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Abstract

Visual attention has been successfully applied in struc-

tural prediction tasks such as visual captioning and ques-

tion answering. Existing visual attention models are gen-

erally spatial, i.e., the attention is modeled as spatial prob-

abilities that re-weight the last conv-layer feature map of

a CNN encoding an input image. However, we argue that

such spatial attention does not necessarily conform to the

attention mechanism — a dynamic feature extractor that

combines contextual fixations over time, as CNN features

are naturally spatial, channel-wise and multi-layer. In this

paper, we introduce a novel convolutional neural network

dubbed SCA-CNN that incorporates Spatial and Channel-

wise Attentions in a CNN. In the task of image captioning,

SCA-CNN dynamically modulates the sentence generation

context in multi-layer feature maps, encoding where (i.e.,

attentive spatial locations at multiple layers) and what (i.e.,

attentive channels) the visual attention is. We evaluate the

proposed SCA-CNN architecture on three benchmark image

captioning datasets: Flickr8K, Flickr30K, and MSCOCO.

It is consistently observed that SCA-CNN significantly out-

performs state-of-the-art visual attention-based image cap-

tioning methods.

1. Introduction

Visual attention has been shown effective in various

structural prediction tasks such as image/video caption-

ing [34, 36] and visual question answering [4, 35, 33]. Its

success is mainly due to the reasonable assumption that hu-

man vision does not tend to process a whole image in its

entirety at once; instead, one only focuses on selective part-

s of the whole visual space when and where as needed [5].

Specifically, rather than encoding an image into a static vec-

tor, attention allows the image feature to evolve from the
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Figure 1. The illustration of channel-wise visual attention in two

convolutional layers (conv5 3 and conv5 4 in VGG19) when pre-

dicting cake from the captioning a woman sitting at a

table with cake. At each layer, top 3 attentive channels are

visualized by showing the 5 most responsive receptive fields in the

corresponding feature maps [40].

sentence context at hand, resulting in richer and longer de-

scriptions for cluttered images. In this way, visual attention

can be considered as a dynamic feature extraction mecha-

nism that combines contextual fixations over time [19, 26].

State-of-the-art image features are generally extracted by

deep Convolutional Neural Networks (CNNs) [8, 25, 32].

Starting from an input color image of the size W ×H × 3,

a convolutional layer consisting of C-channel filters scans

the input image and output a W ′ × H ′ × C feature map,

which will be the input for the next convolutional layer1.

Each 2D slice of a 3D feature map encodes the spatial visu-

1Each convolutional layer is optionally followed by a pooling, down-

sampling, normalization, or a fully connected layer.
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al responses raised by a filter channel, where the filter per-

forms as a pattern detector — lower-layer filters detect low-

level visual cues like edges and corners while higher-level

ones detect high-level semantic patterns like parts and ob-

ject [40]. By stacking the layers, a CNN extracts image fea-

tures through a hierarchy of visual abstractions. Therefore,

CNN image features are essentially spatial, channel-wise,

and multi-layer. However, most existing attention-based

image captioning models only take into account the spatial

characteristic [34], i.e., those attention models merely mod-

ulate the sentence context into the last conv-layer feature

map via spatially attentive weights.

In this paper, we will take full advantage of the three

characteristics of CNN features for visual attention-based

image captioning. In particular, we propose a novel Spa-

tial and Channel-wise Attention-based Convolutional Neu-

ral Network, dubbed SCA-CNN, which learns to pay at-

tention to every feature entry in the multi-layer 3D feature

maps. Figure 1 illustrates the motivation of introducing

channel-wise attention in multi-layer feature maps. First,

since a channel-wise feature map is essentially a detector

response map of the corresponding filter, channel-wise at-

tention can be viewed as the process of selecting semantic

attributes on the demand of the sentence context. For ex-

ample, when we want to predict cake, our channel-wise

attention (e.g., in the conv5 3/conv5 4 feature map) will

assign more weights on channel-wise feature maps generat-

ed by filters according to the semantics like cake, fire, light,

and candle-like shapes. Second, as a feature map is depen-

dent on its lower-layer ones, it is natural to apply attention

in multiple layers, so as to gain visual attention on multiple

semantic abstractions. For example, it is beneficial to em-

phasize on lower-layer channels corresponding to more el-

emental shapes like array and cylinder that compose cake.

We validate the effectiveness of the proposed SCA-CNN

on three well-known image captioning benchmarks: Flick-

r8K, Flickr30K and MSCOCO. SCA-CNN can significantly

surpass the spatial attention model [34] by 4.8% in BLEU4.

In summary, we propose a unified SCA-CNN framework to

effectively integrate spatial, channel-wise, and multi-layer

visual attention in CNN features for image captioning. In

particular, a novel spatial and channel-wise attention model

is proposed. This model is generic and thus can be applied

to any layer in any CNN architecture such as popular VG-

G [25] and ResNet [8]. SCA-CNN helps us gain a better

understanding of how CNN features evolve in the process

of the sentence generation.

2. Related Work

We are interested in visual attention models used in the

encoder-decoder framework for neural image/video cap-

tioning (NIC) and visual question answering (VQA), which

fall into the recent trend of connecting computer vision and

natural language [14, 41, 24, 23, 42, 12]. Pioneering work

on NIC [31, 13, 6, 30, 29] and VQA [1, 17, 7, 21] uses a C-

NN to encode an image or video into a static visual feature

vector and then feed it into an RNN [9] to decode language

sequences such as captions or answers.

However, the static vector does not allow the image fea-

ture adapting to the sentence context at hand. Inspired

by the attention mechanism introduced in machine transla-

tion [2], where a decoder dynamically selects useful source

language words or sub-sequence for the translation into a

target language, visual attention models have been widely-

used in NIC and VQA. We categorize these attention-based

models into the following three domains that motivate our

SCA-CNN:

• Spatial Attention. Xu et al. [34] proposed the first visu-

al attention model in image captioning. In general, they

used “hard” pooling that selects the most probably atten-

tive region, or “soft” pooling that averages the spatial fea-

tures with attentive weights. As for VQA, Zhu et al. [43]

adopted the “soft” attention to merge image region fea-

tures. To further refine the spatial attention, Yang et

al. [35] and Xu et al. [33] applied a stacked spatial at-

tention model, where the second attention is based on the

attentive feature map modulated by the first one. Differ-

ent from theirs, our multi-layer attention is applied on the

multiple layers of a CNN. A common defect of the above

spatial models is that they generally resort to weighted

pooling on the attentive feature map. Thus, spatial infor-

mation will be lost inevitably. More seriously, their atten-

tion is only applied in the last conv-layer, where the size

of receptive field will be quite large and the differences

between each receptive field region are quite limited, re-

sulting in insignificant spatial attentions.

• Semantic Attention. Besides the spatial information,

You et al. [37] proposed to select semantic concepts in

NIC, where the image feature is a vector of confidences

of attribute classifiers. Jia et al. [11] exploited the cor-

relation between images and their captions as the global

semantic information to guide the LSTM generating sen-

tences. However, these models require external resources

to train these semantic attributes. In SCA-CNN, each fil-

ter kernel of a convolutional layer servers as a semantic

detectors [40]. Therefore, the channel-wise attention of

SCA-CNN is similar to semantic attention.

• Multi-layer Attention. According to the nature of CN-

N architecture, the sizes of respective fields correspond-

ing to different feature map layers are different. To over-

come the weakness of large respective field size in the

last conv-layer attention, Seo et al. [22] proposed a multi-

layer attention networks. In compared with theirs, SCA-

CNN also incorporates the channel-wise attention at mul-

tiple layers.
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Figure 2. The overview of our proposed SCA-CNN. For the l-th layer, initial feature map V
l is the output of (l− 1)-th conv-layer. We first

use the channel-wise attention function Φc to obtain the channel-wise attention weights βl, which are multiplied in channel-wise of the

feature map. Then, we use the spatial attention function Φs to obtain the spatial attention weights αl, which are multiplied in each spatial

regions, resulting in an attentive feature map X
l. Different orders of two attention mechanism are discussed in Section 3.3.

3. Spatial and Channel-wise Attention CNN

3.1. Overview

We adopt the popular encoder-decoder framework for

image caption generation, where a CNN first encodes an

input image into a vector and then an LSTM decodes the

vector into a sequence of words. As illustrated in Fig-

ure 2, SCA-CNN makes the original CNN multi-layer fea-

ture maps adaptive to the sentence context through channel-

wise attention and spatial attention at multiple layers.

Formally, suppose that we want to generate the t-th word

of the image caption. At hand, we have the last sentence

context encoded in the LSTM memory ht−1 ∈ R
d, where

d is the hidden state dimension. At the l-th layer, the spa-

tial and channel-wise attention weights γl are a function of

ht−1 and the current CNN features V
l. Thus, SCA-CNN

modulates V
l using the attention weights γl in a recurrent

and multi-layer fashion as:

V
l = CNN

(

X
l−1

)

,

γl = Φ
(

ht−1,V
l
)

,

X
l = f

(

V
l, γl

)

.

(1)

where X
l is the modulated feature, Φ(·) is the spatial and

channel-wise attention function that will be detailed in Sec-

tion 3.2 and 3.3, Vl is the feature map output from pre-

vious conv-layer, e.g., convolution followed by pooling,

down-sampling or convolution [25, 8], and f(·) is a linear

weighting function that modulates CNN features and atten-

tion weights. Different from existing popular modulating

strategy that sums up all visual features based on attention

weights [34], function f(·) applies element-wise multipli-

cation. So far, we are ready to generate the t-th word by:

ht = LSTM
(

ht−1,X
L, yt−1

)

,

yt ∼ pt = softmax (ht, yt−1) .
(2)

where L is the total number of conv-layers; pt ∈ R
|D| is a

probability vector and D is a predefined dictionary includ-

ing all caption words.

Note that γl is of the same size as V
l or X

l, i.e.,

W l × H l × Cl. It will require O(W lH lClk) space for

attention computation, where k is the common mapping s-

pace dimension of CNN feature V
l and hidden state ht−1.

It is prohibitively expensive for GPU memory when the fea-

ture map size is so large. Therefore, we propose an approxi-

mation that learns spatial attention weights αl and channel-

wise attention weights βl separately:

αl = Φs

(

ht−1,V
l
)

, (3)

βl = Φc

(

ht−1,V
l
)

. (4)

Where Φc and Φs represent channel-wise and spatial atten-

tion model respectively. This will greatly reduce the mem-

ory cost into O(W lH lk) for spatial attention and O(Clk)
for channel-wise attention, respectively.

3.2. Spatial Attention

In general, a caption word only relates to partial regions

of an image. For example, in Figure 1, when we want to
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predict cake, only image regions which contain cake are

useful. Therefore, applying a global image feature vector

to generate caption may lead to sub-optimal results due to

the irrelevant regions. Instead of considering each image

region equally, spatial attention mechanism attempts to pay

more attention to the semantic-related regions. Without loss

of generality, we discard the layer-wise superscript l. We

reshape V = [v1,v2, ...,vm] by flattening the width and

height of the original V, where vi ∈ R
C and m = W ·H .

We can consider vi as the visual feature of the i-th loca-

tion. Given the previous time step LSTM hidden state ht−1,

we use a single-layer neural network followed by a softmax

function to generate the attention distributions α over the

image regions. Below are the definitions of the spatial at-

tention model Φs:

a = tanh ((WsV + bs)⊕Whsht−1) ,

α = softmax (Wia+ bi) .
(5)

where Ws ∈ R
k×C ,Whs ∈ R

k×d,Wi ∈ R
k are transfor-

mation matrices that map image visual features and hidden

state to a same dimension. We denote ⊕ as the addition of a

matrix and a vector. And the addition between a matrix and

a vector is performed by adding each column of the matrix

by the vector. bs ∈ R
k, bi ∈ R

1 are model biases.

3.3. Channel­wise Attention

Note that the spatial attention function in Eq (3) still re-

quires the visual feature V to calculate the spatial atten-

tion weights, but the visual feature V used in spatial at-

tention is in fact not attention-based. Hence, we introduce

a channel-wise attention mechanism to attend the features

V. It is worth noting that each CNN filter performs as a

pattern detector, and each channel of a feature map in C-

NN is a response activation of the corresponding convolu-

tional filter. Therefore, applying an attention mechanism in

channel-wise manner can be viewed as a process of select-

ing semantic attributes.

For channel-wise attention, we first reshape V to U, and

U = [u1,u2, ...,uC ], where ui ∈ R
W×H represents the i-

th channel of the feature map V, and C is the total number

of channels. Then, we apply mean pooling for each channel

to obtain the channel feature v:

v = [v1, v2, ..., vC ] ,v ∈ R
C , (6)

where scalar vi is the mean of vector ui, which represents

the i-th channel features. Following the definition of the

spatial attention model, the channel-wise attention model

Φc can be defined as follows:

b = tanh ((Wc ⊗ v + bc)⊕Whcht−1) ,

β = softmax (W′
ib+ b′i) .

(7)

where Wc ∈ R
k,Whc ∈ R

k×d,W′
i ∈ R

k are transfor-

mation matrices, ⊗ represents the outer product of vectors.

bc ∈ R
k, b′i ∈ R

1 are bias terms.

According to different implementation order of channel-

wise attention and spatial attention, there exists two types of

model which incorporating both two attention mechanisms.

We distinguish between the two types as follows:

Channel-Spatial. The first type dubbed Channel-Spatial

(C-S) applies channel-wise attention before spatial atten-

tion. The flow chart of C-S type is illustrated in Figure 2. At

first, given an initial feature map V, we adopt channel-wise

attention Φc to obtain the channel-wise attention weights

β. Through a linear combination of β and V, we obtain

a channel-wise weighted feature map. Then we feed the

channel-wise weighted feature map to the spatial attention

model Φs and obtain the spatial attention weights α. Af-

ter attaining two attention weights α and β, we can feed

V, β, α to modulate function f to calculate the modulated

feature map X. All processes are summarized as follows:

β = Φc (ht−1,V) ,

α = Φs (ht−1, fc (V, β)) ,

X = f (V, α, β) .

(8)

where fc(·) is a channel-wise multiplication for feature map

channels and corresponding channel weights.

Spatial-Channel. The second type denoted as Spatial-

Channel (S-C) is a model with spatial attention implement-

ed first. For S-C type, given an initial feature map V, we

first utilize spatial attention Φs to obtain the spatial atten-

tion weights α. Based on α, the linear function fs(·), and

the channel-wise attention model Φc, we can calculate the

modulated feature X following the recipe of C-S type:

α = Φs (ht−1,V) ,

β = Φc (ht−1, fs (V, α)) ,

X = f (V, α, β) .

(9)

where fs(·) is an element-wise multiplication for regions

of each feature map channel and its corresponding region

attention weights.

4. Experiments

We will validate the effectiveness of the proposed SCA-

CNN framework for image captioning by answering the fol-

lowing questions: Q1 Is the channel-wise attention effec-

tive? Will it improve the spatial attention? Q2 Is the multi-

layer attention effective? Q3 How does SCA-CNN perform

compared to other state-of-the-art visual attention models?

4.1. Dataset and Metric

We conducted experiments on three well-known bench-

marks: 1) Flickr8k [10]: it contains 8,000 images. Ac-
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cording to its official split, it selects 6,000 images for train-

ing, 1,000 images for validation, and 1,000 images for test-

ing; 2) Flickr30k [38]: it contains 31,000 images. Because

of the lack of official split, for fair comparison with previ-

ous works, we reported results in a publicly available split

used in previous work [13]. In this split, 29,000 images are

used for training, 1,000 images for validation, and 1,000 im-

ages for testing; and 3) MSCOCO [16]: it contains 82,783

images in training set, 40,504 images in validation set and

40,775 images in test set. As the ground truth of MSCOCO

test set is not available, the validation set is further splited

into a validation subset for model selection and a test sub-

set for local experiments. This split also follows [13]. It

utilizes the whole 82,783 training set images for training,

and selects 5,000 images for validation and 5,000 images

for test from official validation set . As for the sentences

preprocessing, we followed the publicly available code 1.

We used BLEU (B@1,B@2, B@3, B@4) [20], METEOR

(MT) [3], CIDEr(CD) [28], and ROUGE-L (RG) [15] as

evaluation metrics. For all the four metrics, in a nutshell,

they measure the consistency between n-gram occurrences

in generated sentences and ground-truth sentences, where

this consistency is weighted by n-gram saliency and rarity.

Meanwhile, all the four metrics can be calculated directly

through the MSCOCO caption evaluation tool2. And our

source code is already publicly available 3.

4.2. Setup

In our captioning system, for image encoding part, we

adopted two widely-used CNN architectures: VGG-19 [25]

and ResNet-152 [8] as the basic CNNs for SCA-CNN. For

the caption decoding part, we used an LSTM [9] to gener-

ate caption words. Word embedding dimension and LST-

M hidden state dimension are respectively set to 100 and

1,000. The common space dimension for calculating atten-

tion weights is set to 512 for both two type attention. For

Flickr8k, mini-batch size is set to 16, and for Flickr30k and

MSCOCO, mini-batch size is set to 64. We use dropout and

early stopping to avoid overfitting. Our whole framework is

trained in an end-to-end way with Adadelta [39], which is a

stochastic gradient descent method using an adaptive learn-

ing rate algorithm. The caption generation process would be

halted until a special END token is predicted or a predefined

max sentence length is reached. We followed the strategy

of BeamSearch [31] in the testing period, which selects the

best caption from some candidates, and the beam size is set

to 5. We noticed a trick that incorporates beam search with

length normalization [11] which can help to improve perfor-

mance in some degree. But for fair comparisons, all results

reported are without length normalization.

1https://github.com/karpathy/neuraltalk
2https://github.com/tylin/coco-caption
3https://github.com/zjuchenlong/sca-cnn

4.3. Evaluations of Channel­wise Attention (Q1)

Comparing Methods. We first compared spatial atten-

tion with channel-wise attention. 1) S: It is a pure spatial

attention model. After obtaining spatial attention weights

based on the last conv-layer, we use element-wise multipli-

cation to produce a spatial weighted feature. For VGG-19

and ResNet-152, the last conv-layer represents conv5 4 lay-

er and res5c, respectively. Instead of regarding the weight-

ed feature map as the final visual representation, we feed

the spatial weighted feature into their own following CNN

layers. For VGG-19, there are two fully-connected layer-

s follows conv5 4 layer and for ResNet-152, res5c layer is

followed by a mean pooling layer. 2) C: It is a pure channel-

wise attention model. The whole strategy for the C type

model is same as S type. The only difference is substituting

the spatial attention with channel-wise attention as Eq. (4).

3) C-S: This is the first type model incorporating two atten-

tion mechanisms as Eq. (8). 4) S-C: Another incorporating

model introduced in Eq. (9). 5) SAT: It is the “hard” atten-

tion model introduced in [34]. The reason why we report

the results of “hard” attention instead of the “soft” atten-

tion is that “hard” attention always has better performance

on different datasets and metrics. SAT is also a pure spatial

attention model like S. But there are two main differences.

The first one is the strategy of modulating visual feature

with attention weights. The second one is whether to feed

the attending features into their following layers. All VGG

results reported in Table 1 came from the original paper and

ResNet results are our own implementation.

Results From Table 1, we have the following observa-

tions: 1) For VGG-19, performance of S is better than that

of SAT; but for ResNet-152, the results are opposite. This

is because the VGG-19 network has fully-connected lay-

ers, which can preserve spatial information. Instead, in

ResNet-152, the last conv-layer is originally followed by

an average pooling layer, which can destroy spatial infor-

mation. 2) Comparing to the performance of S, the per-

formance of C can be significant improved in ResNet-152

rather than VGG-19. It shows that the more channel num-

bers can help improve channel-wise attention performance

in the sense that ResNet-152 has more channel numbers

(i.e. 2048) than VGG-19 (i.e. 512). 3) In ResNet-152, both

C-S and S-C can achieve better performance than S. This

demonstrates that we can improve performance significant-

ly by adding channel-wise attention as long as channel num-

bers are large. 4) In both of two networks, the performance

of S-C and C-S is quite close. Generally, C-S is slightly bet-

ter than S-C, so in the following experiments we use C-S to

represent incorporating model.

4.4. Evaluations of Multi­layer Attention (Q2)

Comparing Methods We will investigate whether we

can improve the spatial attention or channel-wise attention

5663



Model
Flickr8k Flickr30k MS COCO

B@1 B@2 B@3 B@4 MT B@1 B@2 B@3 B@4 MT B@1 B@2 B@3 B@4 MT

Deep VS [13] 57.9 38.3 24.5 16.0 – 57.3 36.9 24.0 15.7 – 62.5 45.0 32.1 23.0 19.5

Google NIC [31]† 63.0 41.0 27.0 – – 66.3 42.3 27.7 18.3 – 66.6 46.1 32.9 24.6 –

m-RNN [18] – – – – – 60.0 41.0 28.0 19.0 – 67.0 49.0 35.0 25.0 –

Soft-Attention [34] 67.0 44.8 29.9 19.5 18.9 66.7 43.4 28.8 19.1 18.5 70.7 49.2 34.4 24.3 23.9

Hard-Attention [34] 67.0 45.7 31.4 21.3 20.3 66.9 43.9 29.6 19.9 18.5 71.8 50.4 35.7 25.0 23.0

emb-gLSTM [11] 64.7 45.9 31.8 21.2 20.6 64.6 44.6 30.5 20.6 17.9 67.0 49.1 35.8 26.4 22.7

ATT [37]† – – – – – 64.7 46.0 32.4 23.0 18.9 70.9 53.7 40.2 30.4 24.3

SCA-CNN-VGG 65.5 46.6 32.6 22.8 21.6 64.6 45.3 31.7 21.8 18.8 70.5 53.3 39.7 29.8 24.2

SCA-CNN-ResNet 68.2 49.6 35.9 25.8 22.4 66.2 46.8 32.5 22.3 19.5 71.9 54.8 41.1 31.1 25.0

Table 4. Performances compared with the state-of-art in Flickr8k, Flickr30k and MSCOCO dataset. SCA-CNN-VGG is our C-S 2-layer

model based on VGG-19 network, and SCA-CNN-ResNet is our C-S 2-layer model based on ResNet-152 network. † indicates an ensemble

model results. (–) indicates an unknow metric

Model
B@1 B@2 B@3 B@4 METEOR ROUGE-L CIDEr

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

SCA-CNN 71.2 89.4 54.2 80.2 40.4 69.1 30.2 57.9 24.4 33.1 52.4 67.4 91.2 92.1

Hard-Attention 70.5 88.1 52.8 77.9 38.3 65.8 27.7 53.7 24.1 32.2 51.6 65.4 86.5 89.3

ATT† 73.1 90.0 56.5 81.5 42.4 70.9 31.6 59.9 25.0 33.5 53.5 68.2 95.3 95.8

Google NIC† 71.3 89.5 54.2 80.2 40.7 69.4 30.9 58.7 25.4 34.6 53.0 68.2 94.3 94.6

Table 5. Performances of the proposed attention model on the onlines MSCOCO testing server. † indicates an ensemble model results.

performance by adding more attentive layers. We conduc-

t ablation experiments about different number of attentive

layer in S and C-S models. In particular, we denote 1-

layer, 2-layer, 3-layer as the number of layers equipped

with attention, respectively. For VGG-19, 1-st layer, 2-

nd layer, 3-rd layer represent conv5 4, conv5 3, conv5 2
conv-layer, respectively. As for ResNet-152, it repre-

sents res5c, res5c branch2b, res5c branch2a conv-layer.

Specifically, our strategy for training more attentive layers

model is to utilize previous trained attentive layer weights

as initialization, which can significantly reduce the training

time and achieve better results than randomly initialized.

Results From Table 2 and 3, we have following obser-

vations: 1) In most experiments, adding more attentive lay-

ers can achieve better results among two models. The rea-

son is that applying an attention mechanism in multi-layer

can help gain visual attention on multiple level semantic ab-

stractions. 2) Too many layers are also prone to resulting in

severe overfitting. For example, Flickr8k’s performance is

easier to degrade than MSCOCO when adding more atten-

tive layers, as the size of train set of Flickr8k (i.e. 6,000) is

much smaller than that of MSCOCO (i.e. 82,783).

4.5. Comparison with State­of­The­Arts (Q3)

Comparing Methods We compared the proposed SCA-

CNN with state-of-the-art image captioning models. 1)

Deep VS [13], m-RNN [18], and Google NIC [31] are al-

l end-to-end multimodal networks, which combine CNNs

for image encoding and RNN for sequence modeling. 2)

Soft-Attention [34] and Hard-Attention [34] are both pure

spatial attention model. The “soft” attention weighted sum-

s up the visual features as the attending feature, while the

“hard” one randomly samples the region feature as the at-

tending feature. 3) emb-gLSTM [11] and ATT [37] are

both semantic attention models. For emb-gLSTM, it utilizes

correlation between image and its description as gloabl se-

mantic information, and for ATT it utilizes visual concepts

corresponded words as semantic information. The results

reported in Table 4 are from the 2-layer C-S model for both

VGG-19 and ResNet-152 network, since this type model al-

ways obtains the best performance in previous experiments.

Besides the three benchmarks, we also evaluated our model

on MSCOCO Image Challenge set c5 and c40 by uploading

results to the official test sever. The results are reported in

Table 5.

Results From Table 4 and Table 5, we can see that in

most cases, SCA-CNN outperforms the other models. This

is due to the fact that SCA-CNN exploits spatial, channel-

wise, and multi-layer attentions, while most of other atten-

tion models only consider one attention type. The reasons

why we cannot surpass ATT and Google NIC come from t-

wo sides: 1) Both ATT and Google NIC use ensemble mod-

els, while SCA-CNN is a single model; ensemble models

can always obtain better results than single one. 2) More ad-

vanced CNN architectures are used; as Google NIC adopts

Inception-v3 [27] which has a better classification perfor-
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Dataset Network Method B@4 MT RG CD

Flickr8k

VGG

S 23.0 21.0 49.1 60.6

SAT 21.3 20.3 — —

C 22.6 20.3 48.7 58.7

S-C 22.6 20.9 48.7 60.6

C-S 23.5 21.1 49.2 60.3

ResNet

S 20.5 19.6 47.4 49.9

SAT 21.7 20.1 48.4 55.5

C 24.4 21.5 50.0 65.5

S-C 24.8 22.2 50.5 65.1

C-S 25.7 22.1 50.9 66.5

Flickr30k

VGG

S 21.1 18.4 43.1 39.5

SAT 19.9 18.5 — —

C 20.1 18.0 42.7 38.0

S-C 20.8 17.8 42.9 38.2

C-S 21.0 18.0 43.3 38.5

ResNet

S 20.5 17.4 42.8 35.3

SAT 20.1 17.8 42.9 36.3

C 21.5 18.4 43.8 42.2

S-C 21.9 18.5 44.0 43.1

C-S 22.1 19.0 44.6 42.5

MS COCO

VGG

S 28.2 23.3 51.0 85.7

SAT 25.0 23.0 — —

C 27.3 22.7 50.1 83.4

S-C 28.0 23.0 50.6 84.9

C-S 28.1 23.5 50.9 84.7

ResNet

S 28.3 23.1 51.2 84.0

SAT 28.4 23.2 51.2 84.9

C 29.5 23.7 51.8 91.0

S-C 29.8 23.9 52.0 91.2

C-S 30.4 24.5 52.5 91.7

Table 1. The performance of S, C, C-S, S-C, SAT with one atten-

tive layer in VGG-19 and ResNet-152.

mance than ResNet which we adopted. In local experi-

ments, on the MSCOCO dataset, ATT surpasses SCA-CNN

only 0.6% in BLEU4 and 0.1% in METEOR, respective-

ly. For the MSCOCO server results, Google NIC surpass

SCA-CNN only 0.7% in BLEU4 and 1% in METEOR, re-

spectively.

4.6. Visualization of Spatial and Channel­wise At­
tention

We provided some qualitative examples in Figure 3 for

a better understanding of our model. For simplicity, we on-

ly visualized results at one word prediction step. For ex-

ample in the first sample, when SCA-CNN model tries to

predict word umbrella, our channel-wise attention will

assign more weights on feature map channels generated by

filters according to the semantics like umbrella, stick, and

round-like shape. The histogram in each layer indicates the

probability distribution of all channels. The map above his-

togram is the spatial attention map and white indicates the s-

patial regions where the model roughly attends to. For each

Dataset Network Method B@4 MT RG CD

Flickr8k

VGG

1-layer 23.0 21.0 49.1 60.6

2-layer 22.8 21.2 49.0 60.4

3-layer 21.6 20.9 48.4 54.5

ResNet

1-layer 20.5 19.6 47.4 49.9

2-layer 22.9 21.2 48.8 58.8

3-layer 23.9 21.3 49.7 61.7

Flickr30k

VGG

1-layer 21.1 18.4 43.1 39.5

2-layer 21.9 18.5 44.3 39.5

3-layer 20.8 18.0 43.0 38.5

ResNet

1-layer 20.5 17.4 42.8 35.3

2-layer 20.6 18.6 43.2 39.7

3-layer 21.0 19.2 43.4 43.5

MS COCO

VGG

1-layer 28.2 23.3 51.0 85.7

2-layer 29.0 23.6 51.4 87.4

3-layer 27.4 22.9 50.4 80.8

ResNet

1-layer 28.3 23.1 51.2 84.0

2-layer 29.7 24.1 52.2 91.1

3-layer 29.6 24.2 52.1 90.3

Table 2. The performance of multi-layer in S in both VGG-19 net-

work and ResNet-152 network

Dataset Network Method B@4 MT RG CD

Flickr8k

VGG

1-layer 23.5 21.1 49.2 60.3

2-layers 22.8 21.6 49.5 62.1

3-layers 22.7 21.3 49.3 62.3

ResNet

1-layer 25.7 22.1 50.9 66.5

2-layers 25.8 22.4 51.3 67.1

3-layers 25.3 22.9 51.2 67.5

Flickr30k

VGG

1-layer 21.0 18.0 43.3 38.5

2-layers 21.8 18.8 43.7 41.4

3-layers 20.7 18.3 43.6 39.2

ResNet

1-layer 22.1 19.0 44.6 42.5

2-layers 22.3 19.5 44.9 44.7

3-layers 22.0 19.2 44.7 42.8

MS COCO

VGG

1-layer 28.1 23.5 50.9 84.7

2-layers 29.8 24.2 51.9 89.7

3-layers 29.4 24.0 51.7 88.4

ResNet

1-layer 30.4 24.5 52.5 91.7

2-layers 31.1 25.0 53.1 95.2

3-layers 30.9 24.8 53.0 94.7

Table 3. The performance of multi-layer in C-S in both VGG-19

network and ResNet-152 network

layer we selected two channels with highest channel-wise

attention probability. To show the semantic information of

the corresponding CNN filter, we used the same methods

in [40]. And the red boxes indicate their respective fields.

5. Conclusions

In this paper, we proposed a novel deep attention model

dubbed SCA-CNN for image captioning. SCA-CNN takes

full advantage of characteristics of CNN to yield attentive

image features: spatial, channel-wise, and multi-layer, thus
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Ours:  a woman walking down a street holding an umbrella

Layer-2

GT: two females walking in the rain with umbrellas

385

43

47

207

SAT:  a group of people standing next to each other

Layer-1

Ours:  a clock tower in the middle of a city

Layer-2

Layer-1

GT: there is an old clock on top of a bell tower

12

259

29

198

SAT:  a clock tower on the side of a building

Ours:a street sign on a pole in front of a building

Layer-2

Layer-1

GT: a stop sign is covered with stickers and graffiti

52

423

15

28

SAT:a street sign in front of a building

Ours:  a traffic light in the middle of a city street

Layer-2

Layer-1

GT: a street light at an intersection in a small town

486

184

461

27

SAT: a group of people walking down a street

Ours: a plane flying in the sky over a cloudy sky 

237

496

378Layer-2

Layer-1

GT: a couple of helicopters are in the sky

498

SAT: a plane flying through the sky in the sky 

Ours: a man riding skis down a snow covered slope

369

416

432

74Layer-2

Layer-1

GT: a person riding skis goes down a snowy path

SAT: a man riding a snowboard down a snowy hill

Figure 3. Examples of visualization results on spatial attention and channel-wise attention. Each example contains three captions.

Ours(SCA-CNN), SAT(hard-attention) and GT(ground truth). The numbers in the third column are the channel numbers of VGG-19

network with highest channel attention weights, and next five images are selected from MSCOCO train set with high activation in the

corresponding channel. The red boxes are respective fields in their corresponding layers

achieving state-of-the-art performance on popular bench-

marks. The contribution of SCA-CNN is not only the more

powerful attention model, but also a better understanding of

where (i.e., spatial) and what (i.e., channel-wise) the atten-

tion looks like in a CNN that evolves during sentence gener-

ation. In future work, we intend to bring temporal attention

in SCA-CNN, in order to attend features in different video

frames for video captioning. We will also investigate how to

increase the number of attentive layers without overfitting.
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