

CNN 
IGH

PS

Figure 11. Results on CUISDE. In the ground truth image, blue is the forged edge, and red and green segments come from different images.

The two columns show results of a PSed splice boundary image. Our results show binary masks of spliced-in regions.

SVM IGH

CNN IGH

Auth sharp Auth blur Forg sharp Forg blur Auth sharp Auth blur Forg sharp Forg blur

CNN image

Figure 10. SVM and CNN results on SpLogo dataset. Both SVM

classification and CNNs applied to the patches give false negatives

on forged sharp edges, which are reduced significantly by applying

the CNN to our histogram feature.

ent CRFs, compensating for SpLogo’s dependance on a sin-

gle camera. In our results, some of the splicing boundaries

in CUISDE aren’t selected using our edge patch selection

scheme. And since our propagation method depends on col-

ors, we can only obtain the edge region not a full mask of

the spliced region. Our CNN model trained on IGH per-

forms the best, reducing the false alarm rate compare to the

other two models. Our algorithm also outperforms the prior

art [15, 13] in precision and recall, as shown in Table.2.

8. Conclusion

We present a novel method to detect spliced-in regions

of a forged image, with complete automation in patch selec-

tion and mask generation. To demonstrate that our method

can handle spliced-in regions having nearly constant inten-

sity, which fools prior methods, we have captured a new

SpLogo dataset on which we demonstrate excellent perfor-

mance. This is in addition to our state-of-the-art perfor-

mance on the existing CUISDE dataset, which contains on-

ly artificially sharp edges. The key to our detection method

is that a non-linear CRF leads to differences in pixel-level

image statistics depending on whether it is applied before

or after blurring. Our IGH feature captures these statistics,

and provides a way to eliminate nuisance variables such as

edge orientation and step height so that CNN methods can

be applied despite a lack of a large training set.

Though SpLogo expands the splice detection problem

beyond artificial-looking sharp boundaries, additional data

are needed to address the full range of potential manipula-

tions. In particular, additional cameras (with different CRF-

s) are needed, as are more complicated scenes. As well,

we plan to study the effects of image compression on our

method, since many forensics are known to be sensitive to

image quality and the presence of blocking artifacts.
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