
Hardware-Efficient Guided Image Filtering For Multi-Label Problem

Longquan Dai1 Mengke Yuan2 Zechao Li1 Xiaopeng Zhang2 Jinhui Tang1∗

1. School of Computer Science and Engineering, Nanjing University of Science and Technology

2. National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Science

{dailongquan, zechao.li, jinhuitang}@njust.edu.cn, {mengke.yuan, xpzhang}@nlpr.ia.ac.cn

Abstract

The Guided Filter (GF) is well-known for its linear com-

plexity. However, when filtering an image with an n-channel

guidance, GF needs to invert an n×n matrix for each pixel.

To the best of our knowledge existing matrix inverse algo-

rithms are inefficient on current hardwares. This shortcom-

ing limits applications of multichannel guidance in compu-

tation intensive system such as multi-label system. We need

a new GF-like filter that can perform fast multichannel

image guided filtering. Since the optimal linear complexity

of GF cannot be minimized further, the only way thus is to

bring all potentialities of current parallel computing hard-

wares into full play. In this paper we propose a hardware-

efficient Guided Filter (HGF), which solves the efficiency

problem of multichannel guided image filtering and yields

competent results when applying it to multi-label problems

with synthesized polynomial multichannel guidance. Specif-

ically, in order to boost the filtering performance, HGF

takes a new matrix inverse algorithm which only involves

two hardware-efficient operations: element-wise arithmetic

calculations and box filtering. In order to break the lin-

ear model restriction, HGF synthesizes a polynomial multi-

channel guidance to introduce nonlinearity. Benefiting from

our polynomial guidance and hardware-efficient matrix in-

verse algorithm, HGF not only is more sensitive to the un-

derlying structure of guidance but also achieves the fastest

computing speed. Due to these merits, HGF obtains state-

of-the-art results in terms of accuracy and efficiency in the

computation intensive multi-label systems.

1. Introduction

Since 2010, GF has been applied to many computer vi-

sion and graphics problems such as image retargeting [6],

color transfer [1] and video dehazing [33]. Among them,

multi-label system maybe one of the most suitable applica-

tions for GF to make full use of its efficiency and effective-

ness because the heavy computation in multi-label system

* Corresponding author.

is in urgent need of a fast filtering tool. A typical multi-

label system [12] records the costs c for choosing a label

l at coordinates x and y in a cost volume (V (x, y, l) = c)
according to the input data. Then WTA (Winner-Takes-All)

label selection strategy is exploited to determine the final

label for each pixel (x, y) after the aggregation (i.e. guided

image smoothing) step operated on each slice of the cost

volume. Besides applying GF to the aggregation step of

the multi-label system, we can also incorporate it into MRF

models [28, 30] since edge-aware filters adopted in these

MRF models can be taken place by GF directly.

Due to the linear complexity and edge-preserving ability,

GF is consider as the best choice [12] among all candidate

filters for the multi-label system. However, a blemish of

GF is that the color image guided filtering algorithm is not

very efficient. More specifically, matrix inverse is a time-

consuming operation, but GF needs to invert a 3× 3 matrix

for each pixel to calculate both coefficients ~wp of Eq (1)

and filtering result Z(q) according to the ith channel Ii(q)

Z(q) =

3
∑

i=1

~wp(i)Ii(q) + ~wp(0) (1)

of a color input guidance I . Fig 1a plots the run time of in-

verting 106 matrices with increasing matrix size, where the

matrix inverse algorithm is the built-in LU algorithms of

OpenCV. We can observe that the run time increases with

the size of matrix dramatically. Hence it is inefficient to ap-

ply GF to multi-label system with a multi-channel guidance,

especially for a large channel number.

To decrease the execution time, the most straightforward

method for GF is to launch a set of threads to invert matrices

simultaneously. However this strategy is not very efficient

on current hardwares. This is because 1, both CPU and

GPU rely on SIMD (Single Instruction Multiple Data) ar-

chitecture to boost performance; 2, branch instructions are

inevitable for traditional matrix inversion methods such as

LU algorithm [13]; 3, SIMD architecture cannot achieve the

fastest speed to run branch instructions as these instructions

require decomposing each vector into elements and pro-

cessing them sequentially on the architecture. Fig 1a also

illustrates the run time of inverting 106 matrices simultane-

15325

(a) Matrix Inverse (b) Stereo Matching

Figure 1: Matrix Inverse & Stereo Matching: (a) demon-

strates the run time of inverting 106 matrices with increas-

ing size (b) illustrates the stereo matching results of GF with

different guidances.

ously. The reported data is unsatisfactory. To avoid branch

instructions, we can invert matrices according to the ana-

lytic solution of matrix inverse [11]. The fastest OpenCV

implementation of GF takes this strategy to invert 3×3 ma-

trices and successfully reduces the run time of inverting 106

matrices to less than 100ms. But the implementation com-

plexity of the analytic solution increases with matrix size

heavily. When the size of matrix becomes large, the method

is no longer implementable manually. This explains why we

miss the run time of this method in Fig 1a.

We propose a hardware-efficient matrix inverse algo-

rithm to exploit the parallel computing power of hardwares

to its full potential. The ability of our algorithm stems from

two hardware-efficient operations: element-wise arithmetic

calculations and box filtering. To compare with the built-in

LU algorithm adopted by OpenCV, we collect run times of

our algorithm implemented by Intel OpenCL and plot them

in Fig 1a. The result proves that our method gets a substan-

tial performance boost on Intel platform.

We introduce nonlinearity to GF by synthesizing a

polynomial multi-channel guidance from the input guid-

ance to conquer the drawback of the linear model of GF.

The linear model usually underfits the input data due to its

simplicity and thus is apt to produce over-smoothed results.

Fig 1b shows the stereo matching results under the guid-

ance of a gray image and our synthesized multi-channel im-

age. Obviously, the synthesized guidance produces better

results. Note that the extra run time in accompany with the

nonlinear model can be reduced to an acceptable level by

our hardware-efficient matrix inverse algorithm.

Taking proposed polynomial guidance and new ma-

trix inverse algorithm, we construct a hardware-efficient

guided filter (HGF) for multi-label problem. For presen-

tation clarity, we organize the rest of this paper in following

way. Section 2 is devoted to introduce related work. In the

next section, we present how to invert matrix efficiently and

its application in computing regression coefficients. Sec-

tion 4, 5 discuss HGF in details, including the hardware-

efficient implementation and the method to synthesis poly-

nomial guidances. Finally, we conduct comprehensive ex-

periments to verify the superiority of HGF in section 6.

2. Related Work

Acceleration: People have already proposed many im-

age guided filters such as the Bilateral Filter (BF) [27] and

the Median Filter (MF) [34] for edge-preserving smooth-

ing. However, the benefit is not free. For example, the

naive implementation of BF usually requires several min-

utes to filter a typical megapixel image. Several methods

have been developed to accelerate the computation of bi-

lateral filtering [7, 21, 23, 32, 8, 5] and as a result people

obtained several orders of magnitude speedup. Similar to

BF, MF can also effectively filter images while not strongly

blurring edges. Although there is little work for speeding

up weighted MF [19, 34], unweighted MF has several solu-

tions [2, 15, 22, 29]. Generally, the main idea of above ac-

celerating methods focuses on reducing the computational

complexity per pixel to the optimal O(1). However, the

minimal linear complexity of GF leaves no room to reduce

the computational complexity further. To accelerate GF, He

et al. [9] remind that GF can be sped up by subsampling

to subset the amount of data processed. But this strategy

inevitably introduces approximation error. A different way

is to implement the algorithm of GF on VLSI directly [14].

But Kao et al. [14] only give a gray guidance based GF

implementation as existing matrix inverse algorithms are

too complicated to implement on hardware. Different from

other algorithms, our hardware-efficient matrix inverse al-

gorithm not only can fully exploit current parallel proces-

sors but also can be easily implemented.

Improvement: Due to nice visual quality, fast speed,

and ease of implementation, GF since its birth has received

much effort to make it much better. In 2012, Lu et al. [18]

pointed out that the box window adopted by GF is not

geometric-adaptive and design a adaptive support region to

take place of it. However, Tan et al. [26] argued that the new

designed adaptive support region depends on the scanning

order and put forward a further improvement for the support

region. In addition, they introduced a quadratic spatial regu-

larization term to GF. But the filtering speed is very slow be-

cause they employ traditional algorithms to invert 5×5 ma-

trices. Later, Dai et al. [4] successfully incorporated spatial

similarity into GF without significant performance degen-

eration. Unlike previous methods, Li et al. [17] modified

GF to adapt it to suppress halo. Through careful investiga-

tion, we can find that all these improvements do not make

any modification for the gray/color guidance or incorporate

more complicated nonlinear model to GF to achieve better

results. This is because these modifications will increase the

matrix size and therefore make the run time unacceptable.

Note that even though all of them only take into account the

linear model, their speeds are still slower than GF [4]. Bene-

fiting from our hardware-efficient matrix inverse algorithm,

we realizes these modifications in HGF without sacrificing

efficiency.

5326

3. Technology Brief

In this section, we outline our matrix inverse algorithm

and its application in computing ~wp in Eq (2). Before the

formal discussion, we kindly remind readers to refer to Ta-

ble 1 for symbol conventions.

The key step of HGF is to calculate the vector ~wp ac-

cording to Eq (2) which contains the matrix inverse opera-

tion (λE +XT
p Xp)

−1. Here E denotes an identity matrix

~wp = (λE +XT
p Xp)

−1XT
p ~cn+1,p (2)

and Xp = [~c0,p, · · · ,~cn,p]. As for the vector ~ci,p, we put

~ci,p = [Gi(q1), · · · ,Gi(q|Ωp|)]
T (0 ≤ i ≤ n+ 1) to record

values Gi(qk), where qk ∈ Ωp, Ωp presents a neighbor-

hood centered at the pixel p, |Ωp| indicates the total number

of pixels in Ωp and Gi (0 ≤ i ≤ n+ 1) is an image.

To invert λE + XT
p Xp efficiently, we will substitute

λE + XT
p Xp with λE +

∑n
i=0 ~ci,p~c

T
i,p by reformulating

Eq (2) as Eq (3). This is because (λE +
∑n

i=0 ~ci,p~c
T
i,p)

−1

~wp = XT
p (λE +XpX

T
p)

−1~cn+1,p

= [~cT0,p, · · · ,~c
T
n,p]

T (λE +

n
∑

i=0

~ci,p~c
T
i,p)

−1~cn+1,p (3)

can be interpreted as a linear combination of outer products

~ci,p~c
T
i,p (4) according to following Proposition 1.

Proposition 1. If λE +
∑n

i=0 ~ci,p~c
T
i,p is invertible, then

(λE +

n
∑

i=0

~ci,p~c
T
i,p)

−1 = λ−1E +

n
∑

i,j=0

αij,p~ci,p~c
T
j,p (4)

where αij,p = αn
ij,p which can be iteratively computed by

ακ
ij,p =



















γκ
pF

κ
ij,p + ακ−1

ij,p i < κ, j < κ

λ−1γκ
p (
∑κ−1

n=0 α
κ−1
in,pGnj,p) i < κ, j = κ

λ−1γκ
p (
∑κ−1

m=0 α
κ−1
mj,pGim,p) i = κ, j < κ

λ−2γκ
p i = j = κ

(5)

from κ = 1 to κ = n with α0
00,p = −(λ+G00,p)

−1, Gij,p =

~cTi,p~cj,p, Fκ
ij,p =

∑κ−1
m,n=0 α

κ−1
im,pα

κ−1
nj,pGmκ,pGκn,p and

γκ
p = −(1 + λ−1Gκκ,p +

∑κ−1
m,n=0 α

κ−1
mn,pGκm,pGnκ,p)

−1.

Proof. The recursive formula is derived from the Sherman-

Morrison formula [25]. Constrained by maximal 8 pages

constraint, we leave derivation details to supplementary ma-

terials. �

Further, putting Eq (4) into Eq (3), we are able to trans-

form the kth element ~wp(k) of ~wp to a linear combination

F
Calligraphic means that F is a func-

tion.

i
Italics emphasizes that the variable i
is a scalar.

p Fraktur denotes p is an image pixel.

~v Arrow ~ imlies v is a vector.

X
Bold (disregarding case) indicates X

is a matrix.

ip\~vp\Xp

The subscript p suggests ip\~vp\Xp is

the scalar\vector\matrix located at p.

~vi,p\Xi,p
The subscript i,p suggests ~vi,p\ Xi,p

is the ith vector\matrix of p.

~v(j)\~vp(j)\~vi,p(j)
~v(j)\~vp(j)\~vi,p(j) is the jth element

of ~v \ ~vp\~vi,p .

X(p)\Xi(p)
X(p)\Xi(p) is the element of X\Xi

located at p.

Table 1: Symbol Conventions

~wp(k) =~c
T
k,p(λE +

n
∑

i=0

~ci,p~c
T
i,p)

−1~cn+1,p

=~cTk,p(λ
−1E +

n
∑

i,j=0

αij,p~ci,p~c
T
j,p)~cn+1,p

=λ−1Ik n+1,p +

n
∑

i,j=0

αij,pIki,pIj n+1,p (6)

of Gij,p as illustrated in Eq (6). According to Proposi-

tion 2, Gij,p equals to the box filtering result Gij(p) of the

element-wise production image GiGj . Then ~wp(k) can be

synthesized by composing a set of box filtering results.

Proposition 2. if the neighborhood Ωp of p is a box win-

dow, we have Gij,p = Gij(p) which is the box filtering

result of the element-wise production image GiGj in Ωp.

Proof. We have the dot production Gij,p = ~cTi,p~cj,p =
∑|Ωp|

k=1 Gi(qk)Gj(qk) =
∑

q∈Ωp
Gi(q)Gj(q) and the

box filtering result Gij(p) =
∑

q∈Ωp
GiGj(q) =

∑

q∈Ωp
Gi(q)Gj(q). So we conclude Gij,p = Gij(p). �

Above all, the kth element ~wp(k) of ~wp can be figured out

in two steps:

1. applying box filter to element-wise production image

GiGj for 0 ≤ i, j ≤ n+ 1 to produce Gij ;

2. computing ~wp(k) according to the linear combina-

tion (6) of Gij .

Then applying the procedure to each ~wp(k), we will com-

pose the vector ~wp. At last, we note that above two steps

computing procedure is only composed by arithmetic cal-

culation and box filtering. The matrix inverse operation is

completely eliminated in the computation procedure.

5327

Polynomial
Guidance

Box Filtering
Results

Eq(12)
• Element-wise calculation
• Box Filtering

Alpha
Images

Weight
Images

Eq(13)
• Element-wise calculation

Cost Slice

Guidance

Filtering
Result

Eq(15)
• Element-wise calculation
• Box Filtering

Eq(14)
• Element-wise calculation• Element-wise calculation

Figure 2: Filtering Flowchart of HGF with the Input from a Multi-Label System. At first, we exploit the input guidance

to synthesize a polynomial guidance. Then the input cost slice together with the polynomial guidance are used to produce

box filtering images Gij (12). After that we compute αij and Wi from Gij according to Eq (14) (13). At last, the filtering

result is yielded by Eq (15). Note that each step only involves element-wise arithmetic computation or box filtering.

4. Hardware-Efficient Guided Filter

In this section, we define HGF and present its hardware-

efficient implementation in detail. Fig 2 plots the overall

computing procedure to give a general idea for our HGF.

4.1. Defintion

The key assumption of HGF is the generalized linear

model (7) between the synthesized n-channel guidance G

and the output Z, where ~wp is constant in the window Ωp.

Z(q) =

n
∑

i=1

~wp(i)Gi(q) + ~wp(0), ∀q ∈ Ωp (7)

According to the local multipoint filtering frame-

work [16], HGF comprises two major steps: 1) multipoint

estimation: calculating the estimates for a set of points

within a local support, and 2) aggregation: fusing multi-

point estimates available for each point. Specifically, in the

first step, HGF estimates the coefficients ~wp of model (7)

by minimizing the linear ridge regression (8), where Y de-

notes an input image and the closed-form solution of the

minimizer ~wp is Eq (2). In the second step, HGF puts the

min
~wp

λ‖~wp‖
2
2+

∑

q∈Ωp

(Y (q)−

n
∑

i=1

~wp(i)Gi(q)− ~wp(0))
2 (8)

minimizer ~wp of optimization (8) into Eq (7) and obtains a

set of values Z ′
p(q) =

∑n
i=1 ~wi,pGi(q) + ~w0,p, q ∈ Ωpfor

a given window Ωp. So each pixel q has |Ωp| values. HGF

aggregates these values together and considers their mean
1

|Ωq|

∑

p∈Ωq
Z ′

p(q) as final filtering result Z(q). So we have

Z(q) =
1

|Ωq|

∑

p∈Ωq

n
∑

i=1

~wp(i)Gi(q) + ~wp(0)

=

n
∑

i=1

~wa
q(i)Gi(q) + ~wa

q(0) (9)

where ~wa
q = 1

|Ωq|

∑

p∈Ωq
~wp is the average of ~wp in Ωq.

4.2. Polynomial Guidance

GF exploits the linear model (1) to estimate filtering re-

sults from an input guidance. However, it is unreasonable

to expect that the linear model works well under all circum-

stances as the linear models (1) of GF are apt to underfits

data due to its simplicity and thus produces over-smoothing

filtering results. We address the problem by synthesizing a

polynomial guidance from a raw image.

The polynomial guidance is designed to introduce non-

linearity to the generalized linear model (7). For exam-

ple, Eq (10) shows the polynomial model with a gray input

Z(q) =

d
∑

i=1

~wp(i)I
i(q) + ~wp(0), ∀q ∈ Ωp (10)

guidance I , where d is the degree of the polynomial func-

tion. Compared with the linear model (7), we can find the

equivalence between the linear model (7) and the polyno-

mial model (10) if we assume Gi = Ii. This inspires us

to introduce nonlinearity to HGF by synthesizing a polyno-

mial guidance, where each channel of the synthesized poly-

nomial guidance is produced by a polynomial function op-

erated on a channel of the input guidance.

This method can be easily extended to the multichannel

guidance. In the case when the input guidance is multi-

channel, it is straightforward to apply the map procedure

G(i−1)d+j = I
j
i to each channel independently, where Ii

denotes the ith channel of the multichannel guidance I and

n is the channel number of I . After that we stack produced

results of each channel of the input multichannel guidance

I to synthesize our polynomial guidance. Mathematically,

the linear model (7) in this situation is equivalent to follow-

ing nonlinear polynomial model (11). So we successfully

endow the nonliearity to the generalized linear model (7) of

HGF.

Z(q) =

n
∑

i=1

d
∑

j=1

~wp((i− 1)d+ j)Ij
i (q) + ~wp(0) (11)

5328

4.3. Hardware­Efficient Implementation

Here we present the matrix inverse algorithm tailored to

(λE + XT
p Xp)

−1 to make full use of the parallel com-

puting ability of hardwares. HGF in the first step calcu-

lates the minimizer (2) of the linear ridge regression (8).

However traditional matrix inverse algorithms cannot fully

take advantages of the parallel computing hardwares. For-

tunately, Eq (6) sheds light on a hardware-efficient way to

compute ~wp because it guarantees the kth element ~wp(k)
of ~wp is the linear combination of the box filtering result

Gij(p). Specifically, putting B(X) denote the box filter-

ing result of an image X , Wi and αij record all values

of ~wp(i) and αij,p for arbitrary p in the image domain (i.e.

Wi(p) = ~wp(i), αij(p) = αij,p), we can generalize Eq (6)

to following element-wise arithmetic calculations (13) of

box filtering results Gij (12). Here G0 denotes matrix

of ones, Gi(1 ≤ i ≤ n) stand for the ith channel of

the synthesized polynomial n-channel guidance G, Gn+1

be the alias of the input image Y . Similarly, the updat-

Gij = B(GiGj) (12)

Wi = λ−1Gκn+1 +

n
∑

i,j=0

αijGκiGjn+1 (13)

ing formulate of ακ
ij,p can also be modified to the element-

wise arithmetic calculation of matrices (14), where α0
00 =

ακ
ij =



















F κ
p +ακ−1

ij i < κ, j < κ

λ−1γκ
∑κ−1

n=0 α
κ−1
in Gnκ i < κ, j = κ

λ−1γκ
∑κ−1

m=0 α
κ−1
mj Gκm i = κ, j < κ

λ−2γκ i = j = κ

(14)

−(λ + G00)
−1, F κ =

∑κ−1
m,n=0 α

κ−1
im ακ−1

nj GmκGκn and

γκ = −(1 + λ−1Gκκ +
∑κ−1

m,n=0 α
κ−1
mn GκmGnκ)

−1.

HGF in the second step computes filtering results Z(p)
according to the average of coefficients ~wp. Define the av-

erage operator A(X) = B(X)/B(G0), we can formulate

the element-wise arithmetic calculation form of Eq (9) as

Z =

n
∑

i=1

A(Wi)Gi +A(W0) (15)

Taking a closer look at Eq (12) (13) (14) (15), we find

that all equations only involve two computation types (Fig 2

sums up computation types in each step and overall com-

putation flowchart): one is element-wise arithmetic calcu-

lations of matrices, the other is box filtering for images.

Both computations can easily exert the parallelism power

of current hardware. More importantly, there are highly op-

timized libraries for CPU and GPU. In the next, we present

how to implement them in a hardware-efficient way.

Element-wise arithmetic calculations is a typical data

parallel task because it distributes the operation over ele-

ments of a matrix. In parallel computing literatures, it be-

longs to the map pattern [20] which applies an elemental

function to an actual collection of input data. Current CPU

and GPU do well in these calculations as the SIMD instruc-

tions of CPU and GPU can benefit from same computations

done on different pieces of data in the data parallel task.

Although inverting matrices simultaneously belongs to the

map pattern too, it cannot be as efficient as our method be-

cause inverting operation is not directly supported by hard-

ware and thus can not benefit from SIMD instructions. In

contrast the arithmetic computations can be directly allo-

cated to a core of CPU or thread of GPU for parallel com-

puting. Finally, we note that element-wise arithmetic calcu-

lations are supported by many softwares or libraries such as

such as Matlab, ViennaCL [24] and Arrayfire [31].

Box filtering produces a smoothing image of which has

a value equal to the sum of its neighboring pixels in the

input image and can be computed in linear time from the

Summed Area Table [3]. Different from element-wise cal-

culation, box filtering belongs to the stencil pattern [20] that

is a generalization of the map pattern in which an elemen-

tal function can access not only a single element in an input

collection but also a set of neighbors. A detailed description

on how to implement the stencil pattern efficiently on par-

allel devices can be found in the book [20]. Fortunately, we

do not need to implement the box filtering manually since

two libraries OpenCV of Intel and NPP of Nvidia already

have offered.

5. More Discussion for HGF

In this section, we clarity the connection and differences

between HGF and GF. Moreover, the performance and im-

plementation concerns of HGF will also be discussed.

5.1. Connection with GF

Our matrix inverse algorithm can also be used to speed

up GF. Specifically, GF minimizes optimization (16) to de-

termine the coefficient ~wp, where ~wp is a 4 elements vec-

tor. Let ~ci,p be a n element vector extracted from Ii in

min
~wp

λ

3
∑

i=1

~w2
p(i)+

∑

q∈Ωp

(Y (q)−

3
∑

i=1

~wp(i)Ii(p)− ~wp(0))
2

(16)

Ωp, Xp = [~c1,p,~c2,p,~c3,p], ~1 denote the identity vector,

~xp = 1
n
XT~1, cn+1,p = 1

n
~cTn+1,p

~1, X ′T
p = XT

p −~1~xT
p and

~c′n+1,p = ~cn+1,p − cn+1,p
~1, then ~wp(0) = cn+1,p − ~wT

p ~xp.

and the last three terms of ~wp can be computed by Eq (17).

[~wp(1), ~wp(2), ~wp(3)]
T = (λE +X ′T

p X ′
p)

−1X ′T
p ~c′n+1,p

(17)

The form of Eq (17) is same to Eq (2). Hence we can apply

the same technique to invert the matrix.

5329

5.2. Differences From GF

HGF is similar to GF but not same to it. Simply put,

there are three major differences between the two filters:

The guidance is different. GF directly takes a gray/color

image as its guidance I . Contrarily, HGF synthesizes a

multi-channels polynomial guidance G from a gray or color

input image. With increasing channel number, the guidance

carries more and more information.

The cost function is different. The regularization term

of GF does not punish ~wp(0). In contrast, HGF treats all

elements of ~wp equally in the cost function (8) as the mini-

mizer (3) can be computed in a hardware-efficient way and

the final result of HGF in the multi-label system is much

better according to our experiments.

The matrix inverse algorithm is different. GF does not

take any special measure to accelerate the speed of inverting

matrices. On the contrary, HGF designs an effective matrix

inverse algorithm to fully utilize the parallel ability of cur-

rent hardwares. As a result, the computational procedure

of HGF only comprises two hardware-efficient operations:

element-wise arithmetic calculations and box filtering.

5.3. Performance Evaluation

Our experiments are conducted on a Laptop with an Intel

i7 CPU and GTX 960 GPU. In order to compare the run-

ning performance fairly and comprehensively, we exploit

two C++ libraries (i.e. OpenCV and Arrayfire [31]) to im-

plement GF and HGF, where the Summed Area Table [3]

accelerated box filtering and the three matrix inverse algo-

rithms are incorporated into the two filters. Here the three

matrix inverse algorithms are:

• Built-in LU matrix inverse algorithm: We use the

built-in matrix inverse function “inv” of OpenCV to

compute final filtering results of GF. The built-in func-

tion takes a highly optimized LU matrix inverse algo-

rithm and the input matrix can be arbitrary size.

• Analytic solution of matrix inverse algorithm: The

closed-form solution of each invertible matrix can be

expressed by adjugate matrices. It is an efficient way

to calculate the inverse of small matrices but is ineffi-

cient for large matrices. The built-in function “Guided-

Filter” of OpenCV takes it to compute color-guidance

Algorithms 3 5 7 9

GF1 0.85s 1.36s 2.01s 2.83s
GF2 0.17s 0.35s � �

HGF 0.08s 0.16s 0.25s 0.43s

Table 2: Execution time to filter 103×103 gray images with

different guidances on CPU, where the channel number of

guidance varies from 3 to 10.

(a) GF (b) HGF

Figure 3: Execution Time Anatomy: (a) (b) illustrate run

times of the box filtering in preparing λE + XT
p Xp, in-

verting this matrix and remainder computation of GF and

HGF, where the green, orange and blue regions denote the

run time of box filtering, matrix inverse and the remainder

computation.

results of GF. We only extend it to inverse 5 × 5 ma-

trices because the matrix inverse code becomes much

complex when the matrix size is large than 5 and thus

it is nearly impossible to write the code of inverting

7 × 7 and 9 × 9 matrices by hand (the analytic solu-

tions of 7× 7 and 9× 9 matrix inverse are listed in the

supplemental material for demonstration).

• Our hardware-efficient matrix inverse algorithm:

We incorporate it with our HGF to produce final re-

sults. Note that unlike the first algorithm that can in-

vert arbitrary matrices and the second algorithm that

only suits to a small matrix, our method can invert a

arbitrary size matrix only if the matrix is invertible and

can be presented by λE +
∑n

i=0 ~ci,p~c
T
i,p.

OpenCV is taken to reimplement GF according to its

public Matlab code, where the C++ code is basically a line-

by-line translation of the Matlab code and the matrix in-

verse algorithm is provided by the built-in “inv” function of

OpenCV and our implementation according to the analytic

solution of matrix inverse. We denote GF adopting the two

implementations as GF1 and GF2. Since both the algorithm

of GF and its Matlab code published by He et al. [10] do not

consider parallelism or SIMD instructions, we compile the

C++ code of GF with default complier option. Similarly,

we do not take tricks to speed up HGF: the code of HGF

is also compiled by default compiler option and all parallel

computing infrastructure is provided by Arrayfire.

The GF1 and HGF rows of Table 2 report execution times

of GF and HGF for a 103 × 103 guidance with increasing

channel number on CPU. According to our experiments,

HGF is much faster than GF. Due to the smaller running cost

of our matrix inverse algorithm, it is more efficient even if

channel number of guidance is large. We also test the GF

code using analytic solution of matrix inverse. The exper-

imental data for 3/5-channel guidances are reported in the

5330

(a) Input (b) BF (c) GF (d) CLMF (e) MLPA (f) HGF

Figure 5: Stereo Matching Results: (a) is input color image. (b) (c) (d) (e) and (f) illustrate the stereo matching results

of BF, GF, CLMF, MLPA and HGF, respectively. In the left upper corners of (b) (c) (d) (e) and (f), we show comparisons

with the respective groundtruth (error larger than one pixel in nonoccluded are denoted by black and in occlude regions are

denoted by gray) and the Percentage of Bad Pixel (PBP) scores are listed in the bottom of each image.

Size/n 3 5 7 9

250× 250 3.9ms 10.7ms 39.9ms 110.2ms
500× 500 3.7ms 11.1ms 40.1ms 112.4ms

1000× 1000 4.1ms 10.9ms 41.3ms 115.9ms
2000× 2000 4.3ms 11.2ms 42.7ms 121.8ms

Table 3: Execution time of HGF on Nvidia GPU with in-

creasing guidances channel number n, where the input is

a gray image with increasing sizes, the channel number of

guidance varies from 3 to 9.

GF2 row. We can observe the speed of the analytic solu-

tion is faster than generalized matrix inverse function “inv”

function of OpenCV, but is still slower than our matrix in-

verse algorithm. In short, the analytic solution achieves a

relative fast speed by paying an extremely heavy cost to

translate it into element-wise calculation.

Box filtering takes up most of the run time of HGF. The

area graph in Fig 3 displays the execution time of box filter-

ing in preparing matrices λE +XT
p Xp (2), inverting these

matrices and remainder computation in GF and HGF, where

the green denotes the box filtering time, the orange presents

matrix inverse time and the horizontal axis is the channel

number of guidance. We can observe that box filtering in

HGF consumes more than half of the time. This inspires us

to precompute the box filtering results Gij = B(GiGj) of

all pair-wise production image GiGj in Eq (13) (14) (15)

to accelerate the computational speed of HGF further. Un-

like HGF, matrix inverse operation in GF spends most of

the time. So GF cannot take the same strategy to reduce its

run time. At last, we note that an unignorable part of the

overall execution time of HGF is spent by the “remainder”

part denoted by the blue in Fig (3) and most time of this part

is payed for box filtering as Eq (15) involves n box filters.

Here n is the channel number of the guidance.

(a) Linear model (b) Polynomial model

Figure 4: Fitting curves of linear model and nonlinear

polynomial model on noisy data. According to the fitting

curves, the polynomial model is more flexible than the lin-

ear model.

To demonstrate the actual power of our algorithm, we ac-

celerate HGF by precomputing all-pair box filtering results

Gij = B(GiGj). Table 3 reports the execution time tested

on GPU with increasing guidance channel number. For

guidance images of which the channel number is smaller

than 7, the performance is realtime. It is also worth noting

that the performance of HGF scales well with the size of in-

put image (i.e. the execution time does not change with the

data size). We contributes this ability to the parallel com-

puting ability of HGF.

6. Experiments and Applications

To demonstrate the ability of our HGF, we apply it to

three classic multi-label problems: stereo matching, optical

flow and image segmentation. To show the robustness of

our method, we use following, the same constant parameter

setting to generate our results: (λ = 0.05, r = 7), where

r indicates the radius of box window and λ balances the

two terms in Eq (8). In the following experiments, each

channel Gi of the polynomial guidance G is synthesized

by the mapping G(i−1)d+j = I
j
i (1 ≤ j ≤ 2) with a color

5331

(a) Input (b) BF (c) GF (d) CLMF (e) MLPA (f) HGF

Figure 6: Optical Flow Estimation: (a) is input color image. (b) (c) (d) (e) and (f) demonstrate the stereo matching results

of BF, GF, CLMF, MLPA and HGF, respectively, where the white box denotes the close-up region for visual comparison.

input guidance I and total five edge-aware filters including

BF [27], GF [10], CLMF [18], MLPA [26] and our HGF are

taken to perform comparison. For each application, we in-

corporate above five filters into the same framework to pro-

cedure final results. Experiments disclose our filter achieves

the best result in terms of accuracy.

Nonlinearity We own the achievement of HGF to the syn-

thesized polynomial guidance which introduces nonlinear-

ity to our HGF. Fig 4 compares the polynomial model and

linear model on an artificial dataset, which consists of a

curve extracting from a nature image and strong noise added

to every fifth datapoints. From the plotted fitting curves of

linear model, we can observe that the linear model fails in

the dataset. We thus believe that linear model will fail too

while smoothing highly corrupted cost slice in the following

experiments

Stereo Matching We conduct experiments based on the

cost volume filtering framework [12]. This framework com-

prises cost volume computation, cost aggregation, disparity

computation and post processing. Above five filters are em-

ployed for cost aggregation. According to the results re-

ported in Fig 5, our method outperforms other aggregation

filters and the run time is less than 800ms.

Optical Flow Xiao et al. [30] separate the traditional one-

step variational updating model into a two-step filtering-

based updating model for optical flow estimation, where

BF is proposed to substitute the original anisotropic diffu-

sion process. In this framework, we substitute original BF

with GF, CLMF, MLPA and HGF to test the performance of

these filters. According to Fig 6, our method can detect tiny

structure in the optical flow images within 900ms.

Image Segmentation We also take the cost volume filter-

ing framework [12] to show that HGF performs well for im-

age segmentation, where the labels encode whether a pixel

belongs to the foreground or background and cost computa-

tion is same to Hosni et al. [12]. Fig 7 proves that our HGF

is able to distinguish foreground from background much

(a) Input

(b) Close-up (c) BF (d) GF

(e) CLMF (f) MLPA (g) HGF

Figure 7: Segmentation results: (a) is input image, where

black box denotes bounding box and white box presents the

close-up region. (b) is the close-up of (a). (c) (d) (e) (f) (g)

are the segmentation results of BF, GF, CLMF, MLPA and

HGF, respectively.

better and the run time is 120ms.

7. Conclusion

This paper presented an effective guided image filter for

multi-label problem. We own the power to the nonlinearity

introduced by the synthesized polynomial guidance. A side

effect of the nonlinearity model is that it inevitably increases

the running cost as we have to invert a bulk of large matri-

ces. Fortunately, our new designed hardware-efficient ma-

trix inverse algorithm can reduce the run time significantly

by the help of our effective matrix inverse technique. We

believe our filter will greatly profit building efficient com-

puter vision systems in other multi-label problems.

8. Acknowledgments

This work was supported in part by the National Key

Research and Development Program of China (Grant No.

2016YFB1001001) and the National Natural Science Foun-

dation of China (Grant No. 61620106003, 61522203,

61571046).

5332

References

[1] A. Y.-S. Chia, S. Zhuo, R. K. Gupta, Y.-W. Tai, S.-Y. Cho,

P. Tan, and S. Lin. Semantic colorization with internet im-

ages. ACM Transactions on Graphics, 30(6):156:1–156:8,

Dec 2011. 1

[2] D. Cline, K. B. White, and P. K. Egbert. Fast 8-bit median

filtering based on separability. In IEEE International Con-

ference on Image Processing, volume 5, pages V – 281–V –

284, Sept 2007. 2

[3] F. C. Crow. Summed-area tables for texture mapping. ACM

SIGGRAPH Computer Graphics, 18(3):207–212, Jan. 1984.

5, 6

[4] L. Dai, M. Yuan, F. Zhang, and X. Zhang. Fully connected

guided image filtering. In IEEE International Conference on

Computer Vision, pages 352–360, Dec 2015. 2

[5] L. Dai, M. Yuan, and X. Zhang. Speeding up the bilateral

filter: A joint acceleration way. IEEE Transactions on Image

Processing, 25(6):2657–2672, June 2016. 2

[6] Y. Ding, J. Xiao, and J. Yu. Importance filtering for image

retargeting. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 89–96, June 2011. 1

[7] F. Durand and J. Dorsey. Fast bilateral filtering for the dis-

play of high-dynamic-range images. ACM Transactions on

Graphics, 21(3):257–266, July 2002. 2

[8] B. K. Gunturk. Fast bilateral filter with arbitrary range and

domain kernels. IEEE Transactions on Image Processing,

20(9):2690–2696, Sept 2011. 2

[9] K. He and J. Sun. Fast guided filter. CoRR, abs/1505.00996,

2015. 2

[10] K. He, J. Sun, and X. Tang. Guided image filtering. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

35(6):1397–1409, June 2013. 6, 8

[11] R. A. Horn and C. R. Johnson, editors. Matrix Analysis.

Cambridge University Press, New York, NY, USA, 1986. 2

[12] A. Hosni, C. Rhemann, M. Bleyer, C. Rother, and

M. Gelautz. Fast cost-volume filtering for visual correspon-

dence and beyond. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 35(2):504–511, Feb 2013. 1, 8

[13] S. Hougardy and J. Vygen. Algorithmic Mathematics.

Springer International Publishing, 1 edition, 2016. 1

[14] C. C. Kao, J. H. Lai, and S. Y. Chien. Vlsi architecture de-

sign of guided filter for 30 frames/s full-hd video. IEEE

Transactions on Circuits and Systems for Video Technology,

24(3):513–524, March 2014. 2

[15] M. Kass and J. Solomon. Smoothed local histogram filters.

ACM Transactions on Graphics, 29(4):100:1–100:10, July

2010. 2

[16] V. Katkovnik, A. Foi, K. Egiazarian, and J. Astola. From

local kernel to nonlocal multiple-model image denoising.

International Journal of Computer Vision, 86(1):1–32, Jan.

2010. 4

[17] Z. Li, J. Zheng, Z. Zhu, W. Yao, and S. Wu. Weighted guided

image filtering. IEEE Transactions on Image Processing,

24(1):120–129, Jan 2015. 2

[18] J. Lu, K. Shi, D. Min, L. Lin, and M. N. Do. Cross-based

local multipoint filtering. In IEEE Conference on Computer

Vision and Pattern Recognition, pages 430–437, June 2012.

2, 8

[19] Z. Ma, K. He, Y. Wei, J. Sun, and E. Wu. Constant time

weighted median filtering for stereo matching and beyond. In

IEEE International Conference on Computer Vision, pages

49–56, Dec 2013. 2

[20] M. McCool, J. Reinders, and A. Robison. Structured Parallel

Programming: Patterns for Efficient Computation. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edi-

tion, 2012. 5

[21] S. Paris and F. Durand. A fast approximation of the bilat-

eral filter using a signal processing approach. International

Journal of Computer Vision, 81(1):24–52, Jan. 2009. 2

[22] S. Perreault and P. Hebert. Median filtering in constant time.

IEEE Transactions on Image Processing, 16(9):2389–2394,

Sept 2007. 2

[23] F. Porikli. Constant time o(1) bilateral filtering. In IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1–8, June 2008. 2

[24] K. Rupp, F. Rudolf, and J. Weinbub. ViennaCL - A High

Level Linear Algebra Library for GPUs and Multi-Core

CPUs. In International Workshop on GPUs and Scientific

Applications, pages 51–56, 2010. 5

[25] J. Sherman and W. J. Morrison. Adjustment of an inverse

matrix corresponding to a change in one element of a given

matrix. The Annals of Mathematical Statistics, 21(1):124–

127, 03 1950. 3

[26] X. Tan, C. Sun, and T. D. Pham. Multipoint filtering with lo-

cal polynomial approximation and range guidance. In IEEE

Conference on Computer Vision and Pattern Recognition,

pages 2941–2948, June 2014. 2, 8

[27] C. Tomasi and R. Manduchi. Bilateral filtering for gray

and color images. In IEEE International Conference on

Computer Vision, pages 839–, Washington, DC, USA, 1998.

IEEE Computer Society. 2, 8

[28] V. Vineet, J. Warrell, and P. H. Torr. Filter-based mean-

field inference for random fields with higher-order terms and

product label-spaces. International Journal of Computer Vi-

sion, 110(3):290–307, Dec. 2014. 1

[29] B. Weiss. Fast median and bilateral filtering. ACM Transac-

tions on Graphics, 25(3):519–526, July 2006. 2

[30] J. Xiao, H. Cheng, H. S. Sawhney, C. Rao, and M. A. Is-

nardi. Bilateral filtering-based optical flow estimation with

occlusion detection. In European Conference on Computer

Vision, volume 3951, pages 211–224. Springer, 2006. 1, 8

[31] P. Yalamanchili, U. Arshad, Z. Mohammed, P. Garigipati,

P. Entschev, B. Kloppenborg, J. Malcolm, and J. Melonakos.

ArrayFire - A high performance software library for parallel

computing with an easy-to-use API, 2015. 5, 6

[32] Q. Yang, K. H. Tan, and N. Ahuja. Real-time o(1) bilateral

filtering. In IEEE Conference on Computer Vision and Pat-

tern Recognition, pages 557–564, June 2009. 2

[33] J. Zhang, L. Li, Y. Zhang, G. Yang, X. Cao, and J. Sun. Video

dehazing with spatial and temporal coherence. The Visual

Computer, 27(6-8):749–757, 2011. 1

[34] Q. Zhang, L. Xu, and J. Jia. 100+ times faster weighted me-

dian filter (wmf). In IEEE Conference on Computer Vision

and Pattern Recognition, pages 2830–2837, June 2014. 2

5333

