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Abstract

This paper focuses on indoor semantic segmentation us-

ing RGB-D data. Although the commonly used deconvolu-

tion networks (DeconvNet) have achieved impressive results

on this task, we find there is still room for improvements

in two aspects. One is about the boundary segmentation.

DeconvNet aggregates large context to predict the label of

each pixel, inherently limiting the segmentation precision of

object boundaries. The other is about RGB-D fusion. Re-

cent state-of-the-art methods generally fuse RGB and depth

networks with equal-weight score fusion, regardless of the

varying contributions of the two modalities on delineating

different categories in different scenes. To address the two

problems, we first propose a locality-sensitive DeconvNet

(LS-DeconvNet) to refine the boundary segmentation over

each modality. LS-DeconvNet incorporates locally visual

and geometric cues from the raw RGB-D data into each

DeconvNet, which is able to learn to upsample the coarse

convolutional maps with large context whilst recovering

sharp object boundaries. Towards RGB-D fusion, we

introduce a gated fusion layer to effectively combine the

two LS-DeconvNets. This layer can learn to adjust the

contributions of RGB and depth over each pixel for high-

performance object recognition. Experiments on the large-

scale SUN RGB-D dataset and the popular NYU-Depth v2

dataset show that our approach achieves new state-of-the-

art results for RGB-D indoor semantic segmentation.

1. Introduction

Semantic segmentation of indoor scenes is a fundamen-

tal problem in computer vision, which can benefit many

intelligent applications such as domestic robots, SLAM,

content-based image retrieval, etc. However, it is a very

tough task due to challenges from large variations of scene

types, cluttered backgrounds, severe object occlusions and

varying illuminations. Thanks to recent consumer depth

RGB GT DeconvNet

(a) Imprecise boundaries due to the large context when labeling each pixel (see the fridge)

(b) Misclassified objects due to the improper fusion of RGB and depth (see the box)

Depth(HHA)
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Figure 1. Limitations of DeconvNet on indoor scene segmentation.

Here a two-stream DeconvNet is used to represent RGB and depth,

followed by score fusion with equal-weight sum just like the FCN

model [19]. Note that the depth data in this paper is encoded to

three-channel HHA image as the method [11]. See our results in

Fig. 4 for comparison.

cameras, e.g. Kinect, we are able to capture high-quality

synchronized visual (RGB data) and geometrical (depth da-

ta) cues to depict one scene. It represents an opportunity to

improve the performance of indoor scene segmentation by

taking full advantage of the two complementary modalities.

Extensive studies have been carried out on indoor seman-

tic segmentation. Graphical models with handcrafted RGB

features (e.g. SIFT, HOG, LBP, etc.) and depth features

(e.g. SPIN images, depth kernels, surface normals, etc.) are

used in many methods [23, 22, 10, 7, 15]. Instead of the

handcrafted features, patch-wise CNN models [5] and R-

CNN models [11] are proposed to learn RGB-D features

of the superpixels or region proposals. Recently, fully

convolutional networks (FCN) [19, 27] have significantly

pushed forward the performance of semantic segmentation,

including both indoor and outdoor scenes. FCN adapts

the CNN model designed for classification into an end-to-

end system for holistic scene segmentation. Through the

repeated max-pooling and downsampling at multiple layers,

FCN learns invariant features embedded with large context

for robust prediction of each pixel, yet producing a coarse

label map with low-resolution and imprecise boundaries.
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Towards RGB-D fusion, a simple sum fusion with equal

weights is adopted by [19] to combine the predictions of

RGB and depth FCN models.

Remarkable efforts [3, 4, 21, 29, 17] have been invested

to improve FCN for scene segmentation. Among these

extensions, DeconvNet [21] is a very effective and efficient

method to refine the coarse label map of FCN. The core

idea of DeconvNet is to learn multi-layer deconvolution

networks to upsample the low-resolution label map of

FCN into full resolution with more details. We adapt

DeconvNet to RGB-D indoor scene segmentation with the

same fusion way of FCN, which achieves large performance

gain compared to FCN in our experiments. Nonetheless, we

find there is still room for improvements in two aspects.

One is about the boundary segmentation. Though high-

resolution label map can be generated, such convolution-

deconvolution networks of DeconvNet aggregates large

context for dense prediction, reducing its sensitiveness to

object boundaries. As shown in Fig. 1(a), DeconvNet

segments the fridge with inflated contours. The other

one is about RGB-D fusion. RGB and depth can have

varying contributions in recognition of different categories

in different scenes. As shown in Fig. 1(b), both the

visual and geometrical cues are beneficial to recognize sofa,

while emphasizing the two modalities equally can confuse

the recognition of box (misclassified as pillow due to the

confused shape).

This paper aims to augment DeconvNet for indoor se-

mantic segmentation with RGB-D data. Our first contri-

bution is to address the problem of boundary segmentation.

Inspired by recent CRF-RNN model [29], which leverages

pixel-level cues such as intensity and location via condi-

tional random fields (CRF) to refine label agreements of the

large-context FCN maps, we try to benefit DeconvNet from

pixel-level cues similarly but get rid of the complex training

and inference of the CRF model. To this end, we propose

a locality-sensitive DeconvNet for semantic segmentation.

Specifically, an affinity matrix is constructed for each scene

to describe pairwise relations between neighboring pixels

(similar or not) based on low-level RGB-D features [10].

Then the affinity matrix is embedded into the DeconvNet to

encourage the labeling consistency of local similar pixels

(termed as “locality-sensitive”) along with deconvolution

operations for upsampling (See Fig. 2). Such a locality-

sensitive DeconvNet can result in a high-resolution segmen-

tation map with precise object boundaries. Our second

contribution is to combine RGB and depth cues more

effectively for semantic segmentation. Instead of the simple

score fusion with equal weights for the two modalities

like [19], we devise a gated fusion layer to automatically

learn the varying contributions of each modality for clas-

sifying different categories in different scenes. The gated

fusion layer is implemented by a series of standard layers

with learnable parameters, which makes our whole system

(RGB LS-DeconvNet + depth LS-DeconvNet + Gated Fu-

sion, termed as “LSD-GF”) can be trained end-to-end via

efficient back propagation algorithms. Experimental results

on the large-scale SUN RGB-D dataset [25] and the popular

NYU-Depth v2 dataset [23] demonstrate that LSD-GF can

significantly improve the semantic segmentation of RGB-D

indoor scenes.

The rest of this paper is organized as follows. We first

review related work in Section 2. Then the details of the

proposed approach are introduced in Section 3. Extensive

experimental results as well as analyses are reported in

Section 4. Finally, we draw conclusions in Section 5.

2. Related Work

Refine Boundaries for Semantic Segmentation. Many

studies have been made to refine object boundaries of the

prediction map, since it highly affects the visualization and

accuracy of semantic segmentation. Here we mainly focus

on deep learning models, and divide previous work into

two groups. One group utilizes post-processing method

to ameliorate the resulted segmentation map. Couprie et

al. [5, 9] apply the superpixels generated by graph cuts

to smooth the predictions. Chen et al. [3, 4] adopt fully

connected condition random fields (CRF) to optimize the

holistic segmentation map. Another one focuses on design-

ing particular deep learning models for dense prediction.

CRF is incorporated into FCN by [29, 17] to encourage

spatial and appearance consistency in the labelling outputs.

Affinity CNNs [2, 20] embed additional pixel-wise simi-

larity loss into FCN for dense prediction. Compared to

these methods, DeconvNet [21] is a simple but effective

and efficient method to refine the segmentation map by

learning multi-layer deconvolution networks. However, the

potentials of DeconvNet can be limited since the high-

level prediction map aggregates large context for dense

prediction. Similar to this paper, He et al. [12] also

attempt to improve DeconvNet, while they only add one

data driven pooling layer on top of DeconvNet to smooth the

predictions in every superpixel. Different from them, this

paper devises a locality-sensitivity DeconvNet to produce

structured outputs with precise boundary segmentation.

Experimental results show our model is superior to that

of [12] on both the SUN RGB-D dataset and the NYU-

Depth v2 dataset.

Combine RGB and Depth Data for Semantic Seg-

mentation. An effective fusion of the two complementary

modalities can improve the performance of semantic seg-

mentation. Most methods [23, 22, 10] simply concatenate

the handcrafted RGB and depth features to represent each

pixel or superpixel. Some approaches [7, 15] incorporate

both the RGB and depth cues into graphical models like

MRFs or CRFs for semantic segmentation. Very recently,
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Figure 2. The overall architecture of our LSD-GF model. LSD-GF mainly consists of three parts: 1) the frontend fully convolutional

networks (FCN). This paper adopts recent state-of-the-art FCN model [4], which leverages multi-scale atrous algorithm to alleviate the

resolution loss and learn robust features; 2) the intermediate locality-sensitive deconvolution networks. An affinity matrix embedded with

pairwise relations between neighboring RGB-D pixels is incorporated into the unpooling and average pooling operations to recover sharp

boundaries of FCN maps. Due to the computational cost, only two-layer deconvolution networks are used; 3) the final gated fusion layer.

We merge the RGB and depth score maps to learn a weighted gate array to weigh the contribution of each modality for object recognition

in the scene. The overall networks can be trained efficiently as an end-to-end system (except for the affinity matrix). Best viewed in color.

recurrent networks [16] are explored for RGB-D fusion.

Towards the popular convolutional neural networks (CNN),

three levels of fusion are often used: Couprie et al. [5]

concatenate the RGB and depth image as four-channel input

for the CNN model (early fusion); Gupta et al. [11] leverage

two CNN models to extract features from RGB and depth

images independently, and then concatenate them to learn

the final semantic classifier (middle fusion); Long et al. [19]

also learn two independent CNN models but directly predict

the score map of each modality, followed by score fusion

with equal-weight sum (late fusion). Through comparison

experiments, Long et al. find the late fusion can be more

effective to benefit from the complementarities of the two

modalities, compared to other fusion levels. This paper

adopts the late fusion version, but embeds a gate fusion

layer to further adapt our model to the varying contributions

of the two modalities for recognition of different categories

in different scenes. As shown in the experiments, the

proposed fusion way can achieve performance gains for

those confused categories.

3. Our Approach

3.1. Overall Architecture

Fig. 2 illustrates the overall architecture of the pro-

posed LSD-GF model. LSD-GF is composed of three

parts: the frontend fully convolutional networks (FCN),

the intermediate locality-sensitive deconvolution networks

(LS-DeconvNet), and the final gated fusion layer. FCN

is to learn robust feature representation for each pixel by

aggregating multi-scale contextual cues. The proposed LS-

DeconvNet is used to restore high-resolution and precise

scene details based on the coarse FCN map. Finally, a gated

fusion layer is introduced to fuse the RGB and depth cues

effectively for accurate scene semantic segmentation.

We adopt recent state-of-the-art fully convolutional ver-

sion, termed as ASPP [4] as the frontend model. ASPP

is derived from the VGG 16-layer net [24], but embed-

ding atrous algorithm into the last convolution layers (i.e.,

conv5 1∼conv5 3), whilst replacing all the fully connected

layers (i.e., fc6∼fc8) with multi-stream and multi-atrous

convolution layers. LS-DeconvNet consists of a series

of unpooling, deconvolution and average pooling layers.

We employ the standard deconvolution operation as [21],

but incorporate pixel-centric affinity matrix into both the

unpooling and pooling operations to recover sharp bound-

aries along with upsampling. Towards the gated fusion

layer, we concatenate the prediction maps of RGB and

depth to learn a weighted gate array, which is able to

weigh the contributions of each modality for accurate object

recognition in the scene. More details of the proposed LSD-

GF model are described in the following subsections.

3.2. Locality-Sensitive DeconvNet

We now discuss the details of the unpooling, deconvolu-

tion and average pooling operations in our LS-DeconvNet.

3.2.1 Locality-Sensitive Unpooling

The conventional unpooling [28, 21] performs reverse op-

eration of max pooling to enlarge the activations of the

responding map. For example, a max pooling layer in

the convolutional networks employs a pooled window of

3 × 3 size, and the location of the maximum activation
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Figure 3. Illustration of the locality-sensitive unpooling as well

as the locality-sensitive average pooling of LSD-GF. For clear

comparisons, we only show the result of one filter window with

3× 3 size (red rectangle) for both the conventional ones and ours.

places in the bottom right, which is recorded in the switch

variables. For the corresponding unpooling in the deconvo-

lution networks, it places each activation back to its original

pooled location based on the switch variables, as illustrated

in the top left of Fig. 3. Although those methods [28, 21]

demonstrate unpooling is helpful to reconstruct detailed

object boundaries, its capability can be limited a lot due to

the excessive dependence on the input responding map with

large context.

To address this issue, we incorporate locally visual and

geometrical cues into unpooling for restoring precise ob-

ject boundaries, and term it “locality-sensitive unpooling”.

Assuming Fun
s ∈ R

c×h×w denotes the input responding

map, where c is the number of feature channels, h is the

height and w is the width. The output unpooled map is

Fun
t ∈ R

c×nh×nw with an amplification of n times. A ∈
R

hw×hw is the holistic affinity matrix denoting pairwise

similarity between all pixels. For each feature vector x ∈
Fun

s (regarded as an anchor), we generate a local pixel-

centric affinity matrix Ax = {Ax
i,j |1 ≤ i, j ≤ s} with

size s × s through cropping A, where Ax
i,j = 1 indicates

the neighboring pixel is similar to the centric anchor, and

Ax
i,j = 0 indicates not. Let Y ⊆ Fun

t be the resulted s × s
unpooled map corresponding to x. We compute Y based x

as

Yi,j =
(s−1−|i−oi|)(s−1−|j−oj |)

(s−1)2
Ai,jx,

∀i, j ∈ [1, s], oi = oj =
1+s
2 .

(1)

In the resulted s×s unpooled map, Yi,j is the feature vector

of the i-th row, and the j-th column. o = (oi, oj) is the

centric location mapping to the anchor x. An example of

s = 3 is shown in the top right of Fig. 3. It is noted

that Yi,j can also receive activations from other anchors,

and we aggregate all these activations by linear addition

to generate the final unpooled map. Indeed, the locality-

sensitive unpooling performs like a bilinear interpolation

but emphasize the influence of the neighboring similar

pixels. Compared to the very sparse responding map

produced by the conventional unpooling, the proposed one

leads to much denser map whilst keeping sensitive to the

local object boundaries.

3.2.2 Deconvolution

The output of our unpooling layer is an enlarged activation

map, yet with many discontinuous boundary responses.

We employ deconvolution to make up the missing details

with multiple learned filters. Deconvolution performs like

the reverse convolution operation. Instead of aggregat-

ing multiple input activations within a filter window to

a single activation, it maps a single input activation to

multiple outputs. Such an operation can effectively connect

many discontinuous boundaries and reconstruct rich object

structures for semantic segmentation. More details of

deconvolution can be found in [21].

The resulted map of deconvolution is also enlarged, but

more smoothing. We crop the map to keep it with the

identical output size of the unpooling layer.

3.2.3 Locality-Sensitive Average Pooling

To further enhance the consistent representation of spatially

neighboring pixels that have both similar appearance and

geometry, we add the locality-sensitive average pooling

layer (without downsampling) on top of the deconvolution

layer. For better understanding of the proposed pooling

strategy, we introduce the conventional version at first. As

shown in the bottom left of Fig. 3, the conventional average

pooling computes the mean value of the activations within

a filter window for single output. Such an operation can

achieve more robust feature representation against noise

and clutter, while it is probable to blur object boundaries

and result in imprecise semantic segmentation map. In

order to keep the advantages of the conventional average

pooling but get rid of its drawbacks, we leverage the

aforementioned pixel-centric affinity matrix to force that

only local similar pixels contribute to the average pooling

for the corresponding outputs, as shown in the bottom right

of Fig. 3.

Specifically, let Favg
s ∈ R

c×h×w and F
avg
t ∈ R

c×h×w

denote the input and output responding maps respectively

for the locality-sensitive pooling layer. Given a feature set

X ⊆ Favg
s within an s × s filter window, we compute the

corresponding output feature vector y ∈ F
avg
t by pooling

X as

y =
1∑

i,j∈[1,s] A
y
i,j

∑
i,j∈[1,s]

Ay
i,jXi,j . (2)

Similar to unpooling, Ay is the local pixel-centric affinity

matrix corresponding to the anchor y. Through the locality-
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sensitive average pooling, we can achieve consistent and

robust feature representation for the consecutive object

structures.

3.3. Gated Fusion

The gated fusion layer is proposed to effectively combine

RGB and depth for semantic segmentation. Actually, it is

composed of three layers, including a concatenation layer,

a convolution layer and a sigmoid layer, which are not

illustrated in Fig. 2 for brevity. Let Prgb ∈ R
c×h×w

and Pdepth ∈ R
c×h×w denote the probability maps on

RGB and depth, respectively. Here the number of feature

channels c equals to the number of the categories. After

concatenation, we obtain a fused probability map Pfusion ∈
R

2c×h×w. Then we employ a convolution layer with

weights W ∈ R
c×2c×1×1 (c filters with dimension of

2c × 1 × 1 per filter) to learn the correlations of the two

modalities and weigh their contributions for the prediction

of each category. The output of the convolution layer is a

coefficient matrix G ∈ R
c×h×w with the value

Gk,i,j =
2c∑

k′=1

Pfusion
k′,i,j ×Wk,k′,i,j

∀k ∈ [1, c], i ∈ [1, h], j ∈ [1, w].
(3)

The subsequent sigmoid layer is used to regularize G to

keep Gk,i,j ∈ [0, 1]. We term Grgb = G and Gdepth = 1−

G as the weighted gates, where G
rgb
k,i,j and G

depth
k,i,j denote

how confidently we can rely on RGB and depth respectively

to predict the pixel (i, j) as category k. The two coefficient

matrices are utilized to weigh the contributions of RGB and

depth as follows:

P̃rgb = Prgb ⊙Grgb

P̃depth = Pdepth ⊙Gdepth,
(4)

where ⊙ denotes Hadamard product. Finally, we generate

the gated fusion probability map as

P̃fusion = P̃rgb + P̃depth. (5)

We predict the label map by P̃fusion and leverage the ground

truth label map to optimize the whole network via stochastic

gradient descent.

3.4. Implementation Details

Preprocessing. Before starting to train the networks,

we need to obtain the holistic affinity matric A for each

RGB-D scene. Following the method [10], we extract

low-level RGB-D features (gradients over visual and geo-

metrical cues) for each pixel, and employ gPb-ucm [1] to

generate over-segments. These over-segments can be used

to calculate A by verifying that pairwise pixels belong to

the same over-segment (similarity is 1) or not (similarity is

0). Note that we will scale A to match the resolution of the

corresponding feature maps.

Optimization. We utilize the popular Caffe frame-

work [13] to implement the proposed networks. The train-

ing process can be divided into two stages. In the first stage,

we train two independent locality-sensitive DeconvNets on

RGB and depth for semantic segmentation without the

gated fusion layer. For each modality, we employ the “poly”

learning rate policy (the learning rate is multiplied by

(1− iter
max iter

)power) to optimize the networks, for which

the base learning rate is set to 0.001, power is 0.9, weight

decay is 0.0005 and max iteration is 20000. The frontend

FCN model is initialized by VGG 16-layer net pretrained

on imageNet [6]. The intermediate deconvolution layers

is initialized with identity filters following [27], whilst a

smaller layer learning rate lr mult = 0.01 is used instead

of lr mult = 1 for other layers. We leverage 5 × 5
local pixel-centric affinity matrix for all the unpooling

and average pooling layers, except for the last average

pooling layer, which uses 11 × 11 size. We find these

settings can be more effective to train the networks of

each modality for semantic segmentation. In the second

stage, we add the gated fusion layer, and then finetune the

whole networks on the synchronized RGB and depth data.

We use the same “poly” learning rate policy but with a

smaller base learning rate (set to 10−6). It is noted that

the conventional DeconvNet [21] utilize additional region

proposals and batch normalization to train their networks,

while our networks are directly trained on the cropped

images with 417 × 417 size very efficiently. During the

testing phase, we utilize the trained LSD-GF model but

enlarge the last average pooling size to 15 × 15 for more

accurate segmentation.

4. Experiments

4.1. Experimental Setup

Datasets. We evaluate our approach for indoor scene

segmentation on two benchmark RGB-D datasets, including

the large-scale SUN RGB-D dataset [25] and the popular

NYU-Depth v2 dataset [23]. The SUN RGB-D dataset

consists of 10355 RGB-D images with pixel-wise labels,

which are collected from five appealing datasets. Following

the setting of [25], we divide the dataset into a training set

with 5285 images and a test set with 5050 images. The

NYU-Depth v2 dataset consists of 1449 RGB-D images

from indoor scenes, which provides 795 images for training

and the remaining 654 images for evaluation.

Metrics. Following recent methods [23, 10, 19, 25],

this paper employs four metrics to evaluate the performance

of semantic segmentation, such as pixel accuracy, mean

accuracy, mean IOU and frequency weighted IOU (f.w.

IOU). Let nij be the number of pixels of class i classified
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Table 1. Comparison results of scene semantic segmentation on the SUN RGB-D dataset with class-wise accuracy as well as mean accuracy

over all classes. Note that the pixels of the class “background” are ignored for performance evaluation.
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Ren et al.[22] 5.6 27.0 84.5 35.7 24.2 36.5 26.8 19.2 9.0 11.7 51.4 35.7 25.0 64.1 53.0 44.2 47.0 18.6 36.3

Li et al.[16] 0.0 28.4 68.0 47.9 61.5 52.1 36.4 36.7 0.0 38.1 48.1 72.6 36.4 68.8 67.9 58.0 65.6 23.6 48.1

DeconvNet 0.4 39.8 78.3 55.0 43.9 59.6 29.4 45.2 1.5 35.9 47.7 45.3 36.0 77.6 66.6 51.2 66.1 35.8 51.9

Ours 0.0 44.7 88.8 61.5 51.4 71.7 37.3 51.4 2.9 46.0 54.2 49.1 44.6 82.2 74.2 64.7 77.0 47.6 58.0

as class j. Assuming there are ncl different classes, ti =∑
j nij is the total number of pixels belonging to class i,

and t =
∑

i ti record the number of all pixels. The four

metrics are defined as follows:

• pixel accuracy:
∑

i nii/t;

• mean accuracy: 1
ncl

∑
i nii/ti;

• mean IOU: 1
ncl

∑
i nii/(ti +

∑
j nji − nii);

• f.w. IOU: 1
t

∑
i tinii/(ti +

∑
j nji − nii).

4.2. Overall Performance

Table 1 and Table 2 show performance comparisons of

all recent methods on the two RGB-D scene benchmarks.

In addition, we provide the result of DeconvNet [21] over

each RGB-D dataset as a strong baseline. Note that the

only differences between DeconvNet and the proposed ap-

proach are that we replace the conventional deconvolution

networks with simple sum fusion by the locality-sensitive

deconvolution networks with gated fusion.

SUN RGB-D. Following recent methods [25, 18, 22,

16], we also report the mean accuracy of our approach for

labeling 37 classes on the SUN RGB-D dataset. As shown

in Table 1, we achieve 58.0% mean accuracy with 9.9%

improvement over the recent state-of-the-art method [16].

Specifically, we yield significant performance gains over

32 classes, which demonstrate the effectiveness of the pro-

posed approach. To further verify the particular advantages

of our locality-sensitive deconvolution networks with gated

fusion, we compare the results of ours to that of DeconvNet.

We can see that the improvements are remarkable. We

owe the improvements to two factors: 1) the local visual

and geometrical cues from raw data embedded into the

deconvolution networks can effectively alleviate the impre-

cise boundary representation from the frontend FCN model

with large context; 2) the gated fusion layer can effectively

combine the two complementary modalities for accurate

object recognition.

NYU-Depth v2. Following recent methods [19, 11, 7,

12]1, we evaluate the four aforementioned metrics of our

approach for labeling 40 classes on the NYU-Depth v2

dataset. As illustrated in Table 2, we achieve the best

results over all the four metrics. Compared to recent state-

of-the-art method [12], our approach yields around 5.8%

improvements on mean IOU. Since the metric of class-wise

IOU is more sensitive to object boundary segmentation, the

performance gain of our approach compared to DeconvNet

further verifies that the proposed approach can boost the

boundary precision and recognition accuracy effectively.

1Recent methods often augment the training set with synthetic data [11]

or video frames [12]. Differently, we simply pretrain our model on SUN

RGB-D dataset and then finetune it on NYU v2 dataset.

3034



Table 2. Comparison results of scene semantic segmentation on the NYU-Depth v2 dataset with class-wise IOU as well as four mentioned

metrics over all classes. Note that the pixels of the class “background” are ignored for performance evaluation.
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Long et al.[19] 69.9 79.4 50.3 66.0 47.5 53.2 32.8 22.1 39.0 36.1 50.5 54.2 45.8 11.9 8.6 32.5 31.0 37.5 22.4 13.6 18.3 59.1

Gupta et al.[11] 68.0 81.3 44.9 65.0 47.9 47.9 29.9 20.3 32.6 18.1 40.3 51.3 42.0 11.3 3.5 29.1 34.8 34.4 16.4 28.0 4.7 60.5

Kendall et al.[14] - - - - - - - - - - - - - - - - - - - - - -

Eigen et al.[8] - - - - - - - - - - - - - - - - - - - - - -

Deng et al.[7] 65.6 79.2 51.9 66.7 41.0 55.7 36.5 20.3 33.2 32.6 44.6 53.6 49.1 10.8 9.1 47.6 27.6 42.5 30.2 32.7 12.6 56.7

He et al.[12] 72.7 85.7 55.4 73.6 58.5 60.1 42.7 30.2 42.1 41.9 52.9 59.7 46.7 13.5 9.4 40.7 44.1 42.0 34.5 35.6 22.2 55.9

Li et al.[16] - - - - - - - - - - - - - - - - - - - - - -

DeconvNet 73.9 83.4 54.0 68.4 59.9 58.8 44.4 35.8 44.9 43.4 52.3 58.6 50.3 20.0 12.8 48.1 40.2 44.2 43.7 30.7 23.3 56.4

Ours 78.5 87.1 56.6 70.1 65.2 63.9 46.9 35.9 47.1 48.9 54.3 66.3 51.7 20.6 13.7 49.8 43.2 50.4 48.5 32.2 24.7 62.0
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Long et al.[19] 27.3 27.0 41.9 15.9 26.1 14.1 6.5 12.9 57.6 30.1 61.3 44.8 32.1 39.2 4.8 15.2 7.7 30.0 65.4 46.1 34.0 49.5

Gupta et al.[11] 6.4 14.5 31.0 14.3 16.3 4.2 2.1 14.2 0.2 27.2 55.1 37.5 34.8 38.2 0.2 7.1 6.1 23.1 60.3 - 28.6 47.0

Kendall et al.[14] - - - - - - - - - - - - - - - - - - 68.0 45.8 32.4 -

Eigen et al.[8] - - - - - - - - - - - - - - - - - - 65.6 45.1 34.1 51.4

Deng et al.[7] 8.9 21.6 19.2 28.0 28.6 22.9 1.6 1.0 9.6 30.6 48.4 41.8 28.1 27.6 0 9.8 7.6 24.5 63.8 - 31.5 48.5

He et al.[12] 29.8 41.7 52.5 21.1 34.4 15.5 7.8 29.2 60.7 42.2 62.7 47.4 38.6 28.5 7.3 18.8 15.1 31.4 70.1 53.8 40.1 55.7

Li et al.[16] - - - - - - - - - - - - - - - - - - - 49.4 - -

DeconvNet 30.1 43.2 53.2 26.9 42.9 22.2 10.6 53.5 50.7 45.2 72.2 54.5 41.6 49.7 10.6 10.6 13.8 30.1 69.9 56.4 42.7 56.0

Ours 34.2 45.3 53.4 27.7 42.6 23.9 11.2 58.8 53.2 54.1 80.4 59.2 45.5 52.6 15.9 12.7 16.4 29.3 71.9 60.7 45.9 59.3

4.3. Ablation Study

To discover the importance of the proposed locality-

sensitive DeconvNet and the gated fusion of LSD-GF, we

conduct an ablation study via removing or replacing each

component independently or both together for semantic

segmentation on the NYU-Depth v2 dataset. Note that

both the training and testing procedures of each ablation

experiment are kept exactly the same for fair comparison.

We report the results on RGB only, depth only and the

both, as illustrated in Table 3. We can draw conclusions

as follows: 1) Embedding local visual and geometrical cues

(locality-sensitive) into deconvolution networks can boost

the performance of semantic segmentation considerably

(comparing a vs b, c vs d, e vs i, etc.). For each

comparison pair, the only difference is with and without

locality-sensitive module; 2) Gated fusion is superior to

the sum fusion, as well as some other popular equal-weight

score fusion like pixelwise production and Dempster-Shafer

(DS) [26] (comparing e ∼ h and i ∼ l). We owe the im-

provement to the accurate recognition of some hard objects

in the scene by gated fusion, such as box on the sofa and

chair in the weak lights. These objects need to effectively

weigh the contributions of RGB an depth for recognition;

3) Cascading the locality-sensitive deconvolution networks

and the gated fusion can achieve the best result, i.e., 45.9%

mean IOU. Since each proposed component can benefit

one aspect of semantic segmentation, combining the both

Table 3. Ablation study of the proposed model on the NYU-Depth

v2 dataset with mean IOU.
Model Mean IOU

a. RGB + DeconvNet 37.4

b. RGB + LS-DeconvNet 40.5

c. HHA + DeconvNet 33.4

d. HHA + LS-DeconvNet 38.7

e. RGB-HHA + DeconvNet + Sum Fusion 42.7

f . RGB-HHA + DeconvNet + Product Fusion 40.6

g. RGB-HHA + DeconvNet + DS Fusion 42.8

h. RGB-HHA + DeconvNet + Gated Fusion 43.2

i. RGB-HHA + LS-DeconvNet + Sum Fusion 45.3

j. RGB-HHA + LS-DeconvNet + Product Fusion 44.9

k. RGB-HHA + LS-DeconvNet + DS Fusion 45.8

l. RGB-HHA + LS-DeconvNet + Gated Fusion (LSD-GF) 45.9

is natural to achieve the state-of-the-art result.

4.4. Visualized Comparisons

Fig. 4 illustrates the visualized comparisons of semantic

segmentation on NYU-Depth v2 dataset, which involves

cluttered objects from various indoor scenes. On the whole,

our LSD-GF approach achieves very promising results for

semantic segmentation. Specifically, rows (1)∼(3) of the

figure show some examples to witness the effectiveness

of the proposed gated fusion, e.g., it helps to correctly

recognize the box on the sofa (emphasize appearance), the

faraway fridge against the cabinet (emphasize shape), and
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RGB HHA GT LSD-GF w/o gated fusion w/o locality-sensitive w/o both

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

towel

oprops

background

blinds

floor wall

bed cabinet

chair

sofa door

table

bookshelf window

counter

picture

box

board nightstand

person

sink toilet

bathtub

lamp bag

ostuctofurn

desk

shower

curtain shelves

dresser

pillow floormat

miror

ceiling clothes

books

fridge paper

tv

Figure 4. Visual comparison of scene semantic segmentation on the NYU-Depth v2 dataset. For the scene image in each row, we show:

(column 1) the RGB image; (column 2) the HHA image; (column 3) the ground truth of semantic segmentation; (column 4) the result of

our LSD-GF approach, i.e., l in Table 3; (column 5) the result of LSD-GF whose gated fusion is replaced by sum fusion, i.e., i in Table 3;

(column 6) the result of LSD-GF whose locality-sensitive module is removed, i.e., h in Table 3; (column 7) the result of LSD-GF whose

locality-sensitive is removed and the gated fusion is replaced by sum fusion, i.e., e in Table 3. See detailed analysis in the text. Best viewed

in the magnified color image.

the chair with upper parts (emphasize both). Rows (4)∼(6)

demonstrate that the usage of locality-sensitive module can

generate very precise boundary segmentation, such as the

white fridge beside the white door, the mirror with various

reflected objects, the person in front of the door. The

networks without locality-sensitive module generally obtain

inflated edges. Moreover, we show some failure examples

in rows (7)∼(8), our approach misclassify oprops (short

for other props) as towel due to similar appearance, and

mislabel person as oprops due to the occluded face.

5. Conclusion

In this paper, we propose a novel LSD-GF method for

indoor semantic segmentation with RGB-D data. LSD-

GF is composed of two main components: 1) the locality-

sensitive deconvolution networks, which are designed for

simultaneously upsamping the coarse fully convolutional

maps and refining object boundaries; 2) gated fusion, which

can adapt to the varying contributions of RGB and depth for

better fusion of the two modalities for object recognition.

Extensive experiments on recent RGB-D scene benchmarks

demonstrate that LSD-GF can achieve significant perfor-

mance gains compared to recent state-of-the-art methods.
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