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Abstract

This work presents a weakly supervised framework with

deep neural networks for vision-based continuous sign lan-

guage recognition, where the ordered gloss labels but no ex-

act temporal locations are available with the video of sign

sentence, and the amount of labeled sentences for training

is limited. Our approach addresses the mapping of video

segments to glosses by introducing recurrent convolutional

neural network for spatio-temporal feature extraction and

sequence learning. We design a three-stage optimization

process for our architecture. First, we develop an end-to-

end sequence learning scheme and employ connectionist

temporal classification (CTC) as the objective function for

alignment proposal. Second, we take the alignment pro-

posal as stronger supervision to tune our feature extrac-

tor. Finally, we optimize the sequence learning model with

the improved feature representations, and design a weak-

ly supervised detection network for regularization. We ap-

ply the proposed approach to a real-world continuous sign

language recognition benchmark, and our method, with no

extra supervision, achieves results comparable to the state-

of-the-art.

1. Introduction

Sign language is regarded as the most grammatically

structured category of gestural communications. This na-

ture of sign language makes it an ideal test bed for develop-

ing methods to solve problems such as motion analysis and

human-computer interaction.

Continuous sign language recognition is different from

isolated gesture classification [7, 20] or sign spotting [8, 23,

30], which is to detect predefined signs from video stream

and the supervision contains exact temporal locations for

each sign. In the problem of continuous sign language

∗The first two authors contributed equally to this work.

recognition, each video of sign language sentence is pro-

vided with its ordered gloss labels but no time boundaries

for each gloss. (We usually use “gloss” to represent sign

with its closest meaning in natural languages [24].) There-

fore, continuous sign language recognition can be cast as

one of the weakly supervised problems, and the main issue

is to learn the corresponding relations between the image

time series and the sequences of glosses.

Recently, methods using deep convolutional neural net-

works (CNNs) have achieved breakthroughs in gesture

recognition [20] and sign spotting [23, 30], and recurrent

neural networks (RNNs) has shown significant results while

learning the dynamic temporal dependencies in sign spot-

ting [21, 26].

However, continuous sign language recognition with

deep neural networks remains challenging and non-trivial.

In this problem, the recognition system is required to

achieve representation and sequence learning from the

weakly supervised unsegmented video stream. Since video

sequences and gloss labels are given in sentence-level, the

amount of training data would increase drastically to make

the model align the gestures and gloss labels correctly with-

out overfitting. Although RNNs have shown superior per-

formance to hidden Markov models (HMMs) on handling

complex dynamic variations in sign recognition [21, 26],

with limited amount of training data RNNs are more in-

clined to end in overfitting.

Furthermore, although deep CNN has been proved to

outperform hand-crafted features in almost all computer vi-

sion tasks, there is no direct, precise frame-level supervi-

sion for CNN’s training in this problem. A complex end-to-

end model with CNN as visual feature extractor may lead

to overfitting as well. This presents the challenge of con-

structing suitable semantic learning objectives to guide the

training process of the feature extractor.

In this paper, we contribute a novel method for real-

world sign language recognition from continuous image
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Figure 1. This is the overview of our staged training approach: (1) end-to-end-training the full architecture with feature and sequence

learning components to predict the alignment proposal; (2) training the feature extractor with the alignment proposal; (3) training sequence

learning component with the improved representation sequence as input, which is given by the fine-tuned feature extractor.

streams. The main contributions of our work can be sum-

marized as follows:

(1) We develop our architecture with recurrent convolu-

tional neural networks to achieve performance comparable

to the state-of-the-arts in this weakly supervised problem,

without importing extra information;

(2) We fully exploit the representation capability of deep

convolutional neural network by segmenting the sentence-

level labels to vast amounts of temporal segments with gloss

labels, which directly guides the training of deep architec-

ture for feature representation and avoids overfitting effi-

ciently;

(3) We design a three-stage optimization process for

training our deep neural network architecture (see Fig. 1),

and our approach is proved to take notable effect on the lim-

ited training set;

(4) To the best of our knowledge, we are the first to pro-

pose a real-world continuous sign language recognition sys-

tem fully based on deep neural networks in this scope, and

we demonstrate its applicability from challenging continu-

ous sign video streams.

2. Related Work

Most systems for sign language recognition consist of a

feature extractor to represent the spatial and temporal vari-

ations in sign language, and a sequence learning model to

learn the correspondence between feature sequences and se-

quences of glosses. Moreover, continuous sign language

recognition [16, 18, 19] is also closely related to weakly

supervised learning problem, where precise temporal loca-

tions for the glosses are not available. Here we introduce the

works related to sign language analysis from these aspects.

Spatio-temporal representations. Many previous work-

s in the area of sign analysis [8, 16, 22, 25] use hand-

crafted features for spatio-temporal representations. In re-

cent years, there has been a growing interest in feature ex-

traction with deep neural networks due to the superior rep-

resentation capability. The neural network methods adopt-

ed in gesture analysis include CNNs [17, 18, 26], 3D C-

NNs [21, 23, 30] and temporal convolutions [26]. How-

ever, due to the data insufficiency in the problem of con-

tinuous sign language learning, the training of deep neural

networks is inclined to end in overfitting. To alleviate the

problem, Koller et al. [18] integrate CNN into a weakly su-

pervised learning scheme. They use the weakly labelled

sequence with hand shape as an initialization to iteratively

tune CNN and refine the hand shape labels with Expectation

Maximization (EM) algorithm. Koller et al. [17] also adopt

the finger and palm orientations as the weakly supervision

for tuning CNN. Different from [17, 18], we do not require

extra annotations in our approach, and we directly use the

gloss-level alignment proposals instead of sub-unit labels to

help the network training.

Sequence learning. Sign language recognition aims at

learning the correspondences between input sequences and

sign labels with sequence learning models. HMMs are

widely used in sign language analysis for sequence learning

from continuous time-series [16, 18, 30]. Recently, RNNs

have shown state-of-the-art performance in the task of sign

spotting [21, 26]. Pigou et al. [26] propose an end-to-end

deep architecture with temporal convolutions and bidirec-

tional recurrence. Molchanov et al. [21] employ a recurrent

3D-CNN with CTC as the cost function for hand gesture

recognition. Their architectures are related to ours, but it

is non-trivial to expect that simply applying their methods

will work well in continuous sign language recognition, s-

ince their aim is not to recognize the whole sign language

sentence, but the isolated glosses within the sentences. To

the best of our knowledge, we are the first to develop the

architecture for continuous sign language recognition fully

based on deep neural networks.

Weakly supervised learning. Due to lack of temporal

boundaries for the sign glosses in the image sequences, con-

tinuous sign language recognition is also a typical weakly

supervised learning problem. Cooper and Bowden [6] use

method from data mining to extract similar regions from

videos, then the scheme of Mean Shift [5] is used to refine
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the locations in temporal domain. Buehler et al. [3] de-

sign a scoring function based on multiple instance learning

(MIL) to locate the signs of interest. Pfister et al. [25] use

cues of subtitles, mouthing and hand motion to search for

signs by a discriminative MIL approach. However, most of

these methods are concerning the problem of mining isolat-

ed signs of interest from large number of sign videos.

A related work to ours is recently proposed by Koller

et al. [19]. They develop a hybrid CNN-HMM approach,

which treats the outputs of CNN as Bayesian posteriors and

uses the frame-level hidden states predicted by HMM to

tune CNN. There are key differences between our approach

and theirs: (1) instead of given frame-level labels with nois-

es as training targets of CNN, we take the temporal varia-

tions into account and adopt the gloss-level alignments for

training the spatio-temporal feature extractor, and (2) our

approach is self-contained and does not require results from

other systems for frame-state alignment initialization.

3. Method

Vision-based continuous sign language recognition sys-

tems usually take the image sequences of signers’ perfor-

mance as input, and learn to automatically output the gloss

labels in right order. In this work, our proposed approach

employs CNN with temporal convolution and pooling for

spatio-temporal representation learning from video clips,

and RNN with long short-term memory (LSTM) module

to learn the mapping of feature sequences to sequences of

glosses.

To effectively train our deep architecture, we introduce

a three-stage optimization process: (1) finding the align-

ment proposal by end-to-end training the full architecture

with feature extractor and sequence learning component;

(2) tuning the feature extraction component by using the

correspondence between gloss-level segments and categori-

cal probabilities from the alignment proposal; (3) tuning the

sequence learning component with improved feature repre-

sentations as inputs.

To refine the result for sequential prediction, we propose

a sign detection net and jointly integrate the detection with

the sequence learning outputs as the regularization for se-

quence learning. An overview of our method is presented

in Fig. 1. The remainder of this section discusses our ap-

proach in detail.

3.1. Network architecture

Our proposed architecture consists of a CNN with tem-

poral convolution and pooling for spatial and local temporal

feature extraction, a bidirectional LSTM [13] for global se-

quence learning, and a detection network for refining the

sequence learning results.

Spatio-temporal feature extractor. Let {xt}
T
t=1 =

(x1, · · · , xT ) be the input video stream as a sequence of

images with time T . We use function F to represent CN-

N, which transforms input frames {xt}
T
t=1 to a spatial rep-

resentation vector sequence {ft}
T
t=1 = F({xt}

T
t=1) with

ft ∈ R
c. We set the stacked temporal convolution with

zero-padding and temporal pooling operations as function

P : Rℓ×c → R
d with receptive field ℓ, temporal stride δ

and output dimension d, and each segment with length ℓ is

transformed into a spatio-temporal representation:

{sn}
N
n=1 = P({ft}

T
t=1) = P(F({xt}

T
t=1)), (1)

where N = T/δ represents the number of segments, and

sn ∈ R
d denotes the representation of segment n. The

structure of CNN stacked with temporal operations P ◦ F
is the spatio-temporal feature extraction architecture, which

transforms video segments into approximate gloss-level

representations. In our experiments, we set the receptive

field ℓ to 10 frames, which is equal to the median length of

isolated glosses provided by [9]. Therefore we dubbed it

approximate “gloss-level”.

Bidirectional LSTM. The bidirectional LSTM (BLSTM)

computes the hidden state sequence by combining the out-

put sequences of LSTM by iterating forwards from t = 1
to τ and backwards from t = τ to 1, which can be simply

represented as:

{hcn}
N
n=1 = R({sn}

N
n=1), (2)

where R denotes the temporal modeling function of BLST-

M, and hcn is the BLSTM’s output which is going to give the

categorical prediction next. Finally, we employ a fully con-

nected layer with softmax to convert the outputs of BLSTM

into categorical probabilities of gloss labels with K classes:

P c
ij = [σcls(ϕ(h

c
j))]i =

e[ϕ(h
c

j)]i

∑K

k=1 e
[ϕ(hc

j
)]k
, (3)

where P ∈ [0, 1]K×N and P c
ij is the emission probability

of label i at time j, σcls denotes the softmax function per-

formed on the classes, and ϕ represents the linear mapping

to R
K of the fully connected layer. Here we use [·]i to de-

note the i-th element of the vector.

Detection net. In the proposed detection net, we em-

ploy stacked temporal convolution operations on the spatio-

temporal feature vectors {sn}
N
n=1, which is like a sliding-

window detection manner along the gloss-level feature se-

quences. The stacked temporal convolution C transforms

{sn}
N
n=1 into a representation sequence of length N for de-

tection:

{hdn}
N
n=1 = C({sn}

N
n=1). (4)
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Spatio-temporal feature extractor

CNN (VGG-S / GoogLeNet)

conv1D-3-1024

maxpool1D-2

conv1D-3-1024

maxpool1D-2

Recurrent neural net Detection net

BLSTM-512 conv1D-2-256

conv1D-2-256

fully connected layer fully connected layer

softmax softmax

Table 1. Configuration of our architecture. The parameters for

temporal convolution are denoted as “conv1D-[receptive field]-

[number of channels]”. Temporal pooling layers are annotated

with stride, and bidirectional LSTM (denoted by “BLSTM”) is

with the dimension number of its hidden variables. The output

dimensions of the fully connected layers are equal to the size of

gloss vocabulary in our architecture.

We pass sequence {hdn}
N
n=1 through a softmax layer to get

the detection scores as follows:

P d
ij = [σdet(ψ(h

d
j ))]i =

e[ψ(h
d

j )]i

∑N

k=1 e
[ψ(hd

k
)]i
, (5)

where ψ denotes the linear transformation to R
K , and P d ∈

[0, 1]K×N . Softmax σdet is different from σcls. In the de-

tection net, σdet compares the temporal proposals for each

class and selects those segments matching the class with

higher scores, while σcls predicts the likely class at each

time-step.

The configurations of our proposed architecture is pre-

sented in Table 1.

3.2. Alignment proposal by end­to­end learning

At the stage of end-to-end training, our full architecture

with feature extractor and sequence learning model takes

the image sequences x = {xt}
T
t=1 as the inputs and learn to

output the ordered gloss labels y in an end-to-end manner

(see Fig. 2). Since we have no prior knowledge of where

the signs occur in the unsegmented image stream, here we

employ connectionist temporal classification (CTC) [12] as

the objective function of our full architecture.

CTC is an objective function that integrates all possible

alignments between the input and target sequence. We add

an extra class “blank” to the gloss vocabulary to explicitly

model the transition between two neighboring signs. The

CTC alignment π is then a sequence of blank and gloss

labels with length N . Let x = {xt}
T
t=1, the probability

Pr (π|x) of π is given by the product of probabilities:

Pr (π|x) =
N∏

n=1

Pr (πn|x) =
N∏

n=1

P c
πn,n

, (6)

Figure 2. Overview of the end-to-end learning stage of the opti-

mization process.

where πn is the label of π at time n, and P c
πn,n

is the emis-

sion probability of πn at time n.

As presented in [11, 12], the same input and target se-

quence, which has no blank, can have different alignments

due to different ways of blanks separating the gloss labels.

We define the many-to-one mapping of alignments onto the

target sequence y as B, and the probability of observing y

is the sum of probabilities of all alignments corresponding

to it:

Pr(y|x) =
∑

π∈B−1(y)

Pr(π|x), (7)

where B−1(y) = {π|B(π) = y} is the set of all the align-

ments. The CTC loss function is defined as:

LCTC(x,y) = − log Pr(y|x). (8)

Let S be the training set, which is the collection of im-

age sequence with its ordered label sequence (x,y), and w

be the stacked vector of all filter parameters employed in

the proposed deep architecture, we then define the training

objective as:

L =
λ

2
∥w∥2 +

1

|S|

∑

(x,y)∈S

LCTC(x,y), (9)

where λ is the hyperparameter for regularization. Through

the end-to-end training strategy, for each input sequence x

our architecture outputs the categorical distribution pn at

each time-step, and we take them as the alignment propos-

al Pα(x) = {pn}
N
n=1. We use the alignment proposal as

stronger supervision to further tune our deep architecture

for feature extraction at the later stage.

3.3. Feature learning with alignment proposal

Our end-to-end training stage provides the outputs of

BLSTM as approximate alignments between video seg-

ments and gloss labels. To fully exploit the representation

capability of the deep architecture for feature learning, we

take the categorical scores as the gloss-level supervision for

segment at each time-step, and we use these segments with
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Figure 3. Overview of the feature learning process with alignment proposal.

class probabilities as stronger supervision to directly tune

the deep spatio-temporal feature extractor (see Fig. 3).

Here we extend the gloss-level encoding architecture P◦
F with a softmax layer φ, which transforms the input x

into:

φ(P ◦ F(x)) = {φ(sn)}
N
n=1, (10)

where φ(sn) ∈ [0, 1]K is the predicted categorical distri-

bution for time-step n. Given the alignment proposal as

Pα(x) = {pn}
N
n=1, which provides the categorical distri-

bution of target at each time-step, we define the objective

for gloss-level alignment as:

Lalign(x, P
α(x)) =

1

N

N∑

n=1

dKL(pn∥φ(sn)), (11)

where we use Kullback-Leibler divergence dKL to measure

the distribution difference between φ(sn) and pn. There-

fore, the training objective for this stage can be presented

as:

L =
1

|S|

∑

(x,y)∈S

Lalign(x, P
α(x)). (12)

We take the alignment proposal as the assignment of

learning targets to the temporal segments, which provides

numerous gloss-level training samples with stronger super-

vision, and we use this scheme to tune the feature extractor

for much better spatio-temporal representations.

3.4. Sequence learning from representations

At this stage, we adopt the tuned feature extractor to pro-

vide representation sequence {sn}
N
n=1 for video stream x,

and we further train the sequence learning model to learn

the ordered labels with CTC loss, taking the representations

as inputs.

To further improve the generalization capability of our

recurrent neural network and avoid overfitting, inspired by

the weakly supervised object detection scheme developed

in [2], here we propose the detection net for sign glosses to

implicitly locate them in the temporal sequences. By opti-

mizing the detection scheme jointly with the CTC objective

function, the deep network architecture not only learns to

Figure 4. This illustrates the approach to integrating the classifica-

tion and detection scores.

predict the gloss sequence, but also aligns label with the ac-

cording video segment more precisely, thus improving the

generalization capability of the model.

Unlike visual object detection from images [2], there is

no proposal method to segment and generate candidate tem-

poral intervals of interest from time-series. Therefore, we

construct the detection net, as introduced in section 3.1, per-

forming like a sliding-window detection approach along the

gloss-level feature sequences. We use element-wise product

of P c and P d and sum up the scores over the temporal pro-

posals:

zk =
N∑

n=1

P c
kn · P d

kn, (13)

where we take zk ∈ (0, 1) as the score that gloss k occurs

in this sign language videos. Fig. 4 illustrates the approach

to integrating the scores of detection and classification. We

let Y be the set of glosses contained in target sequence y,

and A be the gloss dictionary without “blank”. Then the

objective function of training the detection net is given by:

Ldet(x,y) =
∑

k∈A\Y

log(1− zk) +
∑

k∈Y

log zk. (14)

We take Ldet as the regularization on the prediction of tem-

poral locations, and the objective function for training the

sequence learning model at this stage is presented as:

L =
λ

2
∥w∥2 +

1

|S|

∑

(x,y)∈S

(LCTC + µLdet)(x,y), (15)

where λ and µ are hyperparameters for regularization, and

w is the stacked vector of all filter parameters in our pro-

posed sequence learning architecture.
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By integrating the scores of sequential prediction and

gloss detection together, the model is trained not only with

sequential cues, but also with the consideration of the con-

text in detection, and it is expected to predict more precise

alignments in accord with the detection outputs. Moreover,

the detection net can be seen as a component of multi-task

learning with shared weights for representation, which en-

courages the sequence learning to be further improved.

4. Experiments

In this section we analyze the performance of our ap-

proach on continuous sign language recognition.

4.1. Implementation details

Dataset and evaluation. We evaluate our method on

RWTH-PHOENIX-Weather multi-signer 2014 [10], which

is a publicly available benchmark dataset for continuous

sign language recognition. This dataset contains 5,672 sen-

tences in German sign language for training with 65,227

sign glosses and 799,006 frames in total. These videos are

performed by 9 signers, and each video contains a single

gloss sentence.

To evaluate the performance quantitatively, we employ

word error rate (WER) as the criterion, which is widely-

used in the scope of continuous sign language recognition.

WER measures the least operations of substitution, deletion

and insertion to transform the reference sequence into the

hypothesis:

WER =
#sub +#del + #ins

#words in reference
, (16)

where #sub, #del and #ins stand for the number of re-

quired substitutions, deletions and insertions, respectively.

Image preprocessing. In order to provide comparable re-

sults, all the input images are cropped right (dominan-

t) hand patches provided by RWTH-PHOENIX-Weather

multi-signer 2014 dataset. The size of cropped patches is

92× 132 pixels. In our experiment, these crops are resized

to the size of 101× 101 (for VGG-S [4]) or 224× 224 (for

GoogLeNet [28]), from which the mean image is subtract-

ed.

CNN pretraining. At this stage, we focus on pretraining

the CNN for spatial representations before the stacked 1-

dimensional temporal convolution and pooling. We first ini-

tiate our CNN with VGG-S model pretrained on ILSVRC-

2012 dataset [27]. We choose this “relatively shallow” net-

work mainly in consideration of GPU memory constraints

when jointly optimizing CNN and RNN. Then, we apply

the nonlinearity of tanh to the last fully connected layer

and fine-tune the network on the training set with triplets of

patches including positive and negative pairs as in the work

of PN-Net [1]. We select two neighbouring frames from

one sentence within 3-frame intervals as a positive patch

pair and one frame from another sentence with no shared

gloss as the negative patch. We train the network using s-

tochastic gradient descent (SGD) with a fixed learning rate

of 5× 10−5 and a momentum of 0.9. We set the batch size

to 48 and stop pretraining after 16,000 iterations.

Alignment proposal by end-to-end learning. We re-

move the last fully connected layer from the pretrained

VGG-S model and add to it the stacked temporal convo-

lution and pooling as the spatio-temporal feature extrac-

tor. We propose a BLSTM as the sequence learning mod-

el, and we use the objective function given in Eq. 9 with

λ = 5 × 10−4 to train the full architecture. We employ

ADAM [15] as the stochastic optimization approach with a

fixed learning rate of 5 × 10−5. We apply temporal scal-

ing up to ±20% as the approach for data augmentation to

increase the variability of the video sequences.

Feature learning with alignment proposal. We start

training the feature extractor with the alignment propos-

al given by the end-to-end training stage. This alignment

proposal is employed to generate numerous video segments

with the according categorical scores as supervision. We

split training and validation set of pairs with segment and

categorical score at a ratio of 10:1 and guarantee that the

video segments extracted from the same sentence fall within

the same set. At the stage of tuning the representation learn-

ing architecture, we employ GoogLeNet [28] pretrained on

ILSVRC-2014 [27] as the CNN model, which shows better

performance on the problem of large-scale image classifica-

tion. To extend its temporal receptive field to be compatible

with the video segment, we apply a modification to the Con-

vNet by inserting a stacked temporal convolution with max-

pooling layer before each classifier of GoogLeNet. We em-

ploy ADAM [15] as the stochastic optimization approach.

We set a fixed learning rate to 5 × 10−5, batch size to 20

and stop the finetuning after 16,000 iterations.

Sequence learning from representations. At the stage

of training the sequence learning model, we take the feature

map from layer “pool5/7x7 s1” of fine-tuned GoogLeNet as

the representation for each patch of right hand in the video

stream. We use the feature sequence as input to tune the

sequence learning architecture with objective function de-

fined in Eq. 15, where we set λ = 5× 10−4, µ = 0.5 and a

fixed learning rate to 5× 10−5.

4.2. Results

Design choices. We analyze the performance and effec-

t of each individual component in our proposed approach.

In the phase of end-to-end training for alignment propos-

al, we look into the ingredients of our feature and sequence

learning architecture. We substitute 3D-CNN [21, 29] for

our proposed CNN with stacked temporal convolution and
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pooling, and we also assess the utility of pre-training the C-

NN with loss employed in PN-Net [1] from video frames.

Besides, we also try to find out the effect of different recur-

rent sequence learning models. Continuous sign language

recognition results of these experiments are listed in Ta-

ble 2. We use “ConvTC+BLSTM” to denote our proposed

architecture with VGG-S net pretraining on ISLVRC 2012,

and “+pretrain” for further applying pre-training with loss

in PN-Net [1] to our proposed model.

We observe from Table 2 that our proposed approach

for spatio-temporal representations in a later fusion man-

ner [14] outperforms the recurrent 3D-CNN in this problem

by a large margin. We think the reason for CNN with tem-

poral convolutions performing better is that there are less

parameters compared to 3D-CNN with the same number of

layers, thus it is less prone to overfitting. We also notice that

pretraining our model on the right hand patches from train-

ing videos further improves the performance, since the net-

work learns from the similarity and continuity of the hand

shape streams.

We analyze the effect of each component in our sequence

learning model at the stage of sequence learning, where we

get the spatio-temporal representations from feature extrac-

tor and tune the recurrent component. To understand the

utility of our proposed detection net, we remove it from our

model in this experiment. We also substitute different mod-

els of recurrence for the employed BLSTM. In Table 3 we

observe that BLSTM gives the best performance among the

recurrent models, since it can fully take advantage of the

information from the context. Notice that the employment

of detection net achieves consistently superior performance

compared to learning the sequential mapping with BLSTM

alone. The results demonstrate the effectiveness of our pro-

posed temporal detection net. Moreover, we observe that

by fine-tuning the feature extractor with the alignment pro-

posal, all the results given by different sequence learning

models outperform the best one at the stage of end-to-end

training. This demonstrates that the representation learning

process is crucial and contributes greatly to the performance

improvement.

Alignment evaluation. We further analyze the effect of

our proposed approach from the perspective of alignment

performance.

We observe from Fig. 5 that, the BLSTM with only CTC

loss shows inferior prediction, both in error rate and in lo-

cation accuracy, to the full model. We address that CTC on-

ly optimizes the sequence to sequence correspondence but

takes no consideration of alignment. Our sliding-window-

based detection net implicitly aligns the segment-level de-

tection score with the sequential prediction, which results in

a better alignment. Thus the employment of our detection

net is more inclined to possess better generalization perfor-

mance for the entire model.

Model setup
Validation Test

del / ins / WER del / ins / WER

C3d+BLSTM 45.6 / 2.5 / 76.8 46.9 / 2.8 / 77.6

ConvTC+RNN 19.5 / 6.8 / 53.8 18.9 / 7.6 / 53.7

ConvTC+LSTM 21.4 / 6.3 / 50.9 20.7 / 6.8 / 51.3

ConvTC+BLSTM 16.8 / 6.8 / 47.8 15.8 / 7.9 / 47.3

+pretrain 16.3 / 6.7 / 46.2 15.1 / 7.4 / 46.9

Table 2. Recognition results for end-to-end training stage on

RWTH-PHOENIX-Weather 2014 multi-signer dataset in [%].

“C3d” stands for the 3D-CNN structure employed in [21, 29],

“ConvTC” for our proposed feature extraction architecture with

VGG-S net pretrained on ISLVRC 2012, and “+pretrain” for our

model further pretrained with PN-Net [1] loss on the right hand

patches from training set.

Model setup
Validation Test

del / ins / WER del / ins / WER

Our-end2end 16.3 / 6.7 / 46.2 15.1 / 7.4 / 46.9

RNN 19.6 / 5.4 / 45.0 18.1 / 6.2 / 44.8

LSTM 18.1 / 5.7 / 43.3 17.1 / 6.6 / 43.6

BLSTM 14.9 / 6.7 / 41.4 15.1 / 7.1 / 41.9

BLSTM+det net 13.7 / 7.3 / 39.4 12.2 / 7.5 / 38.7

Table 3. Recognition results for sequence learning stage on

RWTH-PHOENIX-Weather 2014 multi-signer dataset in [%]. We

assess the performance of different recurrent models and our pro-

posed detection net. “BLSTM+det net” stands for the employed

model with bidirectional LSTM and detection net, and “Our-

end2end” for the full model with best performance in the stage

of end-to-end training.

From Fig. 5 we also observe significant gain of align-

ment performance after finetuning the feature extractor.

This observation is consistent with the results of WER in

Table 3.

Results on multiple signers. In our experiments, no

schemes are specifically taken or designed for the inter-

signer variations. The amounts of training samples for the

9 signers are unbalanced in this dataset, with the three most

sampled signers account for 26.0%, 22.8%, 14.7% and three

least 0.5%, 0.8%, 2.9%, while the WERs (in %) for these

signers on validation set are 36.0, 38.6, 43.8 and 45.8, 43.3,

38.7 respectively. This indicates that our system can learn

the shared representations among different signers and to

some extent handle the inter-signer variations.

Comparisons. In Table 4, We evaluate our proposed

method together with the state-of-the-arts on RWTH-

PHOENIX-Weather multi-signer 2014 dataset. We observe

that our approach achieves comparable performance to

the state-of-the-arts without using extra supervision, which

contains a sign language lexicon mapping signs to hand

shape sequences. Moreover, our approach using only infor-
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Figure 5. Two examples for qualitative alignment results on gloss sentence videos from test set. Colors are used to represent different

glosses and horizontal axis to represent time. “Our-end2end” stands for the full model at end-to-end stage, “Ours” stands for the top-

performing model with BLSTM and detection net at sequence learning stage, and “Ours w/o det net” stands for the BLSTM sequence

learning model without the detection net. We manually annotate the groundtruth by comparing with the gloss samples provided by RWTH-

PHOENIX-Weather 2012 dataset [9].

Model setup
Extra Modality Validation Test

supervision r-hand traj face del / ins WER del / ins WER

HOG-3D [16] X 25.8 / 4.2 60.9 23.2 / 4.1 58.1

[16] CMLLR X X X 21.8 / 3.9 55.0 20.3 / 4.5 53.0

1-Mio-Hands [18] X X 19.1 / 4.1 51.6 17.5 / 4.5 50.2

1-Mio-Hands [18]+[16] X X X X 16.3 / 4.6 47.1 15.2 / 4.6 45.1

CNN-Hybrid [19] X X 12.6 / 5.1 38.3 11.1 / 5.7 38.8

Our-end2end X 16.3 / 6.7 46.2 15.1 / 7.4 46.9

Ours X 13.7 / 7.3 39.4 12.2 / 7.5 38.7

Table 4. Performance comparison of different continuous sign language recognition approaches on RWTH-PHOENIX-Weather 2014 multi-

signer dataset in [%]. “r-hand” stands for right hand and “traj” stands for trajectory motion. “Extra supervision” imported in [18] contains

a sign language lexicon mapping signs to hand shape sequences, and the best result of [19] uses [18]+[16] as the initial alignment.

mation from dominant hand even outperforms those multi-

modal methods by a large margin. These results can quan-

titatively demonstrate the effectiveness of our approach.

Notice that our approach performs comparably to the

CNN-Hybrid system [19]. It should be clarified that our

system is self-contained and does not need the initial align-

ment imported from other systems. While in the CNN-

Hybrid system, the best performance is achieved with

the help of initial alignment provided by the approach of

[18]+[16]. Therefore, the multi-modal information and ex-

tra supervision is implicitly imported to aid the optimization

of their system. However, it seems that suitable exploitation

of extra supervision is crucial to the notable improvemen-

t of performance, and we may investigate it in the future

work. Besides, it is also necessary to extend the algorithm

to a multi-modal version to integrate complementary cues

for further improvements.

5. Conclusion

In this paper, we have proposed a deep architecture with

recurrent convolutional neural network for continuous sign

language recognition. We have designed a staged optimiza-

tion process for training our deep neural network architec-

ture. We fully exploit the representation capability of C-

NN with tuning on vast amounts of gloss-level segments

and effectively avoid overfitting with the deep architecture.

We have also proposed a novel detection net for regular-

ization on the consistency between sequential predictions

and detection results. The effectiveness of our approach is

demonstrated on a challenging benchmark, where we have

achieved the performance comparable to the state-of-the-

art.
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