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Abstract

A key requirement for leveraging supervised deep learn-

ing methods is the availability of large, labeled datasets.

Unfortunately, in the context of RGB-D scene understand-

ing, very little data is available – current datasets cover a

small range of scene views and have limited semantic an-

notations. To address this issue, we introduce ScanNet, an

RGB-D video dataset containing 2.5M views in 1513 scenes

annotated with 3D camera poses, surface reconstructions,

and semantic segmentations. To collect this data, we de-

signed an easy-to-use and scalable RGB-D capture system

that includes automated surface reconstruction and crowd-

sourced semantic annotation.We show that using this data

helps achieve state-of-the-art performance on several 3D

scene understanding tasks, including 3D object classifica-

tion, semantic voxel labeling, and CAD model retrieval.

1. Introduction

Since the introduction of commodity RGB-D sensors,

such as the Microsoft Kinect, the field of 3D geometry cap-

ture has gained significant attention and opened up a wide

range of new applications. Although there has been sig-

nificant effort on 3D reconstruction algorithms, general 3D

scene understanding with RGB-D data has only very re-

cently started to become popular. Research along seman-

tic understanding is also heavily facilitated by the rapid

progress of modern machine learning methods, such as neu-

ral models. One key to successfully applying theses ap-

proaches is the availability of large, labeled datasets. While

much effort has been made on 2D datasets [17, 44, 47],

where images can be downloaded from the web and directly

annotated, the situation for 3D data is more challenging.

Thus, many of the current RGB-D datasets [74, 92, 77, 32]

are orders of magnitude smaller than their 2D counterparts.

Typically, 3D deep learning methods use synthetic data to

mitigate this lack of real-world data [91, 6].

One of the reasons that current 3D datasets are small is

because their capture requires much more effort, and effi-

Figure 1. Example reconstructed spaces in ScanNet annotated with

instance-level object category labels through our crowdsourced

annotation framework.

ciently providing (dense) annotations in 3D is non-trivial.

Thus, existing work on 3D datasets often fall back to poly-

gon or bounding box annotations on 2.5D RGB-D images

[74, 92, 77], rather than directly annotating in 3D. In the

latter case, labels are added manually by expert users (typi-

cally by the paper authors) [32, 71] which limits their over-

all size and scalability.

In this paper, we introduce ScanNet, a dataset of richly-

annotated RGB-D scans of real-world environments con-

taining 2.5M RGB-D images in 1513 scans acquired in

707 distinct spaces. The sheer magnitude of this dataset

is larger than any other [58, 81, 92, 75, 3, 71, 32]. However,

what makes it particularly valuable for research in scene

understanding is its annotation with estimated calibration

parameters, camera poses, 3D surface reconstructions, tex-

tured meshes, dense object-level semantic segmentations,

and aligned CAD models (see Fig. 2). The semantic seg-

mentations are more than an order of magnitude larger than

any previous RGB-D dataset.

In the collection of this dataset, we have considered two

main research questions: 1) how can we design a frame-

work that allows many people to collect and annotate large
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Dataset Size Labels Annotation Tool Reconstruction CAD Models

NYU v2 [58] 464 scans 1449 frames 2D LabelMe-style [69] none some [25]

TUM [81] 47 scans none - aligned poses (Vicon) no

SUN 3D [92] 415 scans 8 scans 2D polygons aligned poses [92] no

SUN RGB-D [75] 10k frames 10k frames 2D polygons + bounding boxes aligned poses [92] no

BuildingParser [3] 265 rooms 265 rooms CloudCompare [24] point cloud no

PiGraphs [71] 26 scans 26 scans dense 3D, by the authors [71] dense 3D [62] no

SceneNN [32] 100 scans 100 scans dense 3D, by the authors [60] dense 3D [9] no

ScanNet (ours) 1513 scans 1513 scans dense 3D, crowd-sourced MTurk dense 3D [12] yes

2.5M frames labels also proj. to 2D frames

Table 1. Overview of RGB-D datasets for 3D reconstruction and semantic scene understanding. Note that in addition to the 1513 scans in

ScanNet, we also provided dense 3D reconstruction and annotations on all NYU v2 sequences.

amounts of RGB-D data, and 2) can we use the rich annota-

tions and data quantity provided in ScanNet to learn better

3D models for scene understanding?

To investigate the first question, we built a capture

pipeline to help novices acquire semantically-labeled 3D

models of scenes. A person uses an app on an iPad

mounted with a depth camera to acquire RGB-D video,

and then we processes the data off-line and return a com-

plete semantically-labeled 3D reconstruction of the scene.

The challenges in developing such a framework are numer-

ous, including how to perform 3D surface reconstruction ro-

bustly in a scalable pipeline and how to crowdsource seman-

tic labeling. The paper discusses our study of these issues

and documents our experience with scaling up RGB-D scan

collection (20 people) and annotation (500 crowd workers).

To investigate the second question, we trained 3D deep

networks with the data provided by ScanNet and tested their

performance on several scene understanding tasks, includ-

ing 3D object classification, semantic voxel labeling, and

CAD model retrieval. For the semantic voxel labeling task,

we introduce a new volumetric CNN architecture.

Overall, the contributions of this paper are:

• A large 3D dataset containing 1513 RGB-D scans of

over 707 unique indoor environments with estimated

camera parameters, surface reconstructions, textured

meshes, semantic segmentations. We also provide

CAD model placements for a subset of the scans.

• A design for efficient 3D data capture and annotation

suitable for novice users.

• New RGB-D benchmarks and improved results for

state-of-the art machine learning methods on 3D ob-

ject classification, semantic voxel labeling, and CAD

model retrieval.

• A complete open source acquisition and annotation

framework for dense RGB-D reconstructions.

2. Previous Work

A large number of RGB-D datasets have been captured

and made publicly available for training and benchmarking

[56, 34, 50, 65, 79, 83, 74, 4, 58, 81, 15, 55, 1, 68, 30, 51, 21,

48, 43, 92, 80, 61, 72, 93, 36, 16, 35, 57, 40, 29, 70, 52, 45,

95, 75, 9, 33, 85, 71, 32, 3, 10, 78, 2].1 These datasets have

been used to train models for many 3D scene understanding

tasks, including semantic segmentation [67, 58, 26, 86], 3D

object detection [73, 46, 27, 76, 77], 3D object classification

[91, 53, 66], and others [94, 22, 23].

Most RGB-D datasets contain scans of individual ob-

jects. For example, the Redwood dataset [10] contains over

10,000 scans of objects annotated with class labels, 1,781 of

which are reconstructed with KinectFusion [59]. Since the

objects are scanned in isolation without scene context, the

dataset’s focus is mainly on evaluating surface reconstruc-

tion quality rather than semantic understanding of complete

scenes.

One of the earliest and most popular datasets for RGB-

D scene understanding is NYU v2 [74]. It is composed of

464 short RGB-D sequences, from which 1449 frames have

been annotated with 2D polygons denoting semantic seg-

mentations, as in LabelMe [69]. SUN RGB-D [75] follows

up on this work by collecting 10,335 RGB-D frames an-

notated with polygons in 2D and bounding boxes in 3D.

These datasets have scene diversity comparable to ours, but

include only a limited range of viewpoints, and do not pro-

vide complete 3D surface reconstructions, dense 3D seman-

tic segmentations, or a large set of CAD model alignments.

One of the first RGB-D datasets focused on long RGB-

D sequences in indoor environments is SUN3D. It contains

a set of 415 Kinect v1 sequences of 254 unique spaces.

Although some objects were annotated manually with 2D

polygons, and 8 scans have estimated camera poses based

on user input, the bulk of the dataset does not include cam-

era poses, 3D reconstructions, or semantic annotations.

Recently, Armeni et al. [3, 2] introduced an indoor

dataset containing 3D meshes for 265 rooms captured with

a custom Matterport camera and manually labeled with se-

mantic annotations. The dataset is high-quality, but the cap-

1A comprehensive and detailed overview of publicly-accessible RGB-

D datasets is given by [20] at http://www0.cs.ucl.ac.uk/

staff/M.Firman/RGBDdatasets/, which is updated on a regular

basis.
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Figure 2. Overview of our RGB-D reconstruction and semantic annotation framework. Left: a novice user uses a handheld RGB-D device

with our scanning interface to scan an environment. Mid: RGB-D sequences are uploaded to a processing server which produces 3D

surface mesh reconstructions and their surface segmentations. Right: Semantic annotation tasks are issued for crowdsourcing to obtain

instance-level object category annotations and 3D CAD model alignments to the reconstruction.

ture pipeline is based on expensive and less portable hard-

ware. Furthermore, only a fused point cloud is provided

as output. Due to the lack of raw color and depth data, its

applicability to research on reconstruction and scene under-

standing from raw RGB-D input is limited.

The datasets most similar to ours are SceneNN [32] and

PiGraphs [71], which are composed of 100 and 26 densely

reconstructed and labeled scenes respectively. The anno-

tations are done directly in 3D [60, 71]. However, both

scanning and labeling are performed only by expert users

(i.e. the authors), limiting the scalability of the system and

the size of the dataset. In contrast, we design our RGB-D

acquisition framework specifically for ease-of-use by un-

trained users and for scalable processing through crowd-

sourcing. This allows us to acquire a significantly larger

dataset with more annotations (currently, 1513 sequences

are reconstructed and labeled).

3. Dataset Acquisition Framework

In this section, we focus on the design of the framework

used to acquire the ScanNet dataset (Fig. 2). We discuss de-

sign trade-offs in building the framework and relay findings

on which methods were found to work best for large-scale

RGB-D data collection and processing.

Our main goal driving the design of our framework was

to allow untrained users to capture semantically labeled sur-

faces of indoor scenes with commodity hardware. Thus the

RGB-D scanning system must be trivial to use, the data

processing robust and automatic, the semantic annotations

crowdsourced, and the flow of data through the system han-

dled by a tracking server.

3.1. RGB­D Scanning

Hardware. There is a spectrum of choices for RGB-D

sensor hardware. Our requirement for deployment to large

groups of inexperienced users necessitates a portable and

low-cost RGB-D sensor setup. We use the Structure sen-

sor [63], a commodity RGB-D sensor with design similar to

the Microsoft Kinect v1. We attach this sensor to a handheld

device such as an iPhone or iPad (see Fig. 2 left) — results

in this paper were collected using iPad Air2 devices. The

iPad RGB camera data is temporally synchronized with the

depth sensor via hardware, providing synchronized depth

and color capture at 30Hz. Depth frames are captured at a

resolution of 640× 480 and color at 1296× 968 pixels. We

enable auto-white balance and auto-exposure by default.

Calibration. Our use of commodity RGB-D sensors ne-

cessitates unwarping of depth data and alignment of depth

and color data. Prior work has focused mostly on controlled

lab conditions with more accurate equipment to inform cal-

ibration for commodity sensors (e.g., Wang et al. [87]).

However, this is not practical for novice users. Thus the

user only needs to print out a checkerboard pattern, place

it on a large, flat surface, and capture an RGB-D sequence

viewing the surface from close to far away. This sequence,

as well as a set of infrared and color frame pairs viewing the

checkerboard, are uploaded by the user as input to the cali-

bration. Our system then runs a calibration procedure based

on [84, 14] to obtain intrinsic parameters for both depth and

color sensors, and an extrinsic transformation of depth to

color. We find that this calibration procedure is easy for

users and results in improved data and consequently en-

hanced reconstruction quality.

User Interface. To make the capture process simple for

untrained users, we designed an iOS app with a simple live

RGB-D video capture UI (see Fig. 2 left). The user provides

a name and scene type for the current scan and proceeds

to record a sequence. During scanning, a log-scale RGB

feature detector point metric is shown as a “featurefulness”

bar to provide a rough measure of tracking robustness and

reconstruction quality in different regions being scanned.

This feature was critical for providing intuition to users who

are not familiar with the constraints and limitations of 3D

reconstruction algorithms.

Storage. We store scans as compressed RGB-D data on

the device flash memory so that a stable internet connec-

tion is not required during scanning. The user can upload

scans to the processing server when convenient by press-

ing an “upload” button. Our sensor units used 128GB iPad

Air2 devices, allowing for several hours of recorded RGB-

D video. In practice, the bottleneck was battery life rather
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than storage space. Depth is recorded as 16-bit unsigned

short values and stored using standard zLib compression.

RGB data is encoded with the H.264 codec with a high bi-

trate of 15Mbps to prevent encoding artifacts. In addition

to the RGB-D frames, we also record Inertial Measurement

Unit (IMU) data, including acceleration, and angular veloc-

ities, from the Apple SDK. Timestamps are recorded for

IMU, color, and depth images.

3.2. Surface Reconstruction

Once data has been uploaded from the iPad to our

server, the first processing step is to estimate a densely-

reconstructed 3D surface mesh and 6-DoF camera poses for

all RGB-D frames. To conform with the goal for an au-

tomated and scalable framework, we choose methods that

favor robustness and processing speed such that uploaded

recordings can be processed at near real-time rates with lit-

tle supervision.

Dense Reconstruction. We use volumetric fusion [11]

to perform the dense reconstruction, since this approach

is widely used in the context of commodity RGB-D data.

There is a large variety of algorithms targeting this sce-

nario [59, 88, 7, 62, 37, 89, 42, 9, 90, 38, 12]. We chose

the BundleFusion system [12] as it was designed and evalu-

ated for similar sensor setups as ours, and provides real-time

speed while being reasonably robust given handheld RGB-

D video data.

For each input scan, we first run BundleFusion [12] at

a voxel resolution of 1 cm3. BundleFusion produces accu-

rate pose alignments which we then use to perform volu-

metric integration through VoxelHashing [62] and extract a

high resolution surface mesh using the Marching Cubes al-

gorithm on the implicit TSDF (4mm3 voxels). The mesh

is then automatically cleaned up with a set of filtering steps

to merge close vertices, delete duplicate and isolated mesh

parts, and finally to downsample the mesh to high, medium,

and low resolution versions (each level reducing the number

of faces by a factor of two).

Orientation. After the surface mesh is extracted, we au-

tomatically align it and all camera poses to a common co-

ordinate frame with the z-axis as the up vector, and the xy

plane aligned with the floor plane. To perform this align-

ment, we first extract all planar regions of sufficient size,

merge regions defined by the same plane, and sort them by

normal (we use a normal threshold of 25◦ and a planar off-

set threshold of 5 cm). We then determine a prior for the up

vector by projecting the IMU gravity vectors of all frames

into the coordinates of the first frame. This allows us to se-

lect the floor plane based on the scan bounding box and the

normal most similar to the IMU up vector direction. Finally,

we use a PCA on the mesh vertices to determine the rotation

around the z-axis and translate the scan such that its bounds

are within the positive octant of the coordinate system.

Figure 3. Our web-based crowdsourcing interface for annotating a

scene with instance-level object category labels. The right panel

lists object instances already annotated in the scene with matching

painted colors. This annotation is in progress at ≈ 35%, with gray

regions indicating unannotated surfaces.

Validation. This reconstruction process is automatically

triggered when a scan is uploaded to the processing server

and runs unsupervised. In order to establish a clean snap-

shot to construct the ScanNet dataset reported in this paper,

we automatically discard scan sequences that are short, have

high residual reconstruction error, or have low percentage

of aligned frames. We then manually check for and discard

reconstructions with noticeable misalignments.

3.3. Semantic Annotation

After a reconstruction is produced by the processing

server, annotation HITs (Human Intelligence Tasks) are is-

sued on the Amazon Mechanical Turk crowdsourcing mar-

ket. The two HITs that we crowdsource are: i) instance-

level object category labeling of all surfaces in the recon-

struction, and ii) 3D CAD model alignment to the recon-

struction. These annotations are crowdsourced using web-

based interfaces to again maintain the overall scalability of

the framework.

Instance-level Semantic Labeling. Our first annotation

step is to obtain a set of object instance-level labels directly

on each reconstructed 3D surface mesh. This is in contrast

to much prior work that uses 2D polygon annotations on

RGB or RGB-D images, or 3D bounding box annotations.

We developed a WebGL interface that takes as input the

low-resolution surface mesh of a given reconstruction and a

conservative over-segmentation of the mesh using a normal-

based graph cut method [19, 39]. The crowd worker then

selects segments to annotate with instance-level object cate-

gory labels (see Fig. 3). Each worker is required to annotate

at least 25% of the surfaces in a reconstruction, and encour-

aged to annotate more than 50% before submission. Each

scan is annotated by multiple workers (scans in ScanNet are

annotated by 2.3 workers on average).

A key challenge in designing this interface is to enable

efficient annotation by workers who have no prior experi-

ence with the task, or 3D interfaces in general. Our interface

uses a simple painting metaphor where clicking and drag-
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Figure 4. Crowdsourcing interface for aligning CAD models to

objects in a reconstruction. Objects can be clicked to initiate an

assisted search for CAD models (see list of bookshelves in mid-

dle). A suggested model is placed at the position of the clicked

object, and the user then refines the position and orientation. A

desk, chair, and nightstand have been already placed here.

ging over surfaces paints segments with a given label and

corresponding color. This functions similarly to 2D paint-

ing and allows for erasing and modifying existing regions.

Another design requirement is to allow for freeform text

labels, to reduce the inherent bias and scalability issues of

pre-selected label lists. At the same time, it is desirable

to guide users for consistency and coverage of basic object

types. To achieve this, the interface provides autocomplete

functionality over all labels previously provided by other

workers that pass a frequency threshold (> 5 annotations).

Workers are always allowed to add arbitrary text labels to

ensure coverage and allow expansion of the label set.

Several additional design details are important to ensure

usability by novice workers. First, a simple distance check

for connectedness is used to disallow labeling of discon-

nected surfaces with the same label. Earlier experiments

without this constraint resulted in two undesirable behav-

iors: cheating by painting many surfaces with a few labels,

and labeling of multiple object instances with the same la-

bel. Second, the 3D nature of the data is challenging for

novice users. Therefore, we first show a full turntable rota-

tion of each reconstruction and instruct workers to change

the view using a rotating turntable metaphor. Without the

turntable rotation animation, many workers only annotated

from the initial view and never used camera controls despite

the provided instructions.

CAD Model Retrieval and Alignment. In the second an-

notation task, a crowd worker was given a reconstruction

already annotated with object instances and asked to place

appropriate 3D CAD models to represent major objects in

the scene. The challenge of this task lies in the selection

of closely matching 3D models from a large database, and

in precisely aligning each model to the 3D position of the

corresponding object in the reconstruction.

We implemented an assisted object retrieval interface

Statistic SceneNN [32] ScanNet

# of scans 100 1513

# of RGB-D frames 2,475,905 2,492,518

floor area (avg / sum m
2) 22.6 / 2,124 22.6 / 34,453

surface area (avg / sum m
2) 75.3 / 7,078 51.6 / 78,595

labeled objects (avg / sum) 15.8 / 1482 24.1 / 36,213

Table 2. Summary statistics for ScanNet compared to the most

similar existing dataset (SceneNN [32]). ScanNet has an order

of magnitude more scans, with 3D surface mesh reconstructions

covering more than ten times the floor and surface area, and with

more than 36,000 annotated object instances.

where clicking on a previously labeled object in a recon-

struction immediately searched for CAD models with the

same category label in the ShapeNetCore [6] dataset, and

placed one example model such that it overlaps with the ori-

ented bounding box of the clicked object (see Fig. 4). The

worker then used keyboard and mouse-based controls to ad-

just the alignment of the model, and was allowed to submit

the task once at least three CAD models were placed.

Using this interface, we collected sets of CAD mod-

els aligned to each ScanNet reconstruction. Preliminary

results indicate that despite the challenging nature of this

task, workers select semantically appropriate CAD models

to match objects in the reconstructions. The main limitation

of this interface is due to the mismatch between the cor-

pus of available CAD models and the objects observed in

the ScanNet scans. Despite the diversity of the ShapeNet

CAD model dataset (55K objects), it is still hard to find ex-

act instance-level matches for chairs, desks and more rare

object categories. A promising way to alleviate this limi-

tation is to algorithmically suggest candidate retrieved and

aligned CAD models such that workers can perform an eas-

ier verification and adjustment task.

4. ScanNet Dataset

In this section, we summarize the data we collected us-

ing our framework to establish the ScanNet dataset. This

dataset is a snapshot of available data from roughly one

month of data acquisition by 20 users at locations in several

countries. It has annotations by more than 500 crowd work-

ers on the Mechanical Turk platform. Since the presented

framework runs in an unsupervised fashion and people are

continuously collecting data, this dataset continues to grow

organically. Here, we report some statistics for an initial

snapshot of 1513 scans, which are summarized in Table 2.

Fig. 5 plots the distribution of scanned scenes over differ-

ent types of real-world spaces. ScanNet contains a variety

of spaces such as offices, apartments, and bathrooms. The

dataset contains a diverse set of spaces ranging from small

(e.g., bathrooms, closets, utility rooms) to large (e.g., apart-

ments, classrooms, and libraries). Each scan has been anno-

tated with instance-level semantic category labels through
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Figure 5. Distribution of the scans in ScanNet organized by type.

our crowdsourcing task. In total, we deployed 3,391 anno-

tation tasks to annotate all 1513 scans.

The text labels used by crowd workers to annotate object

instances are all mapped to the object category sets of NYU

v2 [58], ModelNet [91], ShapeNet [6], and WordNet [18]

synsets. This mapping is made more robust by a preprocess

that collapses the initial text labels through synonym and

misspelling detection.

In addition to reconstructing and annotating the 1513

ScanNet scans, we have processed all the NYU v2 RGB-D

sequences with our framework. The result is a set of dense

reconstructions of the NYU v2 spaces with instance-level

object annotations in 3D that are complementary in nature

to the existing image-based annotations.

We also deployed the CAD model alignment crowd-

sourcing task to collect a total of 107 virtual scene inter-

pretations consisting of aligned ShapeNet models placed on

a subset of 52 ScanNet scans by 106 workers. There were a

total of 681 CAD model instances (of 296 unique models)

retrieved and placed on the reconstructions, with an average

of 6.4 CAD model instances per annotated scan.

For more detailed statistics on this first ScanNet dataset

snapshot, please see the supplemental material.

5. Tasks and Benchmarks

In this section, we describe the three tasks we developed

as benchmarks for demonstrating the value of ScanNet data.

Train/Test split statistics. Table 3 shows the test and

training splits of ScanNet in the context of the object classi-

fication and dense voxel prediction benchmarks. Note that

our data is significantly larger than any existing compara-

ble dataset. We use these tasks to demonstrate that Scan-

Net enables the use of deep learning methods for 3D scene

understanding tasks with supervised training, and compare

performance to that using data from other existing datasets.

5.1. 3D Object Classification

With the availability of large-scale synthetic 3D datasets

such as [91, 6] and recent advances in 3D deep learn-

Scans Instances

#Train #Test #Train #Test

Object

Classification

ScanNet 1205 312 9305 2606

NYU 452 80 3260 613

SceneNN 70 12 377 66

Semantic Voxel

Labeling
ScanNet 1201 312 80554 21300

Table 3. Train/Test split for object classification and dense voxel

prediction tasks. Note that the number of instances does not in-

clude the rotation augmentation.

ing, research has developed approaches to classify ob-

jects using only geometric data with volumetric deep nets

[91, 82, 52, 13, 66]. All of these methods train on purely

synthetic data and focus on isolated objects. Although they

show limited evaluation on real-world data, a larger evalu-

ation on realistic scanning data is largely missing. When

training data is synthetic and test is performed on real data,

there is also a significant discrepancy of test performance,

as data characteristics, such as noise and occlusions pat-

terns, are inherently different.

With ScanNet, we close this gap as we have captured a

sufficiently large amount of 3D data to use real-world RGB-

D input for both training and test sets. For this task, we use

the bounding boxes of annotated objects in ScanNet, and

isolate the contained geometry. As a result, we obtain local

volumes around each object instance for which we know the

annotated category. The goal of the task is to classify the

object represented by a set of scanned points within a given

bounding box. For this benchmark, we use 17 categories,

with 9, 677 train instances and 2, 606 test instances.

Network and training. For object classification, we fol-

low the network architecture of the 3D Network-in-Network

of [66], without the multi-orientation pooling step. In order

to classify partial data, we add a second channel to the 303

occupancy grid input, indicating known and unknown re-

gions (with 1 and 0, respectively) according to the camera

scanning trajectory. As in Qi et al. [66], we use an SGD

solver with learning rate 0.01 and momentum 0.9, decaying

the learning rate by half every 20 epochs, and training the

model for 200 epochs. We augment training samples with

12 instances of different rotations (including both elevation

and tilt), resulting in a total training set of 111, 660 samples.

Benchmark performance. As a baseline evaluation, we

run the 3D CNN approach of Qi et al. [66]. Table 4 shows

the performance of 3D shape classification with different

train and test sets. The first two columns show results on

synthetic test data from ShapeNet [6] including both com-

plete and partial data. Naturally, training with the corre-

sponding synthetic counterparts of ShapeNet provides the

best performance, as data characteristics are shared. How-

ever, the more interesting case is real-world test data (right-
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most two columns); here, we show results on test sets of

SceneNN [32] and ScanNet. First, we see that training on

synthetic data allows only for limited knowledge transfer

(first two rows). Second, although the relatively small Sce-

neNN dataset is able to learn within its own dataset to a

reasonable degree, it does not generalize to the larger vari-

ety of environments found in ScanNet. On the other hand,

training on ScanNet translates well to testing on SceneNN;

as a result, the test results on SceneNN are significantly

improved by using the training data from ScanNet. In-

terestingly enough, these results can be slightly improved

when mixing training data of ScanNet with partial scans of

ShapeNet (last row).

Synthetic Test Sets Real Test Sets

Training Set ShapeNet ShapeNet Partial SceneNN ScanNet

ShapeNet 92.5 37.6 68.2 39.5

ShapeNet Partial 88.5 92.1 72.7 45.7

SceneNN 19.9 27.7 69.8 48.2

NYU 26.2 26.6 72.7 53.2

ScanNet 21.4 31.0 78.8 74.9

ScanNet +ShapeNet Par. 79.7 89.8 81.2 76.6

Table 4. 3D object classification benchmark performance. Per-

centages give the classification accuracy over all models in each

test set (average instance accuracy).

5.2. Semantic Voxel Labeling

A common task on RGB data is semantic segmentation

(i.e. labeling pixels with semantic classes) [49]. With our

data, we can extend this task to 3D, where the goal is to

predict the semantic object label on a per-voxel basis. This

task of predicting a semantic class for each visible 3D voxel

has been addressed by some prior work, but using hand-

crafted features to predict a small number of classes [41,

86], or focusing on outdoor environments [8, 5].

Data Generation. We first voxelize a scene and obtain

a dense voxel grid with 2cm3 voxels, where every voxel

stores its TSDF value and object class annotation (empty

space and unlabeled surface points have their own respec-

tive classes). We now extract subvolumes of the scene vol-

ume, of dimension 2 × 31 × 31 × 62 and spatial extent

1.5m × 1.5m × 3m; i.e., a voxel size of ≈ 4.8cm3; the

two channels represent the occupancy and known/unknown

space according to the camera trajectory. These sample vol-

umes are aligned with the xy-ground plane.For ground truth

data generation, voxel labels are propagated from the scene

voxelization to these sample volumes. The samples are cho-

sen that ≥ 2% of the voxels are occupied (i.e., on the sur-

face), and ≥ 70% of these surface voxels have valid an-

notations; samples not meeting these criteria are discarded.

Across ScanNet, we generate 93, 721 subvolume examples

for training, augmented by 8 rotations each (i.e., 749, 768

training samples), from 1201 training scenes. In addition,

we extract 18, 750 sample volumes for testing, which are

also augmented by 8 rotations each (i.e., 150, 000 test sam-

ples) from 312 test scenes. We have 20 object class labels

plus 1 class for free space.

Network and training. For the semantic voxel labeling

task, we propose a network which predicts class labels for

a column of voxels in a scene according to the occupancy

characteristics of the voxels’ neighborhood. In order to in-

fer labels for an entire scene, we use the network to predict

a label for every voxel column at test time (i.e., every xy

position that has voxels on the surface). The network takes

as input a 2×31×31×62 volume and uses a series of fully

convolutional layers to simultaneously predict class scores

for the center column of 62 voxels. We use ReLU and batch

normalization for all layers (except the last) in the network.

To account for the unbalanced training data over the class

labels, we weight the cross entropy loss with the inverse log

of the histogram of the train data.

We use an SGD solver with learning rate 0.01 and mo-

mentum 0.9, decaying the learning rate by half every 20

epochs, and train the model for 100 epochs.

Quantitative Results. The goal of this task is to predict

semantic labels for all visible surface voxels in a given 3D

scene; i.e., every voxel on a visible surface receives one

of the 20 object class labels. We use NYU2 labels, and

list voxel classification results on ScanNet in Table 7. We

achieve an voxel classification accuracy of 73.0% over the

set of 312 test scenes, which is based purely on the geomet-

ric input (no color is used).

In Table 5, we show our semantic voxel labeling results

on the NYU2 dataset [58]. We are able to outperform previ-

ous methods which are trained on limited sets of real-world

data using our volumetric classification network. For in-

stance, Hermans et al. [31] classify RGB-D frames using

a dense random decision forest in combination with a con-

ditional random field. Additionally, SemanticFusion [54]

uses a deep net trained on RGB-D frames, and regularize

the predictions with a CRF over a 3D reconstruction of the

frames; note that we compare to their classification results

before the CRF regularization. SceneNet trains on a large

synthetic dataset and fine-tunes on NYU2. Note that in con-

trast to Hermans et al. and SemanticFusion, neither we nor

SceneNet use RGB information.

Note that we do not explicitly enforce prediction con-

sistency between neighboring voxel columns when the test

volume is slid across the xy plane. This could be achieved

with a volumetric CRF [64], as used in [86]; however, our

goal in this task to focus exclusively on the per-voxel clas-

sification accuracy.
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floor wall chair table window bed sofa tv objs. furn. ceil. avg.

Hermans et al. [31] 91.5 71.8 41.9 27.7 46.1 68.4 28.5 38.4 8.6 37.1 83.4 49.4

SemanticFusion [54]∗ 92.6 86.0 58.4 34.0 60.5 61.7 47.3 33.9 59.1 63.7 43.4 58.2

SceneNet [28] 96.2 85.3 61.0 43.8 30.0 72.5 62.8 19.4 50.0 60.4 74.1 59.6

Ours (ScanNet + NYU) 99.0 55.8 67.6 50.9 63.1 81.4 67.2 35.8 34.6 65.6 46.2 60.7

Table 5. Dense pixel classification accuracy on NYU2 [58]. Note that both SemanticFusion [54] and Hermans et. al. [31] use both geometry

and color, and that Hermans et al. uses a CRF, unlike our approach which is geometry-only and has only unary predictions. The reported

SemanticFusion classification is on the 13 class task (13 class average accuracy of 58.9%).

Retrieval from ShapeNet

Train Top 1 NN Top 3 NNs

ShapeNet 10.4% 8.0%

ScanNet 12.7% 11.7%

ShapeNet + ScanNet 77.5% 77.0%

Table 6. 3D model retrieval benchmark performance. Nearest

neighbor models are retrieved for ScanNet objects from ShapeNet-

Core. Percentages indicate average instance accuracy of retrieved

model to query region.

Class % of Test Scenes Accuracy

Floor 35.7% 90.3%

Wall 38.8% 70.1%

Chair 3.8% 69.3%

Sofa 2.5% 75.7%

Table 3.3% 68.4%

Door 2.2% 48.9%

Cabinet 2.4% 49.8%

Bed 2.0% 62.4%

Desk 1.7% 36.8%

Toilet 0.2% 69.9%

Sink 0.2% 39.4%

Window 0.4% 20.1%

Picture 0.2% 3.4%

Bookshelf 1.6% 64.6%

Curtain 0.7% 7.0%

Shower Curtain 0.04% 46.8%

Counter 0.6% 32.1%

Refrigerator 0.3% 66.4%

Bathtub 0.2% 74.3%

OtherFurniture 2.9% 19.5%

Total - 73.0%

Table 7. Semantic voxel label prediction accuracy on ScanNet test

scenes.

5.3. 3D Object Retrieval

Another important task is retrieval of similar CAD mod-

els given (potentially partial) RGB-D scans. To this end,

one wants to learn a shape embedding where a feature de-

scriptor defines geometric similarity between shapes. The

core idea is to train a network on a shape classification task

where a shape embedding can be learned as byproduct of

the classification task. For instance, Wu et al. [91] and Qi et

al. [66] use this technique to perform shape retrieval queries

within the ShapeNet database.

With ScanNet, we have established category-level corre-

spondences between real-world objects and ShapeNet mod-

els. This allows us to train on a classification problem where

both real and synthetic data are mixed inside of each cate-

gory using real and synthetic data within shared class labels.

Thus, we can learn an embedding between real and syn-

thetic data in order to perform model retrieval for RGB-D

scans. To this end, we use the volumetric shape classifi-

cation network by Qi et al. [66], we use the same training

procedure as in Sec. 5.1. Nearest neighbors are retrieved

based on the ℓ2 distance between the extracted feature de-

scriptors, and measured against the ground truth provided

by the CAD model retrieval task. In Table 6, we show ob-

ject retrieval results using objects from ScanNet to query

for nearest neighbor models from ShapeNetCore. Note that

training on ShapeNet and ScanNet independently results in

poor retrieval performance, as neither are able to bridge the

gap between the differing characteristics of synthetic and

real-world data. Training on both ShapeNet and ScanNet

together is able to find an embedding of shape similarities

between both data modalities, resulting in much higher re-

trieval accuracy.

6. Conclusion

This paper introduces ScanNet: a large-scale RGB-

D dataset of 1513 scans with surface reconstructions,

instance-level object category annotations, and 3D CAD

model placements. To make the collection of this data pos-

sible, we designed a scalable RGB-D acquisition and se-

mantic annotation framework that we provide for the ben-

efit of the community. We demonstrated that the richly-

annotated scan data collected so far in ScanNet is useful in

achieving state-of-the-art performance on several 3D scene

understanding tasks; we hope that ScanNet will inspire fu-

ture work on many other tasks.
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