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Abstract

Human age is considered an important biometric trait

for human identification or search. Recent research shows

that the aging features deeply learned from large-scale

data lead to significant performance improvement on facial

image-based age estimation. However, age-related ordinal

information is totally ignored in these approaches. In this

paper, we propose a novel Convolutional Neural Network

(CNN)-based framework, ranking-CNN, for age estimation.

Ranking-CNN contains a series of basic CNNs, each of

which is trained with ordinal age labels. Then, their bi-

nary outputs are aggregated for the final age prediction. We

theoretically obtain a much tighter error bound for ranking-

based age estimation. Moreover, we rigorously prove that

ranking-CNN is more likely to get smaller estimation errors

when compared with multi-class classification approaches.

Through extensive experiments, we show that statistically,

ranking-CNN significantly outperforms other state-of-the-

art age estimation models on benchmark datasets.

1. Introduction

One major issue in age estimation models is how to ex-

tract effective aging features from a facial image. In the

past decade, many efforts have been devoted to aging fea-

ture representations. Simple geometry features and tex-

ture features were first adopted in [20]. Later on, Bio-

logically Inspired Features (BIF) [15] were proposed and

widely adopted in age estimation applications. More re-

cently, Scattering Transform (ST) [2] was also proposed as

an improvement over BIF by adding filtering routes. Usu-

ally, these features can be further enhanced through mani-

fold learning, e.g., Orthogonal Locality Preserving Projec-

tion (OLPP) [14].

The other important component in an age estimation

model is the estimator. Commonly, age estimation is

characterized to be a classification or regression problem.

Classification models include k Nearest Neighbors [13],

Multilayer Perceptrons [21], and Support Vector Machines

(SVM) [15]. For regression methods, quadratic regression
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Figure 1. Ranking-CNN for facial image-based age estimation.

[14] and Support Vector Regression (SVR) [15] were con-

sidered in the literature. More recently, deep learning tech-

niques such as Convolutional Neural Networks (CNN) have

been applied to human age estimation to learn aging fea-

tures directly from large-scale facial data [39]. Experi-

mental results show that the deeply-learned aging patterns

lead to significant performance improvement on benchmark

datasets [37] as well as unconstrained photos [25]. How-

ever, multi-class classification completely ignores the ordi-

nal information in age labels, and regression over-simplifies

it to a linear model while human aging pattern is generally

nonlinear. Recently, cost-sensitive ranking techniques have

been introduced to age estimation [2].

In this paper, we propose a novel age ranking approach

based on CNN. Specifically, we propose a ranking-CNN

model that contains a series of basic CNNs, each of which

has a sequence of convolutional layers, sub-sampling layers

and fully connected layers. Basic CNNs are initialized with

the weights of a pre-trained base CNN and fine-tuned with

the ordinal age labels through supervised learning. Then,

their binary outputs are aggregated to make the final age

prediction. Fig. 1 shows an illustration of our model.

Comparing with prior work where the same set of features

was used for all age groups, in ranking-CNN, features are
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learned independently in each age group to depict different

aging patterns, which leads to significant performance gain.

The major contribution of this work is summarized as fol-

lows:

• To the best of our knowledge, ranking-CNN is the first

work that uses a deep ranking model for age estima-

tion, in which binary ordinal age labels are used to

train a series of basic CNNs, one for each age group.

Each basic CNN in ranking-CNN can be trained using

all the labeled data, leading to better performance of

feature learning and also preventing overfitting.

• We provide a much tighter error bound for age ranking

than that introduced in [2], which claimed that the final

ranking error is bounded by the sum of errors gener-

ated by all the classifiers. We obtain the approximation

for the final ranking error that is controlled by the max-

imum error produced among sub-problems. From a

technical perspective, the tighter error bound provides

several advantages for the training of ranking-CNN.

• We prove that ranking-CNN, by taking the ordinal re-

lation between ages into consideration, is more likely

to get smaller estimation errors when compared with

multi-class classification approaches (i.e., CNNs using

the softmax function). Moreover, through extensive

experiments, we show that statistically, ranking-CNN

significantly outperforms other state-of-the-art age es-

timation methods.

The rest of this paper is arranged as follows. In Section 2,

we briefly review related work in age estimation and CNN.

In Section 3, we introduce ranking-CNN for age estimation,

establish its theoretical error bound, and compare it with

softmax-based multi-class CNNs. In Section 4, we present

our age estimation results on the benchmark datasets. Fi-

nally, we conclude in Section 5.

2. Related Work

2.1. Age Estimation

One of the earliest age estimation model can be traced

back to [22], in which Active Appearance Model (AAM)

[6] was employed to extract shape and appearance features

from facial images. Later, in [10], the aging process was

simulated using AAM for the same individual with a se-

ries of age-ascending facial images so that specific mod-

els associated with different people’s aging processes can

be constructed. Also, to interpret the long-term aging sub-

space of a person, Geng et al. [11] proposed AGing pattErn

Subspace (AGES).

Since the available images for a specific person are typ-

ically very limited, many researchers focus on developing

non-personalized approaches instead. Yang and Ai [38]

adopted a real AdaBoost algorithm with Local Binary Pat-

terns [1]. Li et al. [26] proposed a method based on or-

dinal discriminative feature learning. In [15], BIF features

were shown to be effective for age estimation on various

datasets. Meanwhile, manifold learning algorithms were

incorporated to achieve better performance. In [14], Guo

et al. proposed to use aging manifold with locally adjusted

robust regressor.

More recently, CNN-based methods have been widely

adopted for age estimation due to its superior performance

over existing methods. Yi et al. [39] introduced a multi-

task learning method with a relatively shallow CNN. Wang

et al. [37] trained a deeper CNN for extracting features from

different layers. Levi et al. validated CNN’s performance

on unconstrained facial images [25].

Instead of multi-class classification and regression meth-

ods, ranking techniques were introduced to the problem

of age estimation. In [2], a cost-sensitive ordinal ranking

framework was proposed with ST features. In [29], Niu et

al. proposed to formulate age estimation as an ordinal re-

gression problem with the use of multiple output CNN.

2.2. Convolutional Neural Networks

There are numerous kinds of CNN models developed in

deep learning. The exact forms could vary, but the major

components and computations are similar. CNN models de-

rived from LeNet [24] consist of alternating convolutional

and pooling layers followed by fully-connected layers with

the input to successive layers being the feature maps from

previous layers. Weights in layers are updated simultane-

ously for representative features and classification with a

specific loss function through back propagation.

CNNs have been widely used on a variety of applica-

tions. In natural language processing, SENNA system has

achieved state-of-the-art performance on various tasks [5].

In text classification, CNN architectures have been widely

adopted and achieved superior outcomes [18]. In the com-

puter vision field, great successes have been achieved in im-

age classification [19], object detection [12], face recogni-

tion [34] and image segmentation [27].

Recently, with the implementation using GPUs [19, 17],

CNN models with deep architectures have achieved break-

throughs on object recognition problems in large-scale im-

age datasets, e.g., the ImageNet dataset [7]. To build more

effective CNN models, several new components were intro-

duced: activation unit such as rectified linear unit (ReLU)

[28] helps to accelerate the convergence during training and

has a positive influence on the performance [19]; regularizer

like dropout prevents overfitting by setting some activation

units to zero in a specific layer [33]; and batch normaliza-

tion allows the use of much higher learning rates to make

training faster and to improve performance [16].
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Figure 2. Architecture of a basic binary CNN

3. Ranking-CNN for Age Estimation

The training of ranking-CNN consists of two stages: pre-

training with facial images and fine-tuning with age-labeled

faces. First, a base network is pre-trained with uncon-

strained facial images [9] to learn a nonlinear transforma-

tion of the input samples that captures their main variation.

From the base network, we then train a series of basic binary

CNNs with ordinal age labels. Specifically, we categorize

samples into two groups: with ordinal labels either higher

or lower than a certain age, and then use them to train a cor-

responding binary CNN. The fully connected layers in the

binary CNN first flatten the features obtained in the previ-

ous layers and then relate them to a binary prediction. The

weights are updated through stochastic gradient descent by

comparing the prediction with the given label. Finally, all

the binary outputs are aggregated to make the final age pre-

diction. In the following, we present our system in details.

3.1. Basic Binary CNNs

As shown in Fig. 2, a basic CNN has three convolutional

and sub-sampling layers, and three fully connected layers.

Specifically, C1 is the first convolutional layer with feature

maps connected to a 5× 5 neighboring area in the input.

There are 96 filters applied to each of the 3 channels (RGB)

of the input, followed by Rectified Linear Unit (ReLU) [28].

S2 is a sub-sampling layer with feature maps connected

to corresponding feature maps in C1. In our case, we use

max pooling on 3× 3 regions with the stride of 2 to em-

phasize the most responsive points in the feature maps. S2

is followed by local response normalization (LRN) that can

aid generalization [19] . C3 works in a similar way as C1

with 256 filters in 96 channels and 5×5 filter size followed

by ReLU. Layer S4 functions similarly as S2, and is fol-

lowed by LRN. Then, C5 is the third convolutional layer

with 384 filters in 256 channels and smaller filter size 3×3,

followed by the third max pooling layer S6.

F7 is the first fully connected layer in which the feature

maps are flattened into a feature vector. There are 512 neu-

rons in F7 followed by ReLU and a dropout layer [33]. F8 is

the second fully connected layer with 512 neurons that re-

ceives the output from F7 followed by ReLU and another

dropout layer. F9 is the third fully connected layer and

computes the probability that an input x (i.e., output after

F8) belongs to class i using the logistic function. The op-

timal model parameters of a network are typically learned

through minimizing a loss function. We use the negative

log-likelihood as the loss function, and minimize it using

stochastic gradient descent.

3.2. RankingCNN

Assume that xi is the feature vector representing the ith

sample and yi ∈ {1, ...,K} is the corresponding ordinal la-

bel. To train the k-th binary CNN, the entire dataset D is

split into two subsets, with age values higher or lower (or

equal to) than k,

D+
k = {(xi,+1)|yi > k}, D−

k = {(xi,−1)|yi ≤ k}. (1)

Based on different splitting of D, K −1 basic networks can

be trained from the base one. Note that in our model, each

network is trained using the entire dataset, typically result-

ing in better ranking performance and also preventing over-

fitting. Given an unknown input xi, we first use the basic

networks to make a set of binary decisions and then aggre-

gate them to make the final age prediction r(xi):

r(xi) = 1+
K−1

∑
k=1

[ fk(xi)> 0]. (2)

where fk(xi) is the output of the basic network and [· ]
denotes the truth-test operator, which is 1 if the inner con-

dition is true, and 0 otherwise. It can be shown that the

final ranking error is bounded by the maximum of the bi-

nary ranking errors. That is, the ranking-CNN results can be

improved by optimizing the basic networks. We mathemat-

ically prove this in Section 3.2.1 followed by the theoretical

comparison between ranking and softmax-based multi-class

classification in Section 3.2.3.

3.2.1 Error Bound

In ranking-CNN, we divide an age ranking estimation prob-

lem, ranging from 1, · · · ,K, into a series of binary classifica-

tion sub-problems (K−1 classifiers). By aggregating the re-

sults of each sub-problem, we then obtain an estimated age

r(x). To assure a better overall performance of the model,

a key issue is whether the ranking error can be reduced if

we improve the accuracy of the binary classifiers. We rigor-

ously address this issue with formal mathematical proof in

this section.

Here, we provide a much tighter error bound for age

ranking than that introduced in [2], which claims that the

final ranking error is bounded by the sum of errors gen-

erated by all the classifiers. We adopt the idea in [2] that

divides the errors of sub-problems into two groups: over-

estimated and underestimated errors. However, instead of

simply aggregating errors, we rearrange them in an increas-

ing order and go deep into the analysis of the underlying

differences between any adjacent sub-classifier errors inside

each group. By the accumulation of those differences, we

theoretically obtain an approximation for the final ranking
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error, which is controlled by the maximum error produced

among sub-problems.

We denote E+ = ∑
K−1
k=1 γ+k as the number of mis-

classifications fk(x) > 0 when the actual value y < k, k =
1, · · · ,K − 1. Similarly, we denote E− = ∑

K−1
k=1 γ−k as the

opposite case, where γ+k = [ fk(x) > 0][y ≤ k] and γ−k =
[ fk(x) < 0][y > k], and [·] is an indicator function taking

value of 1 when the condition in [·] holds, 0 otherwise.

For any observation (x,y), we define the cost function

(error) for each classifier as:

ek(x) =

{

e+k = (k− y+1)γ+k y ≤ k

e−k = (y− k)γ−k y > k.
(3)

Thus, we have a theorem for the error bound of final ranking

error:

Theorem 1 For any observation (x,y), in which y> 0 is the

actual label (integer), then the following inequality holds:

|r(x)− y| ≤ max
k

ek(x), (4)

where r(x) is the estimated rank of age, k = 1, · · · ,K − 1.

That is, we can diminish the final ranking error by minimiz-

ing the greatest binary error.

Proof

Denote ek(x) in (3) as ek for simplicity. We split the

proof into two parts. Firstly, we show |E+−E−|= |r(x)−
y|. Secondly, we demonstrate maxk ek ≥ max{E+,E−}. By

|E+−E−|<max{E+,E−} for E+ and E− nonnegative, the

inequality (4) follows.

Firstly, we begin by definition:

r(x) = 1+∑
K−1
k=1 [ fk(x)]

= 1+∑
K−1
k=1 ([ fk(x)> 0][y ≤ k]+ [ fk(x)> 0][y > k])

= 1+E++∑
K−1
k=1 [ fk(x)> 0][y > k].

(5)

Subtracting (E+−E−) on both sides, we get

r(x)− (E+−E−)

= 1+∑
K−1
k=1 [ fk(x)> 0][y > k]+∑

K−1
k=1 [ fk(x)≤ 0][y > k]

= 1+∑
K−1
k=1 ([ fk(x)> 0]+ [ fk(x)≤ 0])[y > k]

= 1+∑
K−1
k=1 [y > k]

= y.
(6)

Thus |r(x)− y|= |E+−E−| holds.

Secondly, we extract all e+k > 0 and rearrange them in

an increasing order denoted as a set {e+
( j)
, j = 1,2, · · · ,E+}.

Similarly, we do the same operation on e−k and have the set

{e−
( j)
, j = 1,2, · · · ,E−}, where for any random variable ξ ,

ξ(·) denotes the order statistics.

Since y is an integer, by (3), e+
(1)

≥ 1 and |e+
( j)

−e+
( j−1)

| ≥

1 for any j ∈ {1,2, · · · ,E+}. We observe that:

e+(E+) ≥ e+(1)+ |e+(2)− e+(1)|+ · · ·+ |e+(E+)− e+(E+−1)|. (7)

It follows e+
(E+)

≥ E+. Similarly, we can show e−
(E−)

≥ E−.

Then, maxk ek =max{e+
(E+)

,e−
(E−)

}≥max{E+,E−}, which

completes the proof.

3.2.2 Technical Contribution of the New Error Bound

Ranking-CNN can be seen as an ensemble of CNNs, fused

with aggregation. By showing that the final ranking error

is bounded by the maximum error of the binary rankers,

we make significant technical contribution in the following

aspects:

1. Theoretically, it was mentioned in both [2] and [29]

that the inconsistency issue of the binary outputs could

not be resolved because that would make the train-

ing process significantly complicated. The aggrega-

tion was just carried out without explicit understanding

of the inconsistency. With the tightened error bound,

we can confidently demonstrate that the inconsistency

doesn’t actually matter because as long as the maxi-

mum binary error is decreased, the error produced by

inconsistent labels can be ignored. It would neither

influence the final estimation error nor complicate the

training procedure.

2. Methodologically, the tightened bound provides ex-

tremely helpful guidance for the training of ranking-

CNN. The training of an ensemble of deep learning

models is typically very time consuming, especially

when the number of sub-models is large. Based on

our results, it is technically sound to focus on the sub-

models with the largest errors. This training strategy

will lead to more efficient training to achieve the de-

sired performance gain. The training strategy can also

be extended to ensemble learning with other decision

fusion methods.

3. Mathematically, based on the new error bound, we can

rigorously derive the expectation of prediction error

of ranking-CNN and prove that ranking-CNN outper-

forms other softmax-based deep learning models. The

detailed proof is given in the next section.

3.2.3 Ranking v.s Softmax

In this section, we focus on demonstrating that ranking-

CNN outperforms softmax method because it is more likely

to get smaller prediction error |r(x)− y|. The reason is that

softmax failed to take the ordinal relation between ages into

consideration. Thus, instead of a softmax classifier, ranking

method is preferred for age estimation.

A basic CNN in ranking-CNN differs from the softmax

multi-class classification approach in the output layer. Sup-

pose after fully-connected layer, we get z1,z2, · · ·zK from K
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networks. Denote ŷ as the estimated age label, and ai = ezi

where e(·) is the natural exponential function. For softmax,

the posterior probability of each class is given by:

P(ŷ ∈ i|x) =
ezi

∑
K
k=1 ezk

=
ai

∑
K
k=1 ak

, (8)

for i = 1, · · · ,K. Then, the expected error given the label of

the observation (x,y) is

E(|r(x)− y||y) = ∑
K
i=1 |i− y|P(ŷ = i|x). (9)

For ranking-CNN, we use K −1 classifiers to determine

ordinal relation between adjacent ages. The posterior prob-

ability for a prediction of age greater than a specific age i is

given by:

P( fi(x)> 0|x) =
ezi+1

ezi + ezi+1
=

ai+1

ai +ai+1
. (10)

Then, the expected error for a given sample is

E(|r(x)− y||y) = ∑
K
i=1 |i− y|P(ŷ = i|x). (11)

We present a theorem for a three ordinal class problem. In

the theorem, we use a,b,c to represent a1,a2,a3 respec-

tively for better clarity.

Theorem 2 Suppose we have classes 1, 2 and 3 with

a,b,c > 0 respectively. There exists an ordinal relation:

1 < 2 < 3. Denote the rank obtained by ranking-CNN as

r1(x) and the result by softmax as r2(x). Then

E(|r1(x)− y|)< E(|r2(x)− y|). (12)

Proof. Given a sample with label 1, the expected errors for

ranking-CNN and softmax are:

E(|r1(x)− y||y = 1)
= 2P( f1(x)> 0, f2(x)> 0|x)+P( f1(x)> 0, f2(x)< 0|x)
+P( f1(x)< 0, f2(x)> 0|x)

= 2
b

a+b

c

b+ c
+

b

a+b

b

b+ c
+

a

a+b

c

b+ c

=
2bc+b2 +ac

(a+b)(b+ c)
,

(13)

and

E(|r2(x)− y||y = 1) = 2P(r2(x) = 2|x)+P(r2(x) = 3|x)

=
2c+b

a+b+ c
,

(14)

respectively.

Similarly, given y = 2,

E(|r1(x)− y||y = 2)
= P( f1(x)> 0, f2(x)> 0|x)+P( f1(x)< 0, f2(x)< 0|x)

=
ab+bc

(a+b)(b+ c)
,

(15)

E(|r2(x)− y||y = 2) = P(r2(x) = 1|x)+P(r2(x) = 3|x)

=
a+ c

a+b+ c
.

(16)

Given y = 3,

E(|r1(x)− y||y = 3)
= 2P( f1(x)< 0, f2(x)< 0|x)+P( f1(x)> 0, f2(x)< 0|x)
+P( f1(x)< 0, f2(x)> 0|x)

=
2ab+b2 +ac

(a+b)(b+ c)
,

(17)
E(|r2(x)− y||y = 3) = 2P(r2(x) = 1|x)+P(r2(x) = 2|x)

=
2a+b

a+b+ c
.

(18)

Thus, for ranking-CNN, it follows

E(|r1(x)− y|) = ∑
3
i=1 E(|r1(x)− i||y = i)

2+
ab+bc

(a+b)(b+ c)
.

(19)

Similarly, for softmax,

E(|r2 − y|) = ∑
3
i=1 E(|r2(x)− i||y = i) = 2+

a+ c

a+b+ c
.

(20)

Since

a+ c

a+b+ c
−

ab+bc

(a+b)(b+ c)

=
a2c+ c2a

(a+b)(b+ c)(a+b+ c)
> 0,

(21)

then we conclude

E(|r1(x)− y|)< E(|r2(x)− y|). (22)

Furthermore, the cases for K = 4,5, · · · could be shown

in a similar way by induction. However, when the number

of class K increases, the analytic expression of the distribu-

tion for each class i = 1, · · · ,K, becomes

P(ŷ = i|y) = ∑
A∈Fi

∏
j∈A

p j ∏
j∈Ac

(1− p j), (23)

satisfying a Poisson-Binomial distribution, where p j =
a j

a j−1+a j
, Fi is the subset of i integers that could be se-

lected from {1,2, · · · ,K} and Ac is the complement of A.

Notice that Fi represents CK
2 possible cases. Then, to com-

pute the expected value becomes dreadful since listing all

the probability out as we did in theorem 2 seems impracti-

cal. Though Le Cam et al. [23] gave an approximation of

Poisson-Binomial by a Poisson distribution, the computa-

tion for

E(|r1(x)− y|) =
K

∑
y=1

K

∑
r=1

|r− y|P(ŷ = r) (24)

is still unrealistic. So, we generalize with the help of learn-

ing theory.
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Theorem 3 Suppose the VC dimension of each basic CNN

classifier’s hypothesis spaces Hi is d, the sample size for

training is m. Then for any δ ∈ [0,1], with probability at

least 1−δ , the expected error of the ranking-CNN is upper

bounded as follows:

ED|r(x)− y| ≤ max
k

êk(x)+2

√

d log(2m)+ log( 2
δ )

m
(25)

where êk(x) denotes the empirical values for EDek(x).

Proof. Taking expectation on both sides of Eq. (4), we get

ED|r(x)− y| ≤ ED max
k

ek(x) (26)

Using Vapnik-Chervonenkis theory [35], the desired result

follows.

Remark 4 Notice the expected error for ranking-CNN is

bounded by the maximum training error produced by its ba-

sic CNNs with binary output, adding a term associated with

VC dimension. Since the VC dimension d of a softmax out-

put CNN is greater than that of a basic CNN presented in

Fig. 2 [32], if the weights of previous layers are fixed, it re-

sults in a greater second term on right hand side of Eq. (25)

for a CNN with softmax output layer. It follows that given

the same training samples, ranking-CNN is more likely to

attain a smaller error by minimizing the training errors (the

first term in Eq. (25)) than the one with a softmax output.

The error bound in Eq. (25) provides a solid support for our

framework. We will further verify this conclusion in the

sense of statistical significance by t-test later in the experi-

ment section.

3.3. Age Estimation

When humans predict a person’s age, it is generally eas-

ier to determine if a person is elder than a specific age than

directly giving an exact age. With ranking-CNN, it pro-

vides a framework for simultaneous feature learning and

age ranking based on facial images. The rationale of us-

ing ranking-CNN for age estimation is that the age labels

are naturally ordinal, and ranking-CNN can keep the rela-

tive ordinal relationship among different age groups.

First, we pre-train a base network with 26,580 image

samples from the unfiltered faces dataset [9]. The age

group labels for these images are used in training as sur-

rogate labels [8]. Then, we fine-tune our ranking-CNN

model on the most commonly used age estimation bench-

mark dataset: MORPH Album 2 [30]. MORPH contains

55,134 facial images with the age range from 16 to 77. Fol-

lowing the settings used in some recent work on age esti-

mation [29, 37, 4, 3], we randomly select 54,362 samples

in the age range between 16 and 66 from MORPH dataset.

The age and gender information of the selected samples is

shown in Table 1. Note that these images are not used in the

pre-training stage. All the selected samples are then divided

into two sets: 80% of the samples are used for basic net-

works training and the rest 20% samples for testing. There

is no overlapping between the training and testing sets, and

we use 5-fold cross-validation to evaluate the performance

during experiments.

Table 1. The age and gender information of the 54,362 samples

randomly selected from MORPH Album 2.

<20 20-29 30-39 40-49 >50 Total

Male 6543 13849 12322 9905 3321 45940

Female 829 2291 2886 1975 441 8422

Total 7372 16140 15208 11880 3762 54362

We adopt a general pre-processing procedure for face de-

tection and alignment before feeding the raw data to the net-

works. Specifically, given an input color image, we first

perform face detection using Harr-based cascade classifiers

[36]. Then, face alignment is conducted based on the loca-

tions of eyes. Finally, the image is resized to a standard size

of 256×256×3 for network training and age estimation.

4. Experiments

In this section, we demonstrate the performance of

ranking-CNN through extensive experiments. We imple-

mented the architecture for ranking-CNN in the GPU mode

with Caffe [17]. For the 3+ 3 architecture of a basic CNN

shown in Fig. 2, it is derived from a simplified version of the

ImageNet CNN [19] with fewer layers for higher efficiency

[25]. The network is initialized with random weights fol-

lowing Gaussian distribution, the mean is 0, and standard

deviation is 0.01.

For our hardware settings, we use a single GTX 980

graphics card (including 2,048 CUDA cores), i7-4790K

CPU, 32GB RAM, and 2TB hard disk drive. The training

time for the base CNN with the selected 3+ 3 architecture

is around 6 hours. Fine-tuning takes about 20 to 30 min-

utes for each basic CNN. Totally, it takes about 30 hours to

pre-train the base CNN and fine-tune 50 basic CNNs.

4.1. Evaluation Metrics

For multiple age estimation, we compared the features

learned by ranking-CNN with the ones obtained through

BIF+OLPP [15], ST[2], and multi-class CNN. BIF features

are implemented with Gabor filters in 8 orientations and 8

scales and followed by max-pooling. In addition, OLPP is

employed to learn the age manifold based on BIF features,

in which the top 1,000 eigenvectors are used. In ST, the Ga-

bor coefficients are scattered into 417 routes in two convo-

lutional layers and pooled with Gaussian smoothing. Multi-

class CNN is commonly used for age estimation [25, 39],
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Table 2. Comparison of MAE among different combinations of features and estimators. The lowest MAE is highlighted in bold. A dash in

the table means that the selected feature is not applicable to the selected estimator.

ENGINEERED FEATURES LEARNED FEATURES

BIF+OLPP ST CNN FEATURE RANKING-CNN FEATURE

CLASSIFICATION SVM 4.99 5.15 3.95 -

MODEL MULTI-CLASS CNN - - 3.65 -

RANKING RANKING-SVM 5.03 4.88 - 3.63

MODEL RANKING-CNN - - - 2.96

but it completely ignores the ordinal information in age la-

bels. Its structure is similar to a basic CNN (three convolu-

tional and pooling layers and three fully connected layers)

with the exception that the last fully-connected layer con-

tains multiple outputs corresponding to the number of ages

to be classified instead of the binary ones. As for the age es-

timators, SVM is selected for comparison due to its proved

performance [15]. In ranking-based approach (Ranking-

SVM), following [2], SVM is used as the binary classifier

for each age label and the results are aggregated to give the

final output.

The comparison and evaluation of different methods in

our experiments are reported in terms of accuracy of each

binary ranker as well as two widely adopted performance

measures [29, 2]: Mean Absolute Error (MAE) and Cumu-

lative Score (CS). MAE computes the absolute costs be-

tween the exact and the predicted ages (the lower the bet-

ter): MAE = ∑
M
i=1 ei/M, where ei = |l̂i − li| is the absolute

cost of misclassifying true label li to l̂i, and M is the to-

tal amount of testing samples. CS indicates the percentage

of data correctly classified in the range of (li − L, li + L),
a neighbor range of the exact age li (the larger the better):

CS(L) = ∑
M
i=1[ei ≤ L]/M, where [· ] is the truth-test operator

and L is the parameter representing the tolerance range.

Also, we used paired t-test to demonstrate the statisti-

cal significance of our empirical comparison. We employ

paired t-test to determine if ranking-CNN significantly out-

performs other methods. A two-sample t-statistic with un-

known but equal variance is computed.

4.2. Age Estimation Results

In this section, we consider the age estimation problem

in the range between 16 and 66 years old and compare

ranking-CNN with other state-of-the-art feature extractors

and age estimators. As there are 51 age groups in this age

range, 50 binary rankers are needed for ranking approaches

(i.e., ranking-CNN and ranking-SVM). In our experiments,

43,490 samples (80% of all the randomly selected samples)

with binary labels are selected to train each basic network

or SVM in ranking-CNN and ranking-SVM, respectively.

The exactly same set of samples with multi-class labels are

used to train multi-class CNN and SVM, respectively. The

rest 10,872 samples were used for testing results. All exper-

iments are carried out with 5-fold cross-validation.

Basically, we have three sets of features: engineered

features (i.e., BIF+OLPP and ST), learned classification

features (Multi-class CNN) and learned ranking features

(ranking-CNN), and two sets of age estimators: classifica-

tion methods (i.e., SVM and Multi-class CNN) and rank-

ing methods (ranking-CNN and ranking-SVM). We report

MAE of all possible combinations of feature extractors and

age estimators (eight in total) in Table 2. A dash in the table

means that the selected feature set is not applicable to the

selected estimator.

As shown in Table 2, ranking-CNN with its features

achieves the lowest MAE of 2.96 in all the combinations.

Ranking-CNN features with Ranking-SVM achieves the

second best MAE result, and this validates the effectiveness

and generality of ranking-CNN features. In comparison, the

lowest MAE achieved by the learned classification features

is 3.65. Note the multi-class CNN represents the commonly

used CNN-based age estimation methods [25, 39]. Our ex-

perimental results strongly support the theoretical results

(ranking v.s. softmax) we presented in Section 3.2.3. An-

other fact we can see is that the performance of CNN-based

features gets weakened when combined with SVM-based

estimators. The lowest MAE achieved by engineered fea-

tures is 4.88 by ST+ranking-SVM. Notice that ST works

better with ranking-SVM, and BIF+OLPP works better with

SVM. This could be caused by the fact that in the literature

specific features were manually selected for certain estima-

tors to achieve the best performance.

Table 3. Comparison with MR-CNN, OR-CNN and DEX on the

MORPH dataset. The lowest MAE is highlighted in bold.

Ranking-CNN MR-CNN OR-CNN DEX

MAE 2.96 3.27 3.34 3.25

In Table 3, we compare ranking-CNN with the most re-

cent age estimation models, i.e., Ordinal Regression with

CNN (OR-CNN), Metric Regression with CNN (MR-CNN)

[29] and Deep EXpectation (DEX) [31]. Since the experi-

ments are all carried out on MORPH dataset and we fol-

lowed the settings in [29] for data partition, we can directly

compare the MAE of Ranking-CNN with the ones obtained

by MR-CNN, OR-CNN and DEX. Clearly, ranking-CNN

outperforms all MR-CNN, OR-CNN and DEX, and signifi-

cantly improves the performance of age estimation.

The comparison in terms of CS of the eight combina-

tions of features and estimators are given in Fig. 3. Clearly,

ranking-CNN outperforms all others across the entire range

of L (age error tolerance range) from 0 to 10. Specifically,
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Table 4. T test outcomes of all eight combinations of features and estimators. Numbers #1 to #8 correspond to eight compared models

in the sequence of: RANKING-CNN, RANKING-CNN FEATURE+RANKING-SVM, ST+RANKING-SVM, BIF+OLPP+RANKING-

SVM, MULTI-CLASS CNN, CNN FEATURE+SVM, ST+SVM and BIF+OLPP+SVM.

#1 #2 #3 #4 #5 #6 #7 #8

#1 RANKING-CNN NAN 1 1 1 1 1 1 1

#2 RANKING-CNN FEATURE
6.36e−148 NAN 1 1 0.85 1 1 1

+RANKING-SVM

#3 ST+RANKING-SVM 0 0 NAN 1 0 0 1 1

#4 BIF+OLPP+RANKING-SVM 0 0 1.79e−135 NAN 0 0 0.99 0.81

#5 MULTI-CLASS CNN 0 0.14 1 1 NAN 1 1 1

#6 CNN FEATURE+SVM 4.12e−276 8.90e−184 1 1 5.43e−24 NAN 1 1

#7 ST+SVM 0 0 1.94e−121 2.00e−4 0 0 NAN 3.66e−6

#8 BIF+OLPP+SVM 0 0 4.56e−90 0.18 0 0 0.99 NAN
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Figure 3. Comparison on Cumulative Score with L in [0,10].

Ranking-CNN can reach the accuracy of 89.90% for L = 6,

and 92.93% for L = 7. The other fact we notice is that four

CNN-based methods reach a higher accuracy for L = 10

than the others.
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Figure 4. Accuracy of each binary ranker in ranking models.

In Fig. 4, we further compare the four ranking-based

methods and report their performance on each binary

ranker. Again, ranking-CNN demonstrates a consistent

outstanding performance throughout all binary problems.

Note that when the data for the binary rankers are not bal-

anced (and thus higher baseline accuracy, e.g., age< 20 and

age> 48), all rankers seem to perform quite well. However,

when it comes to the age range with more balanced data

(and thus lower baseline accuracy, age 20− 48), the supe-

rior performance of ranking-CNN is shown, and this would

lead to better overall performance of age estimation. Again,

our results clearly illustrated the remarkable improvement

of using ranking-CNN for age estimation.

Last, to demonstrate that the experimental results we ob-

tained do not happen simply by chance, we report in Table

4 the p-values from paired t-test at significant level 1%. In

Table 4, if p < 1%, we reject the null hypothesis. Other-

wise, we don’t. For example, when comparing “ranking-

CNN” with “ranking-CNN feature+ranking SVM”, the p-

value 6.36e−148 is much less than 0.01, which means that

we reject the null hypothesis that “the performance of

ranking-CNN is not significantly improved”. The “NaN”

in the table means we could not compare a method with

itself. As we can see, statistically, ranking-CNN signifi-

cantly outperforms all other methods, which implies if we

repeat the experiments for numerous times, then in 99% of

those experiments, ranking-CNN would significantly out-

perform. From the table, Ranking-CNN Feature+Ranking

SVM and the Multi-Class CNN tied for the second place,

followed by CNN Feature+SVM. ST+Ranking SVM stands

out among the engineered feature-based methods. Lastly,

BIF+OLPP+Ranking-SVM ties with BIF+OLPP+SVM,

and ST+SVM has no significant improvement than any

other methods.

5. Conclusion

In this paper, we proposed ranking-CNN, a novel deep

ranking framework for age estimation. We established a

much tighter error bound for ranking-based age estimation

and showed rigorously that ranking-CNN, by taking the

ordinal relation between ages into consideration, is more

likely to get smaller estimation errors when compared with

multi-class classification approaches. Through extensive

experiments, we show that statistically, ranking-CNN sig-

nificantly outperforms other state-of-the-art age estimation

methods on benchmark datasets.
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