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Our method completes a partial 3D scan using a 3D Encoder-Predictor network that leverages semantic features from a 3D

classification network. The predictions are correlated with a shape database, which we use in a multi-resolution 3D shape

synthesis step. We obtain completed high-resolution meshes that are inferred from partial, low-resolution input scans.

Abstract

We introduce a data-driven approach to complete partial

3D shapes through a combination of volumetric deep neural

networks and 3D shape synthesis. From a partially-scanned

input shape, our method first infers a low-resolution – but

complete – output. To this end, we introduce a 3D-Encoder-

Predictor Network (3D-EPN) which is composed of 3D con-

volutional layers. The network is trained to predict and fill

in missing data, and operates on an implicit surface rep-

resentation that encodes both known and unknown space.

This allows us to predict global structure in unknown ar-

eas at high accuracy. We then correlate these intermedi-

ary results with 3D geometry from a shape database at test

time. In a final pass, we propose a patch-based 3D shape

synthesis method that imposes the 3D geometry from these

retrieved shapes as constraints on the coarsely-completed

mesh. This synthesis process enables us to reconstruct fine-

scale detail and generate high-resolution output while re-

specting the global mesh structure obtained by the 3D-EPN.

Although our 3D-EPN outperforms state-of-the-art comple-

tion method, the main contribution in our work lies in the

combination of a data-driven shape predictor and analytic

3D shape synthesis. In our results, we show extensive evalu-

ations on a newly-introduced shape completion benchmark

for both real-world and synthetic data.

∗This research is funded by Google Tango.

1. Introduction

Since the introduction of commodity range sensors such

as the Microsoft Kinect, RGB-D scanning has gained a

huge momentum in both offline and real-time contexts

[26, 3, 28, 43, 4, 7]. While state-of-the-art reconstruction re-

sults from commodity RGB-D sensors are visually appeal-

ing, they are far from usable in practical computer graph-

ics applications since they do not match the high quality

of artist-modeled 3D graphics content. One of the biggest

challenges in this context is that obtained 3D scans suffer

from occlusions, thus resulting in incomplete 3D models.

In practice, it is physically infeasible to ensure that all sur-

face points are covered in a scanning session, for instance

due to the physical sensor restrictions (e.g., scan behind a

shelf, or obtain the fine structure of chair model).

Even when reducing the scope to isolated objects, the

problem remains challenging. While traditional methods

can fill in small holes via plane fitting, Laplacian hole fill-

ing [39, 25, 48], or Poisson Surface reconstruction [14, 15],

completing high-level structures, such as chair legs or air-

plane wings, is impractical with these geometry processing

algorithms.

One possible avenue is based on recent advances in ma-

chine learning, which suggests that data-driven approaches

may be suitable for this task. For instance, assuming a par-

tial 3D scan, one would want to complete the 3D shape ge-

ometry based on a previously learned prior.

In this paper, we explore the feasibility of directly apply-

ing deep learning as a strategy to predict missing structures
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from partially-scanned input. More specifically, we propose

3D-Encoder-Predictor Networks (3D-EPN) that are based

on volumetric convolutional neural nets (CNNs). Here, our

aim is to train a network that encodes and generalizes geo-

metric structures, and learns a mapping from partial scans to

complete shapes, both of which are represented as implicit

distance field functions. One of the insights of the 3D-EPN

is that it leverages semantics from a classification network.

More specifically, we use the probability class vector of a

3D-CNN as input to the latent space of the 3D-EPN. In

order to provide supervised training data, realistic ground

truth scanning patterns are generated from virtually scanned

3D CAD models.

In our results, we show that 3D-EPNs can successfully

infer global structure; however, it remains challenging to

predict local geometric detail. In addition, increasing the

output resolution comes with significant compute costs and

makes the optimization of the training process much more

difficult due to the cubic behavior of 3D space. However,

we argue that it may be sufficient to predict only coarse

(potentially blurry) 3D geometry without fine-scale detail if

we can correlate these low-resolution predictions with high-

resolution 3D geometric signal from a shape database. As

the second technical component, we learn this correlation

by searching for similar shapes, and we provide an itera-

tive optimization strategy to incorporate low-level geomet-

ric priors from the database in a shape synthesis process.

Hence, we propose a 3D shape synthesis procedure to

obtain local geometric detail. Thus, output is synthesized

at a much higher resolution than efficiently tractable with

3D deep networks. We first learn a correlation between

the predictions of our 3D-EPNs and the CAD models in

the database. To this end, we utilize the feature learning

capabilities of volumetric CNNs that provide an embed-

ding where 3D-EPNs results are close to geometrically sim-

ilar CAD models in the database. We learn this embed-

ding as a byproduct of a discriminative classification task.

In an iterative optimization procedure, we then synthesize

high-resolution output from the 3D-EPN predictions and

the database prior.

Overall, we propose an end-to-end mesh completion

method that completes partial 3D scans even in very chal-

lenging scenarios. We show compelling results on this very

challenging problem on both synthetic and real-world scan-

ning data. In addition, we favorably compare against state-

of-the-art methods both qualitatively and quantitatively.

In summary, our contributions are

• a 3D-Encoder-Predictor Network that completes

partially-scanned 3D models while using semantic

context from a shape classification network.

• a 3D mesh synthesis procedure to obtain high-

resolution output and local geometric detail.

• an end-to-end completion method that combines these

two ideas, where the first step is to run the 3D ConvNet

regressor, and the second step is an iterative optimiza-

tion for 3D shape synthesis.

2. Previous Work

Shape Completion Shape completion has a long history

in geometry processing, and is often used in the context of

cleaning up broken 3D CAD models. In particular, filling

in small holes has received much attention; for instance,

one could fit in local surface primitives, such as planes or

quadrics, or address the problem with a continuous energy

minimization; e.g., with Laplacian smoothing [39, 25, 48].

Poisson surface reconstruction can be seen as part of this

category [14, 15]; it defines an indicator function on a (po-

tentially hierarchical) voxel grid which is solved via the

Poisson equation.

Another direction for completing shapes is detecting

structures and regularities in 3D shapes. For instance, many

works detect symmetries in meshes or point clouds, and

use them to fill in missing data [42, 23, 30, 37, 40]. Al-

though these methods show impressive results, using pre-

defined regularities fundamentally limits the shape space to

the hand-crafted design.

Much research leverages strong data-base priors. Sung

et al. [41] combine this idea with the detection of symme-

tries and operate on part-based model obtained from the

database. Another idea is to find identical CAD models in

a shape database for a given partial input shape and align it

with the scan [24, 34, 16, 21, 36]. Given the advances in

geometric feature matching, it is possible to find these con-

nections; however, these approaches rely on the assumption

that the database includes identical (or at least very similar)

shapes; thus, they cannot generalize easily to new shapes.

To address this shortcoming, one possibility is to first re-

trieve similar shapes from a database, and then modify the

retrieval results such that they better match and explain the

partially-scanned input. This way, the retrieved models do

not have to exactly match, and it is possible to cover a wider

range of objects even with a relatively small database. For

instance Pauly et al. [29] complete 3D scans by first re-

trieving candidate models from a database, then perform

a non-rigid mesh alignment and blend the results with the

input scan. The same strategy can be applied directly on

range images. Rock et al. [32] retrieve similar depth im-

ages which they deform in order to predict missing voxels;

as a final step they perform Poisson surface reconstruction

obtain the resulting mesh. Li et al. [20] use single RGB-D

images as input and run a similar pipeline, where they first

find and deform nearest models form a database. As a final

step they perform a shape synthesis step, which is similar

than ours. While the idea of non-rigidly deforming models

from a database improves shape coverage, the major limita-

tion is still that global structure cannot be easily generalized
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(e.g., high-level structural changes). In our method we also

rely on geometric signal from database lookups at test time;

however, one of the key insights is that we only take this in-

formation into account to synthesize local detail rather than

global structure.

In order to generalize to arbitrary new shapes, fully data-

driven methods trained with modern machine learning tech-

niques are a promising direction. One of the first methods

in this space is Voxlets [9]. They train a random decision

forests that predict unknown voxel neighborhoods; the final

mesh is generated with a weighted average of the predicted

results and by running marching cubes. 3D ShapeNets [2] is

probably most related to our 3D Encoder-Predictor network.

They also use convolutional neural networks – specifically

a deep belief network – to obtain a generative model for a

given shape database. This allows them to predict multi-

ple solutions conditioned on partial input; however, as we

demonstrate in our results, this strategy is significantly less

efficient than directly training an end-to-end predictor as

our 3D-EPN does. Nguyen et al. [27] build on this work

and apply it to repairing meshes; they use the input of 3D

ShapeNets and compute a distance transform on which they

apply a Markov Random Field.

Related Deep Learning Works With recent advances in

machine learning and the availability of 3D shape databases

[46, 2], research has started to look at deep learning ap-

proaches on 3D data. Wu et al. [46] were among the first

that proposed the use of 3D-CNNs for both classification

and generative tasks (see above). They use a volumetric

representation in their deep belief network that is trained on

their own database; although the training is in 3D most of

their input is from single range images. Since then, differ-

ent versions of 3D-CNN architectures have been proposed

in order to improve classification accuracy [22, 31], obtain

object proposals [38], match local 3D geometry [47], or de-

noise shapes [35]. While the denoising approach of Sharma

et al. [35] can be used towards shape completion, they focus

on random noise patterns rather than partial range scans. In

this work, we leverage the advances in 3D deep learning

and apply a 3D convolutional net for the shape completion

task. While previous works focus more on discriminative

tasks on shape classification, our network regresses missing

data conditioned on the partial scan input.

Recently deep learning has also explored models for gen-

erative tasks; for instance, with generative adversarial net-

works (GANs) [10, 19, 18, 45]. Here, an image (or poten-

tially a 3D shape) is generated from scratch by only taking a

random, latent vector as input. This is related and highly in-

teresting direction (in particular, for modeling applications);

however, it is well known that current generative models

face resolution limits and are usually very hard to train. In

our work, we take a more direct path to train a convolutional

network to directly predict the missing part of a shape with

a follow up shape synthesis module.

3. Method Overview

The goal of our method is to take a partial 3D scan of

an object as input, and predict a completed 3D shape as

output. To achieve this task, we represent each model in a

3D voxel grid. Instead of using just an occupancy grid, we

compute the distance transform for all train and test data.

For generating ground truth train pairs, we virtually scan

objects from the ShapeNet dataset [2] for input, and use a

3D digital differential analyzer [1] to obtain the complete

distance field; see Sec. 4.

Once we have generated the training set, we feed the

training pairs into a deep neural network which directly op-

erates on the 3D representation. The networks loosely fol-

lows idea of autoencoders, similar to Dosovitskiy [8]; how-

ever, in our case, we filter a volumetric representation, on

which we also define the loss function; see Sec. 5. Unlike

traditional autoencoder networks that reconstruct the orig-

inal input and learn an efficient encoding, we aim to fill

in missing data from partial input scans. In our case, the

network learns a correlation of partial and complete mod-

els at training time, which at test time regresses a com-

pleted model with constraints given by known surfaces or

free space information. On a high level, the goal is to map

all partial scans into a shared, embedded space which we

correlate with the complete models. We design the training

process such that we learn this mapping, as well as the re-

construction from it, even under largely missing data. Here,

the main objective is the ability to reconstruct a complete

mesh from the latent space while respecting the constraints

of known data points.

The main challenge of this process is generating new

information – i.e., filling in the missing data from unseen

views – by generalizing geometric structures. The network

needs to encode general rules of 3D model design, and

generalize across different shape instances. To this end,

we train the network under input from a shape classifica-

tion network in oder to respect and leverage semantic in-

formation of the shape’s geometry. Specifically, we input

the probability class vector of a 3D-CNN classification out-

put into the latent space of the 3D-EPN. Another important

challenge on 3D shape completion is the high dimensional-

ity; one of the insights here is that we use a (mostly) contin-

uous distance field representation over an occupancy grid;

this allows us to formulate a well-suited loss function for

this specific task.

Since regressing high-dimensional output with deep net-

works is challenging for high-resolutions – particularly in

3D space –, we expect the 3D-EPN to operate on a relatively

low voxel resolution (e.g., 323 voxel volumes). Although

it lacks fine geometric detail, it facilitates the prediction
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of (missing) global structures of partially-scanned objects

(e.g., chair legs, airplane wings, etc.). At test time, we use

the ShapeNet database [2] as a powerful geometric prior,

where we retrieve high-resolution geometry that respects

the high-level structure of the previously obtained predic-

tions. We establish correlations between the low-resolution

3D-EPN output and the database geometry by learning a

geometry lookup with volumetric features. Here, we utilize

the feature learning of volumetric convolutional networks

with a modified version of Qi et et al. [31] whose learned

features are the byproduct of a supervised classification net-

work. For a given 3D-EPN prediction, we then run the 3D

feature extraction and look up the three nearest shape neigh-

bors in the database which are most similar regarding the

underlying geometric structure.

As a final step of our completion pipeline, we correlate

the coarse geometric predictions from the 3D-EPN output

with the retrieved shape models. We then synthesize higher

resolution detail by using the retrieved shape models to find

similar volumetric patches to those in our prediction, and

use these to iteratively optimize for a refined prediction, hi-

erarchically synthesizing to a 1283 high-resolution distance

field. This effectively transfers-high resolution detail from

complete, synthetic shapes to the prediction while maintain-

ing its intrinsic shape characteristics. From this implicit sur-

face representation, we then extract the final mesh from the

isosurface.

4. Training Data Generation

For training data generation, we use the ShapeNet model

database [2], and we simultaneously train on a subset of 8

categories (see Sec. 8) and a total of 25590 object instances

(the test set is composed of 5384 models). In the train-

ing process, we generate partial reconstructions by virtually

scanning the 3D model. Here, we generate depth maps from

random views around a given model with our custom vir-

tual DirectX renderer. The obtained depth maps store range

values in normalized device coordinates. We backproject

these to metric space (in m) by using Kinect intrinsics. The

extrinsic camera parameters define the rigid transformation

matrices which provide alignment for all generated views.

All views are integrated into a shared volumetric grid using

the volumetric fusion approach by Curless and Levoy [5],

where the voxel grid’s extent is defined by the model bound-

ing box. Note that the ground truth poses are given by the

virtual camera parameters used for rendering and the mod-

els are aligned with respect to the voxel grid. As a result,

we obtain a truncated signed distance field (TSDF) for a

given (virtual) scanning trajectory. This representation also

encodes known free space; i.e., all voxels in front of an ob-

served surface point are known to be empty. The sign of the

distance field encodes this: a positive sign is known-empty

space, zero is on the surface, and a negative sign indicates

unknown values. This additional information is crucial for

very partial views; see Fig. 2. For training the 3D-EPN, we

separate our the sign value from the absolute distance val-

ues, and feed them into the network in separate channels;

see Sec. 5.

For each model, we generate a set of trajectories with dif-

ferent levels of partialness/completeness in order to reflect

real-world scanning with a hand-held commodity RGB-D

sensor. These partial scans form the training input. The

ground truth counterpart is generated using a distance field

transform based on a 3D scanline method [1]; here, we ob-

tain a perfect (unsigned) distance field (DF). We choose to

represent the ground truth as an unsigned distance field be-

cause it is non-trivial to robustly retrieve the sign bit from

arbitrary 3D CAD models (some are closed, some not, etc.).

In our training tasks, we use six different partial trajectories

per model. This serves as data augmentation strategy, and

results in a total of 153, 540 training samples of our 3D-

EPN.

Within the context of this paper, we generate training

pairs of TSDF and DF at resolutions of 323. The final reso-

lution of our completion process is an implicit distance field

representation stored in volumes of 1283 voxels after we ap-

ply the shape synthesis step; see Sec. 7.

5. 3D Encoder-Predictor Network (3D-EPN)

for Shape Completion

We propose a 3D deep network that consumes a partial

scan obtain from volumetric fusion [5], and predicts the dis-

tance field values for the missing voxels. Both our input and

output are represented as volumetric grids with two chan-

nels representing the input TSDF; the first channel encodes

the distance field and the second known/unknown space;

see Sec. 4. Note that the binary known/unknown channel

encodes a significant amount of knowledge as well, it will

let the network know what missing areas it should focus on.

Our network is composed of two parts and it is visualized

in Fig. 1. The first part is a 3D encoder, which compresses

the input partial scan. The compressed stream is then con-

catenated with the semantic class predictions of a 3D-CNN

shape classifier into a hidden space volume; the input par-

tial scan is compressed through a series of 3D convolutional

layers, followed by two fully-connected layers which em-

bed the scan and its semantic information into the latent

space. This encoder helps the network summarize global

context from the input scan – both the observed distance

values, known empty space, and class prediction. The sec-

ond part is a predictor network that uses 3D up-convolutions

to grow the hidden volume into a 323 full size output of es-

timated distance field values. Based on the global context

summarized by the encoder network, the predictor net is

able to infer missing values. In addition, we add skip con-

nections – similar to a U-net architecture [33] – between
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Figure 1: Network architecture of our 3D Encoder-Predictor Network.

the corresponding encoder and predictor layers, visualized

at the bottom of Fig. 1. The data from these connections is

then concatenated with the intermediary output of the up-

convolutions, thus doubling the feature map size. This way,

we ensure propagation of local structure of the input data

and make sure it is preserved in the generated output pre-

dictions.

We use ReLU and batch normalization for all the layers

(except the last one) in the network. We use a masked L1

loss that computes the difference of ground truth distance

field and predicted ones. Only the error in the unknown

regions is counted; the known occupied and known empty

voxels are masked out and enforced to match up the input.

We use the ADAM optimizer [17] with 0.001 learning rate

and momentum 0.9. The learning rate is decayed by half

every 20 epochs. For 153, 540 training samples, it takes

≈ 3 days to train the model to convergence (about half as

long without the skip connections).

6. Shape Prior Correlation

Our 3D Encoder-Predictor Network predicts a 323 dis-

tance field from partially-scanned input. To generate high

resolution detail from this coarse prediction, we corre-

late these predictions with 3D CAD models from a shape

database. To this end, we learn a shape feature descrip-

tor with a 3D-CNN using a modified architecture of Qi et

al. [31]. The network is trained as a classification task on all

55 classes of ShapeNet, which provides a powerful learned

feature descriptor. Since the descriptor is obtained by train-

ing on object categorization, it also defines an embedding of

shape similarities. This allows us to perform shape similar-

ity queries between the 3D-EPN predictions and the CAD

model database.

For the shape completion, we assume that we have ac-

cess to all training meshes of ShapeNet at their full reso-

lution; i.e., we use the shape database as geometric prior

rather than encoding all fine-scale detail in a 3D deep net.

Based on the learned feature vector, we retrieve the three

closest models from the database that are most similar to the

3D-EPN output; this is a k-nearest-neighbor query based on

geometric similarity. In all of our experiments, we exclude

the 5397 models from the test benchmark; hence, ground

truth models cannot be retrieved and are not part of the fea-

ture learning. Although in real-world scanning applications

it is a valid scenario that physical and virtual objects are

identical (e.g., IKEA furniture), we did not further explore

this within the context of this paper since our aim is to gen-

eralize to previously unseen shapes.

7. Shape Synthesis and Mesh Generation

In this section, we describe how we synthesize the fi-

nal high-resolution output and generate local geometric de-

tail. Here, the input is the prediction of the 3D-EPN, as

described in Sec. 5, as well as the nearest shape neighbors

obtained from the shape prior correlation as described in

Sec. 6. We then run an iterative shape synthesis process

that copy-pastes voxels from the nearest shape neighbors to

construct a high-resolution output from the low-resolution

predictions.

Similar to Hertzmann et al. [11], our volumetric synthe-

sis searches for similar volumetric patches in the set of k

nearest shape neighbors to refine the voxel predictions from

the 3D-EPN. Let P be the low resolution output of the 3D-

EPN, of dimension d0× d0× d0 (we have d0 = 32). Multi-

scale pyramids are computed for the k shape neighbors,

with each level l containing the distance field transform of

the shape at dimension 2ld0. We synthesize from coarse

to fine resolution, initializing with the coarse prediction P

and computing a multi-scale representation of P ′. For every

level, volumetric patch features are computed for each voxel

of the neighbors {N l
1
, ..., N l

k
}. To synthesize level l of P ′,

we compute the volumetric patch feature for each voxel v

and use an approximate nearest neighbor search [12] to find

the most similar voxel w of the neighbors, and update the

value of P ′(v) with that of N l
x
(w).

The feature for a voxel v at level l is computed from

the distance field values of the 5 × 5 × 5 neighborhood of

v at level l as well as the values in the corresponding 3 ×
3 × 3 neighborhood at level l − 1. We concatenate these

together and perform a PCA projection over the features
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Figure 2: Example shape completions with our method (note that our approaches operates on all shape types using the same

trained models). We break out the results of separate steps. For instance, this shows what happens when the shape synthesis

step was directly applied to the input; here, we miss global structures.

of {N l
1
, ..., N l

k
} to dimension 100 to accelerate the search.

Additionally, we only consider features for voxels whose

neighborhoods contain at least one voxel on the isosurface

of the distance field; i.e., we only synthesize voxels near the

surface.

Thus, we can hierarchically synthesize to an output reso-

lution of 1283 voxels, where every voxel contains a distance

value. The final step after the mesh synthesis process, is the

mesh extraction from the implicit distance field function us-

ing Matlab’s isosurface function.

8. Results

Across all experiments, we train the 3D-CNN classifier

network, the 3D-EPN, and the 3D retrieval network on the
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Figure 3: Limitations: (1) in cases of extreme partial input,

we fail to infer some structures; (2),(3) fine-scale structures

are often missing in the low-resolution ground truth (323

volume is used as a target for the 3D-EPN); (4) in some

cases, semantic predictions are wrong (here, a boat is turned

into a car); (5) some shapes are just strange (a lamp with an

elephant).

same train/test split for ShapeNet [2], with the 3D-EPN

trained on a subset of eight classes: namely, airplanes, ta-

bles, cars, chairs, sofas, dressers, lamps, and boats. Quanti-

tative evaluations are obtained for a test set of 1200 models.

When a distance field representation is available, we extract

the isosurface using Matlab’s isosurface function. However,

some baselines directly predict meshes; in these cases, we

use those for rendering and evaluation.

Fig. 2 shows a variety of the test examples of our ap-

proach. In each column, we first show the partial input,

then we show results where only the 3D synthesis is used.

In this experiment, we see that the synthesis alone is un-

able to complete missing geometric structure (this is not an

actual result). Next, we show the results of the 3D-EPN

without the synthesis; here, we see that structure is com-

pleted but locally the geometry has a low resolution. This is

addressed by the combination of 3D-EPN and 3D synthesis,

which provides both global structure and local accuracy. In

the right of each column, we show the ground truth.

In Fig. 4, we compare against state-of-the-art shape com-

pletion methods. Poisson surface reconstruction [14, 15]

is mostly used to obtain complete surfaces on dense point

clouds, but it cannot infer missing structures. ShapeRe-

con [32] performs slightly better, but overall, it is heavily

dependent on finding good nearest neighbors; the available

implementation was also trained only on a subset of classes.

3D ShapeNets [46] is most similar to our method, but it is a

fully generative model, which in practice hurts performance

since it addresses a more general task. A quantitative eval-

uation on the same dataset is shown in Tab. 1. Overall, our

3D-EPN performs best, and it efficiently leverages the 3D-

CNN class vector input. Our final result at is obtained with

the combination of the 3D-EPN and 3D shape synthesis,

which outputs a distance field at 1283 voxels.

Method ℓ1-Err (323) ℓ1-Err (1283)

Poisson [14, 15] 1.90 8.46

ShapeRecon [32] 0.97 4.63

3D ShapeNets [46] 0.91 3.70∗∗

Ours (synth-only) 1.20 6.92

Ours (3D-EPN) 0.51 2.63∗∗

Ours (3D-EPN-class) 0.48 2.48∗∗

Ours (3D-EPN-unet) 0.38 2.29∗∗

Ours (3D-EPN-unet-class) 0.37 2.29∗∗

Ours (3D-EPN + synth) - 2.33

Ours (3D-EPN-class + synth) - 2.16

Ours (3D-EPN-unet + synth) - 1.91

Ours (final) - 1.89

3D-EPN-unet-class + synth

Table 1: Quantitative shape completion results on syn-

thetic ground truth data. We measure the ℓ1 error of the

unknown regions against the ground truth distance field

(in voxel space, up to truncation distance of 2.5 voxels).
∗∗predictions at 1283 are computed by upsampling the low-

resolution output of the networks.

3D-CNN 3D-EPN + 3D-CNN

/w Partial Train /w Complete Train

Classification 90.9% 92.6%

Shape Retrieval 90.3% 95.4%

Table 2: Effect of 3D-EPN predictions on classification and

shape retrieval tasks. We train a 3D-CNN classification net-

work [31] on partial (left) and complete (right) ShapeNet

models. The retrieval accuracy is computed from the classes

of the top 3 retrieved neighbors. Performance improves sig-

nificantly when we use the 3D-EPN predictions as an inter-

mediary result. Note that the test task is the same for both

cases since they use the same test input.

In Tab. 2, we address the question whether it is possible

to use the 3D-EPN to improve accuracy on classification

and retrieval tasks. For a given partial scan, there are two

options to perform classification. In the first variant, we

train the 3D-CNN of Qi et al. [31] on partial input to reflect

the occlusion patterns of the test data. In the second vari-

ant, we first run our 3D-EPN and obtain a completed 323

output; we use this result as input to the 3D-CNN which
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is now trained on complete shapes. In both cases, the exact

same partial test inputs are used; however, with the interme-

diate completion step, performance for both classification

and shape retrieval increases significantly.

Limitations are shown in Fig. 3. The most important lim-

itation is the rather low resolution of the 3D-EPN. While it

successfully predicts global structure, it fails to infer smaller

components. This is particularly noticeable when geomet-

ric detail is below the size of a voxel; note that the 3D-EPN

ground truth training pairs are both at a resolution of 322

voxels. Another limitation is extreme partial input where

not enough context is given to infer a plausible completion.

However, note that in addition to occupied surface voxels,

the test input’s signed distance field also encodes known-

empty space. This is crucial in these cases. A general prob-

lem is the availability of 3D training data. With the models

from ShapeNet [2], we can cover some variety; however,

it is certainly not enough to reflect all geometries of real-

world scenes. For further results and evaluation, we refer to

the supplemental document. We show completion results on

Kinect scans and evaluate the importance of the signed dis-

tance field representation over other representations, such

as occupancy or ternary-state voxel grids.

9. Conclusion and Future Work

We have presented an efficient method to complete

partially-scanned input shapes by combining a new 3D deep

learning architecture with a 3D shape synthesis technique.

Our results show that we significantly outperform current

state-of-the-art methods in all experiments, and we believe

that a combination of deep learning for inferring global

structure and traditional synthesis for local improvements

is a promising direction.

An interesting future direction could be to combine

purely generative models with conditioned input, such as

GANs [10]. However, these networks are challenging to

train, in particular for higher resolutions in 3D space. An-

other possible avenue is the incorporation of RGB infor-

mation; for instance, one could enforce shading constraints

to obtain fine-scale detail by borrowing ideas from recent

shape-from-shading methods [44, 49]. However, the most

practical next step is to scale our approach to room-scale

scenes instead of isolated objects; e.g., on ScanNet data [6].
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Figure 4: Qualitative evaluation on ShapeNet [2]. We show

results on a variety of different scenes and compare against

[14, 32, 46]. ShapeRecon is only trained on a subset of cate-

gories (top rows). We also show intermediate results where

we only use the 3D-EPN w/o 3D shape synthesis. Input is

visualized at 323; however, for Kazhdan et al. [14] and Rock

et al. [32], we use the 1283 input. We compare favorably,

even only the 3D-EPN, but final shape synthesis increases

the resolution and adds additional geometric detail.
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